首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trophont stage in the life cycle of Ichthyophthirius multifiliis was studied in the electron microscope. Surface ridges contain up to 24 ridge microtubules, disposed as a ribbon. Kinetosomes show the classic morphology of 9 triplets of microtubules. Associated with each kinetosome is a kinetodesmal fibril, originating in proximity to triplets 5, 6, and 7, and having a 30 nm periodicity; 3 to 5 postciliary microtubules, originating between triplets 8 and 9; and up to 3 transverse microtubules, originating at triplet 4, as well as a parasomal sac. Each cell is partially enclosed by a system of 3 “unit” membranes: the outer limiting membrane, and the outer and inner alveolar membranes. The last two membranes define the alveolar sac. Mucocysts, each with a dense core, are present in large numbers. The contractile vacuole system includes the contractile vacuole, associated tubules and vesicles, injection canals, a discharge canal, and a pore. Microtubules abound in the walls of the contractile vacuole, injection and discharge canals, and in the region of the pores, where both ring and radial microtubular arrangements are noted. The ultrastructure suggests that I. multifiliis is more closely related to Tetrahymena pyriformis than to Paramecium aurelia.  相似文献   

2.
SYNOPSIS. The adult Tokophrya infusionum does not possess cilia, but has 20–30 barren basal bodies arranged in 6 short rows adjacent to the contractile vacuole pore. During reproduction, which is by internal budding, the contractile vacuole sinks into the parent along with the invaginating membranes that form the embryo and the wall of the brood pouch. The 6 rows of basal bodies radiate away from the pore and elongate to form 5 long ciliary rows, that encircle the anterior half of the embryo, and 1 short row at the posterior end. The contractile vacuole pore, along with several barren basal bodies, remains in the parent when the embryo is completed. The pore rises to the surface when the embryo is born. New basal bodies are then formed in the parent to replace those which were incorporated into the embryo, and formation of another embryo may begin. The cilia of the embryo are partially resorbed 10 min after the start of metamorphosis, with depolymerization of the ciliary microtubules. Later, the cilia and most of the basal bodies disappear completely, except for a group of barren basal bodies near the embryo's contractile vacuole pore, which form 6 rows and serve as an anlage for the basal bodies and cilia that arise during embryogenesis. There is, therefore, an organized infraciliature in Suctoria throughout their life cycle, and a distinct continuity of basal bodies across the generations.  相似文献   

3.
Fine structure of gametocytes and oocyst formation of Sarcocystis sp. from Quiscalus quiscula Linnaeus grown in cultured embryonic bovine kidney cells was studied. Microgametocytes measured up to ~5 μm diameter. During nuclear division of the microgametocyte, dense plaques were found adjacent to the nucleus just beneath the pellicle; occasionally microtubules were present within these plaques. These microtubules subsequently formed 2 basal bodies with a bundle of 4 microtubules between them. Microgametocytes also contained numerous mitochondria, micropores, granules, vacuoles, and free ribosomes. Each microgamete was covered by a single membrane and consisted of 2 basal bodies, 2 flagella, a bundle of 4 microtubules, a perforatorium, a mitochondrion, and a long dense nucleus which extended anteriorly and posteriorly beyond the mitochondrion. The bundle of 4 microtubules is thought to be the rudiment of a 3rd flagellum. Macrogametes were covered by a double membrane pellicle, and contained a large nucleus (~2.5 μm), vacuoles, and a dilated nuclear envelope connected with the rough endoplasmic reticulum (ER). In young macrogametes (~4 μm), the ER was arranged in concentric rows in the cortical region, and several sizes of dense granules were found in the cytoplasm. However, in later stages (~8 μm) the ER was irregularly arranged and was dilated with numerous cisternae; only large dark granules remained and a few scattered polysaccharide granules were found. No Golgi apparatus or micropores were observed. After the disappearance of dark granules 5 concentric membranes appeared. Four of these fused to form an oocyst wall composed of a dense outer layer (~66 nm thick) and a thin inner layer (~7 nm). The 5th or innermost membrane surrounded the cytoplasmic mass which was covered by a 2-layered pellicle and contained a nucleus, small amounts of ER, large vacuoles, and mitochondria. The sexual stages described greatly resemble those of Eimeria and Toxoplasma.  相似文献   

4.
A strain of Gracilaria epihippisora Hoyle produces gall-like cell proliferations in culture. These growths can be excised and grown separately, where they retain an undifferentiated morphology and reach 5mm in diameter. The gall tissue consists of a single morphological cell type without any differentiation between surface and internal cells as is characteristic of normal thallus tissue. Gall cells are typically 20–40 μm in diameter and contain the usual complement of organelles and a prominent vacuole, although there are several distinct features. The large multilobed plastids have an extensive proliferation of thylakoid membranes, which form an arrangement of loops and spirals. The thallus outer cell wall layer is highly reduced. The gall growths contain intracellular virus-like particles (ca. 80 nm in diameter) that occur in discrete groups.  相似文献   

5.
V. R. Franceschi 《Protoplasma》1984,120(3):216-223
Summary Sugar beet (Beta vulgaris L.) leaf has a layer of cells extended laterally between the palisade parenchyma and spongy mesophyll that develop numerous small crystals (crystal sand) within their vacuoles. Solubility studies and histochemical staining indicate the crystals are calcium oxalate. The crystals are deposited within the vacuoles early during leaf development, and at maturity the cells are roughly spherical in shape and 2 to 3 times larger than other mesophyll cells. Crystal deposition is preceeded by formation of membrane vesicles within the vacuole. The membranes are synthesizedde novo in the vacuole and have a typical trilaminate structure as viewed with the TEM. The membranes are formed within paracrystalline aggregates of tubular particles (6–8nm outer diameter) as membrane sheets, but are later organized into chambers or vesicles. Calcium oxalate is then precipitated within the membrane chambers. The tubular particles involved in membrane synthesis are usually present in the vacuoles of mature crystal cells, but in very small amounts.  相似文献   

6.
The ultrastructure of the bloodstream form of Cryptobia salmositica in rainbow trout was examined during the acute phase of experimental infection. The arrangement of the major groupings of cytoplasmic microtubules originating near the basal bodies is similar to that in other bodonids. The cytostome is reinforced both by pellicular microtubules and an electron-dense plaque. Certain microtubules associated with the flagellar pocket serve as nucleating sites for pellicular microtubules. A flagellar rootlet, consisting of two parallel fibers which are bound together intermittently by electron-dense plaques, curves posteriorly from the basal body of the recurrent flagellum towards the kinetoplast. The basal body associated plaque on the kinetoplast membranes is duplicated at the same time as the basal bodies. Cytoplasmic microtubules are found in association with the plaque and the outer kinetoplastic membrane. A pulsatile vacuole, described for the first time in a hemoparasitic cryptobiid, lies adjacent to the post-flagellar pit. Smaller, interconnected vesicles of the spongiome are continuous with the pulsatile vacuole. Since a pulsatile vacuole occurs not only in free-living and ectoparasitic cryptobiids but in the hemoparasitic (=trypanoplasm) forms as well, this is no longer a character by which the genus Trypanoplasma may be separated from the genus Cryptobia. Possession of this osmoregulatory complex may allow the organism to survive outside of a host and fulfill a monoxenous life cycle, in addition to the usual heteroxenous cycle involving a leech as vector.  相似文献   

7.
ABSTRACT. Trichophrya collini has a polygonal, dorsoventrally flattened body (up to 75 μm diam.), with capitate tentacles arranged in 1–3 rows within peripheral fascicles. There is a central polymorphic macronucleus, an associated micronucleus, and numerous peripheral contractile vacuoles with ventral discharge pores. The cell has a multilayered cortex and the cytoplasm contains suctorian organelles such as crescentic bodies, elongate dense bodies, and haptocysts. The highly contractile tentacles have an axoneme with an outer ring of 24 microtubules separated into six groups and an inner ring of six curved lamellae, each with five microtubules. The lamellae at the distal and proximal ends of the axoneme are arranged in a helix, and the outer ring microtubules are joined in a distal connective sheath. In the apical knob of the tentacle, the haptocysts are borne on a central capsule, Reproduction is by endogenous budding to produce a single oval-shaped swarmer, with equatorial ciliature, which metamorphoses within 3 h. These observations suggest that this organism, previously known as Heliophrya collini Saedeleer & Tellier, is synonymous with Platophrya rotunda Gönnert, Craspedophrya rotunda Rieder, and Heliophrya rotunda Matthes. Its endogenous mode of budding assigns it to the genus Trichophrya. but it is distinct from Trichophrya rotunda Hentschel, and should be reclassified to Trichophrya collini (Saedeleer & Tellier).  相似文献   

8.
ABSTRACT. Examination of the anterior region of Spirochona gemmipara by combined use of interference contrast microscopy, protargol staining, and transmission electron microscopy has revealed the existence of a cytoproctal apparatus and of an excretory system (contractile vacuole complex), that have often been confused with each other and with the cytopharynx. The cytoproctal apparatus is comprised of an external orifice located at the base of the collar, a cytoproctal canal that is about 20 μm long and delimited by a pellicle with alveoli, and the cytoproct itself. The contractile vauole complex is composed of 6–8 sinuous canals, up to 20 μm long, each of which opens to the exterior by a pore situated among the ciliature of the collar. An ostium, which is the internal orifice of each canal, is connected with a contractile vacuole that is contiguous with a well developed tubular spongiome. Although deeply set, the cytoproct and ostia of S. gemmipara do not appear to be basically different from the corresponding structures described in Paramecium and Tetrahymena.  相似文献   

9.
The mature sperm of A. perniciosus are organized into bundles, about 350 μm long by 9–10 μm wide. Each bundle contains 32 sperm enclosed by a common sheath. The sperm contains an elongated ‘central core’, representing nuclear material, surrounded by a spiral microtubular sheath and cytoplasm. The electron-dense nuclear material is localized in the more pointed half of the sperm. The spiral microtubular sheath is composed of 30— 100 microtubules (depending on the cross-sectional level), situated parallel to the longitudinal axis of the sperm. On the basis of this ultrastructural organization, the motility of the sperm and sperm bundle as a whole is discussed. The sperm of A. perniciosus provide strong evidence that the microtubules arranged asymmetrically represent the elements directly involved in sperm motility.  相似文献   

10.
Microsporidia are obligate intracellular parasites with extremely reduced genomes and a dependence on host‐derived ATP. The microsporidium Encephalitozoon cuniculi proliferates within a membranous vacuole and we investigated how the ATP supply is optimized at the vacuole–host interface. Using spatial EM quantification (stereology), we found a single layer of mitochondria coating substantial proportions of the parasitophorous vacuole. Mitochondrial binding occurred preferentially over the vegetative ‘meront’ stages of the parasite, which bulged into the cytoplasm, thereby increasing the membrane surface available for mitochondrial interaction. In a broken cell system mitochondrial binding was maintained and was typified by electron dense structures (< 10 nm long) bridging between outer mitochondrial and vacuole membranes. In broken cells mitochondrial binding was sensitive to a range of protease treatments. The function of directly bound mitochondria, as measured by the membrane potential sensitive dye JC‐1, was indistinguishable from other mitochondria in the cell although there was a generalized depression of the membrane potential in infected cells. Finally, quantitative immuno‐EM revealed that the ATP‐delivering mitochondrial porin, VDAC, was concentrated atthe mitochondria‐vacuole interaction site. Thus E. cuniculi appears to maximize ATP supply by direct binding of mitochondria to the parasitophorous vacuole bringing this organelle within 0.020 microns of the growing vegetative form of the parasite. ATP‐delivery is further enhanced by clustering of ATP transporting porins in those regions of the outer mitochondrial membrane lying closest to the parasite.  相似文献   

11.
The morphology of a new species of pelobionts Pelomyxa flava was studied by light and electron microscopy. The envelopes of P. flava are consist of a plasma membrane with a thick layer of weakly structured glycocalyx on its outer surface. Numerous flagella are often located at the apices of short conical pseudopodia. Kinetosomes of flagella reach length of 0.9 μm and are hollow with a pronounced central filament. The rootlet system is represented by three groups of microtubules: the radial, basal, and the microtubules of lateral root. The transitory zone is short and does not reach beyond the level of the cell surface; the axoneme is characterized by an unstable set of microtubules. Trophic stages of the P. flava life cycle are represented by binuclear cells; plasmotomy is performed at the tetranuclear stage. Nuclei have a granular structure. Fibrillar nuclear bodies are revealed in the karyoplasm. The nuclear envelope has a complex organization; on its surface, the outer membrane has a layer of electron-dense material that contacts with short microtubules located single-row at the surface of the nuclear envelope. Vesicles and cisterns of endoplasmic reticulum are located away from microtubules and are derivatives of the nuclear envelope. In the P. flava endoplasm, the presence of structural and digestive vacuoles and glycogen granules was found. Three types of prokaryotic cytobionts were revealed. Large multimembranous organelles reaching 5 μm in diameter were described for the first time. Peculiarities of the morphology and biology of P. flava compared to the previously studied Pelomyxa species are discussed.  相似文献   

12.
 The process of endosperm development in Arabidopsis was studied using immunohistochemistry of tubulin/microtubules coupled with light and confocal laser scanning microscopy. Arabidopsis undergoes the nuclear type of development in which the primary endosperm nucleus resulting from double fertilization divides repeatedly without cytokinesis resulting in a syncytium lining the central cell. Development occurs as waves originating in the micropylar chamber and moving through the central chamber toward the chalazal tip. Prior to cellularization, the syncytium is organized into nuclear cytoplasmic domains (NCDs) defined by nuclear-based radial systems of microtubules. The NCDs become polarized in axes perpendicular to the central cell wall, and anticlinal walls deposited among adjacent NCDs compartmentalize the syncytium into open-ended alveoli overtopped by a crown of syncytial cytoplasm. Continued centripetal growth of the anticlinal walls is guided by adventitious phragmoplasts that form at interfaces of microtubules emanating from adjacent interphase nuclei. Polarity of the elongating alveoli is reflected in a subsequent wave of periclinal divisions that cuts off a peripheral layer of cells and displaces the alveoli centripetally into the central vacuole. This pattern of development via alveolation appears to be highly conserved; it is characteristic of nuclear endosperm development in angiosperms and is similar to ancient patterns of gametophyte development in gymnosperms. Received: 21 September 1998 / Revision accepted: 17 November 1998  相似文献   

13.
The transfer of endocytosed simian virus 40 (SV40) to the nuclear position was investigated ultrastructurally using cationized ferritin (CF), ferritin labelled concanavalin A (Fer-Con A) and Con A as cell membrane markers. In the cells incubated with these markers and SV40 at 4 degrees C, and then chased for 2 h at 37 degrees C in serum-free medium, ferritin particles representing CF and/or Fer-Con A binding sites were found in vacuoles with SV40. The membrane of some vacuoles seemed to be in contact with the outer nuclear membrane. Several ferritin particles were located in the perinuclear cisterna and within the nucleoplasm, but not within the nuclear pores. In addition, there were vacuoles with ferritin particles and SV40 near the nuclear membrane, which looked like a single diaphragm with heterochromatins inside it. The outer nuclear and vacuole membranes were often obscure in the areas where the vacuole was very close to the diaphragm. In the case of cells incubated with CF, SV40 and Con A at 4 degrees C, chased for 2 h at 37 degrees C, and then reacted with horseradish peroxidase (HRP), HRP activity showing Con A-binding sites was also observed along the nuclear side of the inner nuclear membrane as well as in the perinuclear cisterna along the outer membrane. These results confirm that SV40-induced endocytotic vacuoles fuse with the outer nuclear membrane, and further indicate that some endocytotic vacuoles may well interact directly with the diaphragm, suggesting another path for migration of SV40 into CV-1 cell nuclei besides the path going through the process of fusion of the vacuole membrane with the outer nuclear membrane.  相似文献   

14.
T. A. Keil 《Zoomorphology》1984,104(3):147-156
Summary Olfactory trichoid hairs on the antennae of male Antheraea silkmoths were reconstructed with respect to the following parameters: number, shape, course, and dimensions of outer dendritic segments as well as the numbers of their microtubules; inner and outer dimensions of the cuticular hair shafts; and number and distribution of pores and pore tubules in the hair walls. The smallest distances between dendritic membranes and inner hair surfaces were determined with respect to the possibility of pore tubule contacts. It was shown that most hairs contain one thick and one, or frequently two, thin dendrites. The number of microtubules in the dendrites is correlated with dendrite diameter, which decreases towards the hair tip. The dendrites form numerous swellings and constrictions: this beading occurs especially along the thin dendrites. The dendrites do not run straight, but rather follow a sinuous course in the hairs. The density of wall pores is lowest in the basal region of the hairs. Only in relatively few places do the dendritic membranes get near enough the hair walls to come into the probable range of the pore tubules. In the sensilla trichodea of A. polyphemus, the hairs as well as the dendrites have markedly smaller diameters than in A. pernyi.  相似文献   

15.
The micropylar apparatus (MA) in Rhagoletis cerasi (Diptera, Tephritidae) is located at the anterior pole of the egg and consists of two parts: an outer chorion and an inner vitelline membrane. Sperm entry takes place through the micropylar canal, 2.0–2.5 μm in diameter, which penetrates the micropylar endochorion and terminates in the thick vitelline membrane, thus forming the “pocket.” The pore of the micropylar canal, i.e., the micropyle, is covered by the exochorionic tuft. The formation of the MA is accomplished by 40 micropylar cells during oogenesis. These cells secrete the successive eggshell layers: the vitelline membrane, the wax layer, the innermost chorionic layer, the micropylar endochorion, and the exochorion. Two among 40 micropylar cells differentiate and form two tightly connected projections. The latter contain a bundle of parallel microtubules and participate in the formation of the micropylar canal and the pocket. At the tip of the projections there are two thin extensions full of microfilaments. In late developmental stages the two projections and the extensions degenerate and leave the canal and the pocket behind. We also discuss the structural features of the MA in relation to its physiology among Diptera.  相似文献   

16.
17.
Autophagy defends cells against proliferation of bacteria such as Salmonella in the cytosol. After escape from a damaged Salmonella‐containing vacuole (SCV) exposing luminal glycans that bind to Galectin‐8, the host cell ubiquitination machinery deposits a dense layer of ubiquitin around the cytosolic bacteria. The nature and spatial distribution of this ubiquitin coat in relation to other autophagy‐related membranes are unknown. Using transmission electron microscopy, we determined the exact localisation of ubiquitin, the ruptured SCV membrane and phagophores around cytosolic Salmonella. Ubiquitin was not predominantly present on the Salmonella surface, but enriched on the fragmented SCV. Cytosolic bacteria without SCVs were less efficiently targeted by phagophores. Single bacteria were contained in single phagophores but multiple bacteria could be within large autophagic vacuoles reaching 30 μm in circumference. These large phagophores followed the contour of the engulfed bacteria, they were frequently in close association with endoplasmic reticulum membranes and, within them, remnants of the SCV were seen associated with each engulfed particle. Our data suggest that the Salmonella SCV has a major role in the formation of autophagic phagophores and highlight evolutionary conserved parallel mechanisms between xenophagy and mitophagy with the fragmented SCV and the damaged outer mitochondrial membrane serving similar functions.  相似文献   

18.
SYNOPSIS. Observations of the ultrastructure of marine scuticociliatids, tentatively assigned to the genus Uronema, were made by light, transmission electron, and scanning electron microscopy. Giant, cortically oriented mitochondria filled the subpellicular, intermeridional areas, and were in close association with the epiplasm immediately under the inner alveolar sac membranes. Reconstructions of serial sections of the posterior poles of ciliates indicated that the intermeridional mitochondria could fuse at that point and the entire chondriome might at times be a single organelle. A system of tubules was observed to be intimately associated with the mitochondria in the posterior region. The tubules anastomosed and were directed posteriorly into the region of the nephridial-contractile vacuole system. The outer surfaces were coated with projections arranged in helical patterns. The system may be regarded as a fluid segregation organelle. The tripartite nature of the polar basal body complex observed by silver impregnation was confirmed by transmission electron microscopy. The 3 structures were the basal body of the caudal cilium and 2 parasomal sacs. A prominent ring around the caudal cilium was observed by scanning electron micrcscopy; it is probably responsible for the silver deposition surrounding the polar basal body complex that can be seen by light microscopy of silver-impregnated specimens. The ultrastructure of the nonmotile caudal cilium and its kinetosome was unremarkable, being like that of the motile, somatic cilia. The micronuclear and macronuclear outer membranes were continuous at several sites. Such interconnections explain the intimate physical relationship between the nuclei during interphase in many ciliates, and could be a structural basis for chemical communication between the 2 nuclear types. Within the cytoplasm surrounding the opening of the cytoproct, numerous clear vesicles were observed. Their position and appearance suggested that the cytoproct may be involved in the elimination of solutions as well as solids. Food vacuoles, cortical microtubules, lamellar vesicles, disc-shaped vesicles, mucocysts, and a contractile vacuole and its pore were also observed.  相似文献   

19.
Summary Endosperm of the nuclear type initially develops into a large multinucleate syncytium that lines the central cell. This seemingly simple wall-less cytoplasm can, however, be highly differentiated. In developing seeds of members of the family Brassicaceae the curved postfertilization embryo sac comprises three chambers or developmental domains. The syncytium fills the micropylar chamber around the embryo, spreads as a thin peripheral layer surrounding a large central vacuole in the central chamber, and is organized into individual nodules and a large multinucleate cyst in the chalazal tip. Later in development, after the endosperm has cellularized in the micropylar and central chambers, the chalazal endosperm cyst remains syncytial and shows considerable internal differentiation. The chalazal endosperm cyst consists of a domelike apical region that is separated from the cellularized endosperm by a remnant of the central vacuole and a basal haustorial portion which penetrates the chalazal proliferative tissue atop the vascular supply. In the shallow chalazal depression ofArabidopsis thaliana, the cyst is mushroom-shaped with short tentacle-like processes penetrating the maternal tissues. The long narrow chalazal channel ofLepidium irginicum is filled by an elongate stalklike portion of the cyst. In both, the dome contains a labyrinth of endoplasmic reticulum, dictyosomes with associated vesicles, nuclei, and plastids. The basal portions, which lack the larger organelles, exhibit extensive wall ingrowths and contain parallel arrays of microtubules. The highly specialized ultrastructure of the chalazal endosperm cyst and its intimate association with degrading chalazal proliferative cells suggest an important role in loading of maternal resources into the developing seed.  相似文献   

20.
The mechanism of bilayer unification in biological fusion is unclear. We reversibly arrested hemagglutinin (HA)-mediated cell–cell fusion right before fusion pore opening. A low-pH conformation of HA was required to form this intermediate and to ensure fusion beyond it. We present evidence indicating that outer monolayers of the fusing membranes were merged and continuous in this intermediate, but HA restricted lipid mixing. Depending on the surface density of HA and the membrane lipid composition, this restricted hemifusion intermediate either transformed into a fusion pore or expanded into an unrestricted hemifusion, without pores but with unrestricted lipid mixing. Our results suggest that restriction of lipid flux by a ring of activated HA is necessary for successful fusion, during which a lipidic fusion pore develops in a local and transient hemifusion diaphragm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号