首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the chronotoxicity of xenobiotics is relatively well known in mammals, the existence of daily rhythms of drug toxicity and effectiveness in fish has been neglected to date. The aim of this research was to investigate the influence of the time (middle of the light phase [ML] versus middle of the dark phase [MD]) of exposure to two anesthetic substances (MS-222 or clove oil) commonly used with fish on the median lethal concentration (LC(50)) and swimming activity of zebrafish (Danio rerio). To this end, adult zebrafish were kept under a 12 h:12 h light-dark (LD) cycle and exposed to different concentrations of the anesthetics for 15 min at ML or MD. LC(50) calculations were performed using the Spearman-Karber program, whereas swimming activity was video-recorded and analyzed with specialized software. Zebrafish exhibited a mostly diurnal activity pattern (77.9% of activity occurring during daytime). The acute toxicity and mortality caused by MS-222 and eugenol varied with the time of exposure. For MS-222, the LC(50) was 170.6 ± 7.4 mg/L in fish exposed at ML and 215.6 ± 3.9 mg/L at MD, whereas for eugenol the LC(50) was 70.3 ± 3.1 mg/L at ML and 104.9 ± 5.4 mg/L at MD. Exposure to sublethal concentrations of MS-222 and eugenol altered the swimming patterns of zebrafish in a different manner depending on the time of exposure. Thus, the time required for decreasing swimming activity during exposure to anesthetics was shorter at ML than at MD, whereas the recovery period was longer during the day. In conclusion, these results revealed that the toxicity and effectiveness of both anesthetic substances is highest during daytime, the active phase of fish, thus suggesting a link between the daily rhythms of behavior and toxicity.  相似文献   

2.
A preliminary study was carried out to investigate diurnal changes of behavior of three, one adult male, one adult female, and one juvenile female, Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) in captivity. The respiration and behavior of the porpoises were recorded for 222 hr across 42 days. Behavioral data were recorded for eight general categories: aerial display and fast swimming, begging for fish, playing, nonsexual socializing, sexual behavior, resting, rubbing, and miscellaneous (i.e., other behaviors not included in the above categories). Each behavioral category was scored using one‐zero sampling with 10‐min intervals. The adult male showed shorter mean respiratory intervals at night (19:00–7:00 h), whereas the mean respiratory intervals of the females were shorter during the day (7:00–19:00 h). Begging for fish of all individuals, playing of the juvenile female, nonsexual socializing, and miscellaneous behavior of the adult female and resting of the male were observed more easily in the day, and aerial display and fast swimming of the adults and resting of the females were observed more easily at night. No significant diurnal difference was found, however, in the remaining categories of each individual. Each of the three porpoises therefore showed a distinct diurnal pattern, but none was obviously more active in the daytime than during the nighttime. Results suggest that daytime‐only feeding schedules may be insufficient to meet the energetic needs of marine mammals that show a 24‐hr activity cycle, and that nighttime feeding may be a worthwhile addition to husbandry routines. Zoo Biol 0:1–11, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

3.
The effect of restricted feeding schedule was investigated on the seasonal shifting of daily demand-feeding pattern and food anticipatory activity in European sea bass (Dicentrarchus labrax) held under natural environmental conditions in an outdoor laboratory. To that end, demand-feeding behavior was continuously monitored for approximately one year in four groups of 15 fish each exposed to natural fluctuations of water temperature (from 13.2 degrees C to 27.4 degrees C) and photophase (from 9.5 h to 14.5 h of light). When the animals were subjected to a time-restricted feeding schedule, the demand-feeding rhythm rapidly synchronized to the three periods of food availability: the first meal (FM) from 08:00 to 09:00 h, the second meal (SM) from 16:00 to 17:00 h, and the third meal (TM) from 00:00 to 01:00 h. The occurrence of demand-feeding activity into the three periods of food availability displayed a double seasonal shift: fish that self-fed mostly during the daytime periods of feeding availability (FM and SM) in summer and autumn changed to nocturnal feeding (TM) from December to April, returning to diurnal preferences in April. Food-demands appeared to be predominantly associated with feed availability, reaching its maximum levels during the hours of reward. In addition, feeding anticipatory activity (FAA) was observed. A relationship was detected between the duration of FAA and feeding-time, with shortest FAA (30-60 min) when mealtime occurred just after sunrise (FM) or sunset (TM). These findings demonstrate the ability of sea bass to self-feed under time-restricted schedules, and show a seasonal-phase inversion in demand-feeding activity in spite of the restrictions in their feeding availability. Sea bass can use external signals as reference to anticipate the time of feed availability. This information may be useful for designing new feeding strategies for European sea bass fish farming.  相似文献   

4.
The guidelines for night and shift workers recommend that after night work, they should sleep in a dark environment during the daytime. However, staying in a dark environment during the daytime reduces nocturnal melatonin secretion and delays its onset. Daytime bright-light exposure after night work is important for melatonin synthesis the subsequent night and for maintaining the circadian rhythms. However, it is not clear whether daytime sleeping after night work should be in a dim- or a bright-light environment for maintaining melatonin secretion. The aim of this study, therefore, was to evaluate the effect of bright-light exposure during daytime sleeping on nocturnal melatonin secretion after simulated night work. Twelve healthy male subjects, aged 24.8 ± 4.6 (mean ± SD), participated in 3-day sessions under two experimental conditions, bright light or dim light, in a random order. On the first day, the subjects entered the experimental room at 16:00 and saliva samples were collected every hour between 18:00 and 00:00 under dim-light conditions. Between 00:00 and 08:00, they participated in tasks that simulated night work. At 10:00 the next morning, they slept for 6 hours under either a bright-light condition (>3000 lx) or a dim-light condition (<50 lx). In the evening, saliva samples were collected as on the first day. The saliva samples were analyzed for melatonin concentration. Activity and sleep times were recorded by a wrist device worn throughout the experiment. In the statistical analysis, the time courses of melatonin concentration were compared between the two conditions by three-way repeated measurements ANOVA (light condition, day and time of day). The change in dim light melatonin onset (ΔDLMO) between the first and second days, and daytime and nocturnal sleep parameters after the simulated night work were compared between the light conditions using paired t-tests. The ANOVA results indicated a significant interaction (light condition and3 day) (p = .006). Post hoc tests indicated that in the dim-light condition, the melatonin concentration was significantly lower on the second day than on the first day (p = .046); however, in the bright-light condition, there was no significant difference in the melatonin concentration between the days (p = .560). There was a significant difference in ΔDLMO between the conditions (p = .015): DLMO after sleeping was advanced by 11.1 ± 17.4 min under bright-light conditions but delayed for 7.2 ± 13.6 min after sleeping under dim-light conditions. No significant differences were found in any sleep parameter. Our study demonstrated that daytime sleeping under bright-light conditions after night work could not reduce late evening melatonin secretion until midnight or delay the phase of melatonin secretion without decreasing the quality of the daytime sleeping. Thus, these results suggested that, to enhance melatonin secretion and to maintain their conventional sleep–wake cycle, after night work, shift workers should sleep during the daytime under bright-light conditions rather than dim-light conditions.  相似文献   

5.
Individuals within a species often compete for resources inboth space and time. In dominance hierarchies individuals withthe greatest competitive ability will occupy prime locationsduring optimal periods. We compared spatial and temporal useof habitat, aggression, and feeding success among giant kokopu(Galaxias argenteus) in dominance hierarchies under normal andreduced food supply. Under normal food supply conditions dominantfish were predominantly nocturnal and maintained large homeranges at night. Conversely, subdominant fish were diurnal andoccupied large home ranges by day but were generally not observedat night. When the food supply was limited, the utilizationof pools was determined by social rank. Dominant fish from eachpool increased diurnal activity, home range size, aggressiveness,and the capture of food items offered by day while simultaneouslyreducing the spatial and temporal activity and habitat use ofsubdominant fish. These results indicate that behavioral changesin large dominant fish influence and reduce the amount of resourcesavailable to subdominant fish.  相似文献   

6.
The aim of this study was to examine the effects of training at the same time of day on diurnal variations of technical ability and swimming performance, to provide some recommendations with regard to adjusting training hours in accord with the time of day of competitive events. Eighteen participants volunteered for this study, and these were randomly assigned to either a morning training group (MTG, who trained only between 07:00 and 08:00 h, n = 6), an evening training group (ETG, who trained only between 17:00 and 18:00 h, n = 6), or a control group (CG, did not train but participated in all tests, n = 6). Swimming performance and technical ability – (i) stroke parameters: swim velocity (V), stroke rate (SR), and stroke length (SL); and (ii) motor organization: arm stroke phases and arm coordination (Idc) – were recorded 2 weeks before and 2 weeks after an 8-week regular training period. For all participants, the morning and evening tests were scheduled at the same time of day as the morning and evening training sessions. After training, the major finding of this study was that both ETG and the CG showed significantly lower P, V, SR, phase (B), phase (C), and Idc values in the morning than in the evening. However, P, V, SR, phase (B), phase (C), and Idc of the MTG measured at 07:00 and 17:00 h did not differ. Thus, training at a specific time of day increased performance in MTG at this time and modified the diurnal variation of swim performance. This study indicates that training at a specific time of day can result in marked changes in both swimming performance and technical aspects of swimming. Furthermore, training in the morning improved morning swimming performance and its components, and the amplitude of the morning–evening difference decreased. Training in the evening improved swimming performance and its components more in the evening than the morning, and the amplitude of the morning–evening difference increased.  相似文献   

7.
Diel activity of resident and immigrant waterbirds at Lake Turkana, Kenya   总被引:1,自引:0,他引:1  
M. FASOLA  L. CANOVA 《Ibis》1993,135(4):442-450
Of the 42 dominant species of waterbirds at Lake Turkana, Kenya, 14 foraged uniformly throughout the day and night, five foraged mostly during the night, five foraged during both the night and day but with diurnal peaks, 17 were exclusively diurnal and only one was exclusively nocturnal. Species with uniform feeding activity usually captured small prey, using tactile or visual plus tactile cues; most diurnal species captured large prey, using visual cues. However, some species which fed mostly at night, or uniformly, relied exclusively on visual cues. We found support from only one species that moonlight influenced foraging activities. Palaearctic immigrants spent significantly more time foraging than partial migrants and residents; they were also smaller and mainly microphagous. Only gulls and terns were restricted to diurnal feeding, presumably by their need to see and capture prey while flying. The other groups were formed by species which foraged uniformly over 24 h or partially by day or night. These patterns indicate that in most waterbirds feeding activities are not basically tied to any phase of the diel cycle. Since most waterbirds display some degree of nocturnal activity, time budget studies based only on diurnal observations are likely to be misleading.  相似文献   

8.
The aim of the present study was to investigate what, if any, diurnal changes occur in blood metabolites in relation to plasma growth hormone (GH) and feeding time among mithun (Bos frontalis), a semi-wild ruminant. Blood samples were collected at hourly intervals during a 24 h span from 6 mithun heifers (averaging 2.5 yr of age and averaging 230 kg in weight) that were fed twice a day at 11:00 and 16:00 h. Samples were assayed for plasma GH and blood metabolites, non-esterified fatty acids (NEFA), glucose, and alpha-amino nitrogen. The total sampling period was divided into a 1) postprandial (after meal) period (period I: 11:00 to 21:00 h) and 2) interprandial period (period II: 22:00 to 10:00 h) and also into night (20:00 to 05:00 h) and day (06:00 to 10:00 h) periods for statistical analysis. Plasma glucose and alpha-amino nitrogen levels increased (p<0.01), and plasma NEFA and GH decreased (p<0.01) after each meal. No diurnal rhythmicity was detected in plasma glucose or alpha-amino nitrogen levels. Interestingly, plasma NEFA and GH levels were higher (p<0.01) during the interprandial (period II) and night periods, indicating an energy deficit that occurred progressively during the interprandial period of nocturnal feed deprivation. In twice-daily-fed mithuns we conclude that: 1) plasma metabolites and GH exhibited a definite pattern of change with time of feeding; 2) concentrations of plasma NEFA were higher nocturnally due to an energy deficit and that GH levels were higher during the interprandial period after the second meal; 3) the interprandial period after the second feeding may be considered to constitute a short-term food deprivation; 4) the longer interprandial period of 19 h in this study between the second and subsequent morning meal may be changed into equally divided feedings to minimize the short-term energy deficit; and 5) blood sampling for blood metabolites in mithuns should be conducted at a fixed time of day with special emphasis on time of feeding.  相似文献   

9.
Daily light and feeding cycles act as powerful synchronizers of circadian rhythmicity. Ultimately, these external cues entrain the expression of clock genes, which generate daily rhythmic behavioral and physiological responses in vertebrates. In the present study, we investigated clock genes in a marine teleost (gilthead sea bream). Partial cDNA sequences of key elements from both positive (Bmal1, Clock) and negative (Per2, Cry1) regulatory loops were cloned before studying how feeding time affects the daily rhythms of locomotor activity and clock gene expression in the central (brain) and peripheral (liver) oscillators. To this end, all fish were kept under a light-dark (LD) cycle and were divided into three experimental groups, depending on the time of their daily meal: mid-light (ML), mid-darkness (MD), or at random (RD) times. Finally, the existence of circadian control on gene expression was investigated in the absence of external cues (DD?+?RD). The behavioral results showed that seabream fed at ML or RD displayed a diurnal activity pattern (>91% of activity during the day), whereas fish fed at MD were nocturnal (89% of activity during the night). Moreover, seabream subjected to regular feeding cycles (ML and MD groups) showed food-anticipatory activity (FAA). Regardless of the mealtime, the daily rhythm of clock gene expression in the brain peaked close to the light-dark transition in the case of Bmal1 and Clock, and at the beginning of the light phase in the case of Per2 and Cry1, showing the existence of phase delay between the positive and negative elements of the molecular clock. In the liver, however, the acrophases of the daily rhythms differed depending on the feeding regime: the maximum expression of Bmal1 and Clock in the ML and RD groups was in antiphase to the expression pattern observed in the fish fed at MD. Under constant conditions (DD?+?RD), Per2 and Cry1 showed circadian rhythmicity in the brain, whereas Bmal1, Clock, and Per2 did in the liver. Our results indicate that the seabream clock gene expression is endogenously controlled and in liver it is strongly entrained by food signals, rather than by the LD cycle, and that scheduled feeding can shift the phase of the daily rhythm of clock gene expression in a peripheral organ (liver) without changing the phase of these rhythms in a central oscillator (brain), suggesting uncoupling of the light-entrainable oscillator (LEO) from the food-entrainable oscillator (FEO). These findings provide the basis and new tools for improving our knowledge of the circadian system and entraining pathways of this fish species, which is of great interest for the Mediterranean aquaculture. (Author correspondence: javisan@um.es).  相似文献   

10.
Short periods of light or no light (18D : 06L and 24D : 00L) resulted in an increased growth compared to extended periods of light (06D : 18L and 12D : 12L) in African catfish Clarias gariepinus . Fish under longer periods of light (12D : 12L and 18D : 06L) showed higher swimming activity, more aggression (injuries on the body) and higher lactate, free fatty acids and cortisol levels compared to those who were reared at shorter periods of light (24D : 00L and 18D : 06L). Feeding activity during light and dark periods in this experiment showed that C. gariepinus had both night and day feeding activities, with a preference to diurnal feeding in the 12D : 12L photoperiod. The results showed that light plays an important role in the African catfish behaviour and its well‐being. As the hours of light increased during the 24 h cycle, data suggests that the fish were more stressed and aggressive, compared to those under a reduced number of light hours.  相似文献   

11.
Measurements of the swimming activity of a group of roach (12–19 cm TL, average) in a circular swimming chamber revealed two distinct activity patterns: a diurnal and a nocturnal one. The experiments showed that, having the choice, two factors stimulated the rhythmicity of the swimming behaviour of the fish, i.e. light intensity and the presence of a current field in the proximity of the fish. During daytime (bright light conditions) the fish moved into the current field and swam on average at 0.4 BL/s (resting swimming). The roach remained swimming at this speed even if no current field was established, however, then distributed evenly in the basin. By contrast, during night (dim light conditions) the fish predominantly chose the still water section but swam on average with a cruising speed of 1.6 BL/s (night swimming). Accordingly, they did not seek the still water section for night swimming if the light was kept on. Then again, the fish distributed more or less evenly in the basin. The results support the hypothesis that the fish migrate during night-time and do this preferably in still water.  相似文献   

12.
The spatially explicit diel movement patterns of fish using coral reef ecosystems are not well understood, despite the widespread recognition that many common species undergo distinct migrations to utilize different resources during night and day. We used manual acoustic telemetry coupled with global positioning technology to track the detailed spatially explicit daily movements (24 h) of multiple individuals of two common Caribbean fish species, Haemulon sciurus (bluestriped grunt) and Lutjanus apodus (schoolmaster snapper). Movement pathways and day and night activity spaces were mapped and quantified in a Geographic Information System (GIS). Directional sun-synchronous migrations occurred close to astronomical sunset and sunrise. Site fidelity within day and night activity spaces was high. Nine of twelve individuals exhibited overlap of day and night activity spaces and three fish (L. apodus) exhibited complete spatial segregation. Night activity spaces (H. sciurus: 11,309?±?3,548 m2; L. apodus: 9,950?±?3,120 m2) were significantly larger than day activity spaces (H. sciurus: 2,778?±?1,979 m2; L. apodus: 1,291?±?636 m2). The distance between sequential position fixes (step lengths) was significantly greater at night than day, indicative of nocturnal foraging and day resting behavior. Integrating acoustic telemetry, GIS techniques and spatial statistics to study fish movement behavior revealed both individual variability and some broader generality in movement paths and activity spaces suggestive of complex underlying behavioral mechanisms influencing diel movements.  相似文献   

13.
Primates often modify dietary composition in relation to seasonal changes in food availability or climate conditions. We studied the feeding patterns of a troop of common brown lemurs (Eulemur fulvus), a semi-frugivorous strepsirhine, in a dry forest in northwestern Madagascar. To understand the mechanism of dietary modification, we recorded daily feeding times of diet items during 101 full-day observations over 1 year, and then conducted a linear model analysis to examine the effects of fruiting tree density in the forest, daily ambient temperature, and weekly rainfall (index of water retained in the forest) on the lemurs' daily feeding time. The lemurs spent dramatically more time on leaf-eating as well as total feeding time, and less time on fruit-eating during the late dry season (total 152 min/day, frugivory 56 min/day, folivory 77 min/day), as compared with other seasons when the diet was highly frugivorous (total 96 min/day, frugivory 81 min/day, folivory 8 min/day). Folivory increased as temperatures rose under the condition of low weekly rainfall, whereas frugivory was unrelated to fruiting tree density. Most (97.4 %) diurnal folivory during the late dry season was spent consuming Lissochilus rutenbergianus, chewing the succulent leaves and licking the juice. Because the nutritional analysis showed that L. rutenbergianus is rich in water (80.1 % of fresh weight) but poor in protein and nonstructural carbohydrates, its increased use was probably for rehydration. We conducted 13 full-night observations, because brown lemurs increase nocturnal activities during the dry season. At nighttime, the lemurs tended to spend more time eating fruit in the late dry season (32 min/night) than in the early dry season (14 min/night), and never consumed Lrutenbergianus. Fruits rich in nonstructural carbohydrates can be energy sources for Eulemur. They likely engaged in additional nocturnal frugivory for energy compensation. Brown lemurs have a flexible strategy of modifying their diet and feeding activities to cope with environmental stresses.  相似文献   

14.
1. Most animals are active by day or by night, but not both; juvenile salmonids are unusual in that they switch from being predominantly diurnal for most of the year to being nocturnal in winter. They are visual foragers, and adaptations for high visual acuity at daytime light intensities are generally incompatible with sensitive night vision. Here we test whether juvenile Atlantic Salmon Salmo salar are able to maintain their efficiency of prey capture when switching between diurnal and nocturnal foraging.
2. By testing the ability of the fish to acquire drifting food items under a range of manipulated light intensities, we show that the foraging efficiency of juvenile salmon is high at light intensities down to those equivalent to dawn or dusk, but drops markedly at lower levels of illumination: even under the best night condition (full moon and clear sky), the feeding efficiency is only 35% of their diurnal efficiency, and fish will usually be feeding at less than 10% (whenever the moon is not full, skies are overcast or when in the shade of bankside trees). Fish were unable to feed on drifting prey when in complete darkness.
3. The ability of juvenile salmon to detect prey under different light intensities is similar to that of other planktivorous or drift-feeding species of fish; they thus appear to have no special adaptations for nocturnal foraging.
4. While winter drift abundance is slightly higher by night than by day, the difference is not enough to compensate for the loss in foraging efficiency. We suggest that juvenile salmon can nonetheless switch to nocturnal foraging in winter because their food requirements are low, many individuals adopting a strategy in which intake is suppressed to the minimum that ensures survival.  相似文献   

15.
The aim of the present study was to investigate what, if any, diurnal changes occur in blood metabolites in relation to plasma growth hormone (GH) and feeding time among mithun (Bos frontalis), a semi‐wild ruminant. Blood samples were collected at hourly intervals during a 24 h span from 6 mithun heifers (averaging 2.5 yr of age and averaging 230 kg in weight) that were fed twice a day at 11:00 and 16:00 h. Samples were assayed for plasma GH and blood metabolites, non‐esterified fatty acids (NEFA), glucose, and alpha‐amino nitrogen. The total sampling period was divided into a 1) postprandial (after meal) period (period I: 11:00 to 21:00 h) and 2) interprandial period (period II: 22:00 to 10:00 h) and also into night (20:00 to 05:00 h) and day (06:00 to 10:00 h) periods for statistical analysis. Plasma glucose and alpha‐amino nitrogen levels increased (p<0.01), and plasma NEFA and GH decreased (p<0.01) after each meal. No diurnal rhythmicity was detected in plasma glucose or alpha‐amino nitrogen levels. Interestingly, plasma NEFA and GH levels were higher (p<0.01) during the interprandial (period II) and night periods, indicating an energy deficit that occurred progressively during the interprandial period of nocturnal feed deprivation. In twice‐daily‐fed mithuns we conclude that: 1) plasma metabolites and GH exhibited a definite pattern of change with time of feeding; 2) concentrations of plasma NEFA were higher nocturnally due to an energy deficit and that GH levels were higher during the interprandial period after the second meal; 3) the interprandial period after the second feeding may be considered to constitute a short‐term food deprivation; 4) the longer interprandial period of 19 h in this study between the second and subsequent morning meal may be changed into equally divided feedings to minimize the short‐term energy deficit; and 5) blood sampling for blood metabolites in mithuns should be conducted at a fixed time of day with special emphasis on time of feeding.  相似文献   

16.
A study was carried out to investigate the daily rhythms of locomotor and feeding activity of Khajoo, Schizothorax pelzami, a candidate species for freshwater aquaculture. Using self-feeder juvenile Khajoo were exposed to a 12/12 LD cycle to determine the rhythms of locomotor and feeding activity. The effects of feeding on locomotor and feeding activity of fish were also examined. Finally, the endogenous rhythmicity under different lighting condition tested. Fish displayed a strictly diurnal feeding and locomotor activities with 98% and 84% of the total activity occurred in the photophase, respectively. In scheduled feeding, both the L-group (fed in light) and the D-group (fed in the dark) showed a diurnal locomotor activity pattern. However, the L-group had a peak of locomotor activity near the feeding time, but the D-group had a scarce locomotor activity in the scatophase with no significant change at the mealtime. Most of the individuals display free-running rhythms when exposed to different lighting condition including, constant darkness, ultradian 45:45 min LD cycle and reversed DL photo cycle. Taken together the results of this study showed that both locomotor and feeding activity have diurnal rhythms in Khajoo S. pelzami, even fish feeding had taken place at night. Additionally, the free-running locomotor activity of the fish in the absence of external light stimuli, suggests the existence of an endogenous timing mechanism in this fish species.  相似文献   

17.
ABSTRACT

Background: Chronic obstructive pulmonary disease (COPD) and Asthma patients exhibit exacerbation of symptoms in night hours and early morning. Temporal variability in airway caliber have been reported in past using peak expiratory flow rate which represents large airways caliber, while in COPD and Asthma, smaller airways are particularly affected. We studied circadian variability of airway caliber using Forced Expiratory Volume in the First Second (FEV1) and Mid Expiratory Flow rate.

Methods: Male volunteers (18–26 years), having similar daily routine were recruited. Spirometry was performed at 5: 00, 8:00, 11:00, 14:00, 17:00, 20:00 and 23:00 h. Data from 104 subjects was analyzed for diurnal variability parameters viz., amplitude percent mean and standard deviation percent of mean. For circadian rhythm Cosinor curve was fitted and rhythm characteristics in terms of MESOR, Amplitude and Acrophase were determined.

Results: Repeated measures ANOVA revealed significant differences in spirometric parameters measured at different time points during the day. In general, spirometric parameters follow a sinusoidal pattern and exhibit minimum values during night hours and maximum values during day time. FEV1 Cosinor rhythm was significant in 31% of subjects (Zero amplitude test). The distribution of acrophase revealed interindividual differences in chronophenotypes. Variability was minimum for FEV1% and maximum for FEF75 suggesting dynamic interplay of airway geometry and neuro-chemical influences.

Conclusion: The presence of different chronophenotypes in normal subjects suggests that the nocturnal asthma may also be a different phenotype. Availability of portable spirometers and home monitoring thus may be required for ascertaining chronophenotype and tailoring chronotherapeutic interventions.  相似文献   

18.
Data from seven data storage tags recovered from Atlantic salmon marked as smolts were analyzed for depth movements and patterns of deep diving during the marine migration. The salmon mostly stayed at the surface and showed diurnal activity especially from autumn until spring. During the first months at sea the salmon stayed at shallower depths (<100 m). The salmon took short deep dives (>100 m), that were rare or absent during the first summer at sea but increased in frequency and duration especially in late winter. The maximum depth of the dives varied from 419 to 1187 m. Most of dives were short, (<5 h) but could last up to 33 h. The duration of dives increased in late winter until spring and the overall depth and maximum depth per dive increased exponentially over time. The initiation of the dives was more common in evenings and at night, suggesting nocturnal diving. We hypothesized that deep diving is related to feeding of salmon as mesopelagic fish can be important food for salmon during winter.  相似文献   

19.
We recorded the blows of gray whales during their southbound migration past central California in January 1994, 1995, and 1996, using thermal imaging sensors. For our sampling purposes, we defined day (0730–1630) and night (1630–0730) to coincide with the on/off effort periods of the visual counts being conducted concurrently. We pooled data across the three years of sampling and tested for diel variation in surfacing interval, pod size, offshore distance, migration rate, and swimming speed by comparing paired day/night means for samples collected within the respective 24-h period. We performed these tests using data from the entire migration period and then repeated the tests for samples collected prior to and after the approximate median migration date (15 January). Over the entire migration period we observed larger diurnal pod sizes (x?day= 1.75 ± 0.280, x?night= 1.63 ± 0.232) and greater diurnal offshore distances (x?day= 2.30 ± 0.328 km, x?night= 2.03 ± 0.356 km) but found no diel variation in surfacing interval. For the entire migration period, the nocturnal migration rate (average number of whales passing per hour) was higher than the diurnal rate. During the first half of the migration we detected no diel variation in pod size or surfacing interval, but diurnal offshore distances were larger than at night (x?day= 2.28 ± 0.273 km, x?night= 1.96 ± 0.318 km). Diurnal and nocturnal migration rates prior to 15 January were not different. During the second half of the migration, there was no diel variation in surfacing interval, pod size, or distance offshore, but the nocturnal migration rate was higher (28%, SE = 11.6%) than the diurnal rate. We found no diel variation in swimming speed in any comparison. We propose that later migrants socialize more during the day, which effectively slows their diurnal rate of migration relative to nocturnal rates.  相似文献   

20.
With plants whose flowers open at night and stay open during the day, nocturnal pollinators may exploit floral resources before diurnal competitors. Moths, bats, and beetles are the most familiar nocturnal pollinators, whereas nocturnal bees as pollinators remain poorly understood. The common Cerrado tree Machaerium opacum (Fabaceae) has white and strongly scented melittophilous flowers, which first open at the night and remain open during the day and, thus, have the potential to be visited by both nocturnal and diurnal bees. We asked: (1) what is the plant’s breeding system? (2) when during the night do the flowers open? (3) what are the visual and olfactory floral cues? and (4) which nocturnal/diurnal bees visit and pollinate the flowers? We show that M. opacum is self-incompatible. Its flowers open synchronously at 03:30 h, produce nectar exclusively at night, and have an explosive mechanism of pollen presentation. The flowers have pure white petals, release strong scents during anthesis, and are pollinated by nocturnal and diurnal bees. We recorded four nocturnal and 17 diurnal species as flower visitors, with females of nocturnal species of Ptiloglossa (Colletidae) being the most abundant. After an initial pollen-releasing visit, only a minor amount of pollen remains in a flower. Several floral traits favor visits by nocturnal bees: (1) night-time flower opening, (2) nectar production at night, (3) almost complete pollen release during the first flower visit, and (4) pure white petals and strong odor production prior to sunrise, facilitating visual and olfactory detection of flowers when light is dim.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号