共查询到20条相似文献,搜索用时 0 毫秒
1.
As soon as they hatch, gallinaceous chicks follow broody hens. This matriarchal unit presents a temporal organization of activity. The ontogeny of this ultradian rhythm of activity was followed in Japanese quail during their first 3 weeks of life. Under controlled laboratory conditions, 12 groups of four chicks were recorded using an activity monitoring system. They were observed between the ages of 2 and 17 days. Chicks in groups presented an ultradian rhythm of activity, with a period that increased significantly from 14.3 ± 1.4 minutes when chicks were 2 days old to 26.0 ± 1.9 minutes when they were 16 days old. The increase of ultradian periodicity was particularly pronounced during their first and third weeks of life. Finally, the ultradian period was correlated positively with body weight of the chicks. (Chronobiology International, 17(6), 767-776, 2000) 相似文献
2.
《Chronobiology international》2013,30(6):767-776
As soon as they hatch, gallinaceous chicks follow broody hens. This matriarchal unit presents a temporal organization of activity. The ontogeny of this ultradian rhythm of activity was followed in Japanese quail during their first 3 weeks of life. Under controlled laboratory conditions, 12 groups of four chicks were recorded using an activity monitoring system. They were observed between the ages of 2 and 17 days. Chicks in groups presented an ultradian rhythm of activity, with a period that increased significantly from 14.3 ± 1.4 minutes when chicks were 2 days old to 26.0 ± 1.9 minutes when they were 16 days old. The increase of ultradian periodicity was particularly pronounced during their first and third weeks of life. Finally, the ultradian period was correlated positively with body weight of the chicks. (Chronobiology International, 17(6), 767–776, 2000) 相似文献
3.
Synchronization of activity cycles is common in coveys of gallinaceous birds, which usually include a dozen chicks at birth. To study this synchronization more precisely, we recorded the ultradian rhythms of activity of seven groups of young Japanese quail reared in the laboratory, without brooding females. Four groups included only kin-related birds (K1-K4), two mixed groups consisted of associated chicks from two families (M1 and M2 groups), and the seventh group (NK group) included only non-kin chicks. Numbers of chicks in a group varied from eight to 14, depending on the group. They were observed twice during their two first weeks of life (day 3 and day 10) and all activities were recorded by scan sampling. An ultradian rhythm of activity, with a period less than 20 minutes, was found. This period varied among quail families. All chick groups were globally synchronized, except group M2 on day 3. Inter-individual levels of synchronization were calculated. Spearman rank correlation coefficients of the non-kin chicks were significantly lower than those of kin-related chicks. This was especially clear on day 3. Survival of newborn quails is linked to their presence within a covey or a group. Their survival, as well that of their brothers and sisters, may be enhanced by an ability to synchronize with kin better than with non-kin chicks. 相似文献
4.
《Chronobiology international》2013,30(9):1216-1226
Ultradian rhythms, such as sleep-wake periodicities, during the night might represent basic rest-activity cycles of organisms that are fundamental to the temporal organization and synchronization of behavior throughout the day. However, in contrast to circadian rhythms, little is known about the underlying oscillators and molecular mechanisms of higher-frequency rhythms. A fundamental step for the understanding of the mechanisms of these latter periodicities is the analysis of variation in sleep-wake cycles in free-living animals, which can help in estimating the relative importance of genetic and environmental influence on the rhythmicity. We analyzed variation in the level of rhythmicity and period length (τ) of behaviorally defined sleep-wake cycles in a natural population of blue tits Cyanistes caeruleus. Our results indicate that the expression of periodicity in sleep-wake patterns, but not τ, has a strong individual-specific basis. The within-individual repeatability estimate of the expression of periodicity was .45 (95% confidence interval: .35–.55) when data from males and females were combined. In addition, periodicity was influenced by specific environmental factors, such as night temperature, seasonal date, and age of the individual. Most strikingly, low nighttime temperature negatively affected periodicity of sleep-wake patterns, potentially via a hypothermic response of the birds. Our results further suggest that τ is influenced by photoperiod. Blue tits showed longer sleep-wake rhythms when the nights were longer. These observations suggest a genetic basis for the incidence of rhythmic sleep-wake behavior in addition to environmental modifications of their specific expression. (Author correspondence: mueller@orn. mpg. de) 相似文献
5.
《Chronobiology international》2013,30(4):293-307
The leaves of Desmodium gyrans (L.F.) DC show circadian movements in the terminal and ultradian movements of the lateral leaflets. The movements are due to swelling and shrinking of motor cells in special organs. The anatomy of these pulvini is described for the lateral leaflets. Data from electrophysiological recordings using microelectrodes inserted into the lateral pulvini, together with treatments that affect the proton pumps and ion channels, have been used to develop a physiological model of the ultradian leaflet movement. It explains the oscillations in the motor cells as being due to a change between a pump state and depolarization. During the pump state, ions are taken up, causing water influx and swelling of the motor cells. Depolarization causes loss of ions and water efflux (the motor cells shrink). The roles of calcium and the phosphatidyl inositol signal chain are discussed on the basis of experiments using chemical agents that affect these processes. Since calcium oscillations are known to occur in organisms in both time and space, an attempt has been made to simulate the situation in Desmodium pulvini by a model of specially coupled oscillators. Effects of different other treatments of the lateral pulvini are discussed. Oscillations in the minute range seem to be more common and some might be related to turgor regulation and ion uptake comparable to the situation in Desmodium. The ultradian control of the lateral pulvini and the circadian control of the terminal pulvini are apparently based on different mechanisms. 相似文献
6.
《Chronobiology international》2013,30(3):219-230
In conditions of constant darkness, interindividual variability in the clarity of circadian rhythmicity was observed in sexually immature young quail, with birds classified as more or less rhythmic or arrhythmic. The relative clarity of this circadian rhythm was observed on the actograms by measurement of the autocorrelation coefficient ratio over 12 cycles. Autocorrelation coefficients were calculated from sequential series of total activity over 12-minute periods. Crosses of selected phenotypes with different clarities of rhythmicity were conducted in order to study the possibility of selection of this characteristic. From a random population (N = 42, twice), pairs of the most rhythmic birds (3 families), and pairs of arrhythmic birds (4 families) were reared. Autocorrelation coefficient ratios of Fl birds from rhythmic families (N = 54) were greater than those of Fl birds (N = 48) from arrhythmic families (t-test, p <. 0001). These ratios in offspring were significantly correlated with that of the mean parent of each clutch of siblings (N= 102, r =.35, p =. 0003). This result was maintained in a second generation (F2) of birds, for which significant differences in expressed rhythmicity were observed. That is, autocorrelation coefficient ratios of F2 birds from two rhythmic families (TV = 30) were greater than those of F2 birds from arrhydimic families (N = 20) (t-test, p =. 039). Comparison of F2 outbred and inbred birds from rhythmic pairs showed greater values of autocorrelation coefficient ratios in the case of inbred birds (N = 16) than for outbred birds (N = 30; t-test, p =. 036). There was no difference between outbred (N = 20) and inbred birds (N = 15) from arrhythmic pairs. Therefore, selection of a rhythmic strain seems possible, whereas crosses between two arrhythmic birds may also give rise to rhythmic birds. Comparisons between rhythmic birds of different families did not show differences in the free-running period of the circadian rhythm, which is true also for rhythmic birds bred from two arrhythmic parents. Therefore, our selection procedure did not seem to be based on the characteristics of the pacemaker itself, but rather on a downstream event. Although the parents were not selected on the basis of quantity of activity per cycle or on the duration of the active phase, significant differences among the offspring of different families were shown. (Chronobiology International, 75(3), 219–230, 1998) 相似文献
7.
The aim of these experiments was to test the effect of a cyclic administration of melatonin, by mimicking the daily rhythm of hormone levels, on the circadian organization of two distinct functions in quail: oviposition and feeding activity. Laying and feeding rhythms under photoperiodic conditions and constant darkness (DD) were investigated. Under DD, where the two rhythms were free running, a daily rhythm of melatonin was administered. In LD 14h:10h, two different individual profiles of laying were established, with stable females laying at the same time each day and delayed females laying progressively later each day. For feeding activity, all birds were clearly synchronized to the photoperiodic cycle. In DD, the laying birds showed a free-running rhythm of oviposition with a period longer than 24 h for both profiles but the delayed profile females had a longer period than stable profile females. In comparison, the free-running period of feeding rhythm of the same birds was shorter than 24 h. A cyclic administration of melatonin had no effect on laying rhythm, which continued to free-run in DD, whereas feeding activity was synchronized as soon as the first cycle of melatonin was administered. From these results, it seems that two different circadian systems drive each of the two types of behavior separately. Melatonin could be the main synchronizer for the temporal control of feeding behavior, but it does not play a part in the control of oviposition in Japanese quail. 相似文献
8.
《Chronobiology international》2013,30(3):222-230
Energy metabolism and mitochondria have been discussed with respect to their role in the circadian rhythm mechanism for some time. Numerous examples of inhibitors that affect the mitochondria of plants and animals and microorganisms are known, which cause large phase shifts in the rhythms of these organisms. Analogous studies on the role of mitochondria in the Neurospora circadian rhythm mechanism have also been reported and summarized. This communication differs from previous studies on other organisms in that it will focus on two lines of evidence derived from studies on Neurospora strains carrying mutations affecting the mitochondria, (a) Strains whose growth rate is resistant to oligomycin (olit) owing to an altered protein in the F0 sector of the mitochondrial ATPase, showed no phase shifts when pulsed with oligomycin. Control strains (oli8) showed large phase shifts when pulsed with oligomycin. This indicates that the phase-shifting effect of oligomycin is due to the direct inhibition of the mitochondrial ATPase and not some side effect of this inhibitor, (b) In Neurospora, many different strains are known that carry mutations in the nuclear or mitochondrial genome that affect mitochondrially localized proteins. Some of these, such as oli', [MI-3], or cya-5, showed shorter (≥ 19-h) periods compared with the normal (21.5-h) period. Others showed little or no change in period. Those mutant strains exhibiting shorter periods also contained ≥60% more mitochondrial protein per gram total protein in extracts compared with the normal strains. Assays of the level of a mitochondrial-specific protein, acyl carrier protein, showed that the cellular content of this protein was approximately doubled. A parallel set of studies on the effects of antimycin or chloramphenicol on Neurospora demonstrated that these inhibitors also produced shorter periods as well as increased amounts of mitochondrial proteins. These two new lines of evidence may be interpreted to indicate that in Neurospora either some part of the oscillator is localized to the mitochondria and/or that mitochondria exert their effect on the clock mechanism through their effects on biosynthetic pathways or by their contribution in determining ion gradients. 相似文献
9.
Stuart Brody 《Chronobiology international》1992,9(3):222-230
Energy metabolism and mitochondria have been discussed with respect to their role in the circadian rhythm mechanism for some time. Numerous examples of inhibitors that affect the mitochondria of plants and animals and microorganisms are known, which cause large phase shifts in the rhythms of these organisms. Analogous studies on the role of mitochondria in the Neurospora circadian rhythm mechanism have also been reported and summarized. This communication differs from previous studies on other organisms in that it will focus on two lines of evidence derived from studies on Neurospora strains carrying mutations affecting the mitochondria, (a) Strains whose growth rate is resistant to oligomycin (olit) owing to an altered protein in the F0 sector of the mitochondrial ATPase, showed no phase shifts when pulsed with oligomycin. Control strains (oli8) showed large phase shifts when pulsed with oligomycin. This indicates that the phase-shifting effect of oligomycin is due to the direct inhibition of the mitochondrial ATPase and not some side effect of this inhibitor, (b) In Neurospora, many different strains are known that carry mutations in the nuclear or mitochondrial genome that affect mitochondrially localized proteins. Some of these, such as oli', [MI-3], or cya-5, showed shorter (≥ 19-h) periods compared with the normal (21.5-h) period. Others showed little or no change in period. Those mutant strains exhibiting shorter periods also contained ≥60% more mitochondrial protein per gram total protein in extracts compared with the normal strains. Assays of the level of a mitochondrial-specific protein, acyl carrier protein, showed that the cellular content of this protein was approximately doubled. A parallel set of studies on the effects of antimycin or chloramphenicol on Neurospora demonstrated that these inhibitors also produced shorter periods as well as increased amounts of mitochondrial proteins. These two new lines of evidence may be interpreted to indicate that in Neurospora either some part of the oscillator is localized to the mitochondria and/or that mitochondria exert their effect on the clock mechanism through their effects on biosynthetic pathways or by their contribution in determining ion gradients. 相似文献
10.
Rubidium Chloride Fuses Split Circadian Activity Rhythms in Hamsters Housed in Bright Constant Light
《Chronobiology international》2013,30(2):65-71
Chronotypic effects of rubidium (Rb) were examined in hamsters whose circadian activity rhythms had split into two components while they were housed in bright constant light. Seven of 12 hamsters receiving RbCl in drinking water for 10 weeks showed fusing of the components into an intact rhythm compared with none of 7 control hamsters (p = 0.016). Rb may modify coupling between circadian oscillators via reduced photic input to the suprachiasmatic nuclei. Alternative mechanisms include changes in potassium metabolism or endocrine function or behavioral changes that in turn alter circadian function. This normalization of a circadian anomaly by a putative antidepressant suggests that Rb may be valuable in strengthening coupling between oscillators in cases of human chronopathology, including those implicated in the etiology of some affective disorders. 相似文献
11.
Rubidium Chloride Fuses Split Circadian Activity Rhythms in Hamsters Housed in Bright Constant Light
Chronotypic effects of rubidium (Rb) were examined in hamsters whose circadian activity rhythms had split into two components while they were housed in bright constant light. Seven of 12 hamsters receiving RbCl in drinking water for 10 weeks showed fusing of the components into an intact rhythm compared with none of 7 control hamsters (p = 0.016). Rb may modify coupling between circadian oscillators via reduced photic input to the suprachiasmatic nuclei. Alternative mechanisms include changes in potassium metabolism or endocrine function or behavioral changes that in turn alter circadian function. This normalization of a circadian anomaly by a putative antidepressant suggests that Rb may be valuable in strengthening coupling between oscillators in cases of human chronopathology, including those implicated in the etiology of some affective disorders. 相似文献
12.
《Chronobiology international》2013,30(5):457-473
The circadian secretion of melatonin by the pineal gland and retinae is a direct output of circadian oscillators and of the circadian system in many species of vertebrates. This signal affects a broad array of physiological and behavioral processes, making a generalized hypothesis for melatonin function an elusive objective. Still, there are some common features of melatonin function. First, melatonin biosynthesis is always associated with photoreceptors and/or cells that are embryonically derived from photoreceptors. Second, melatonin frequently affects the perception of the photic environment and has as its site of action structures involved in vision. Finally, melatonin affects overt circadian function at least partially via regulation of the hypothalamic suprachiasmatic nucleus (SCN) or its hofnologues. The mechanisms by which melatonin affects circadian rhythms and other downstream processes are unknown, but they include interaction with a class of membrane-bound receptors that affect intracellular processes through guanosine triphosphate (GTP)-binding protein second messenger systems. Investigation of mechanisms by which melatonin affects its target tissues may unveil basic concepts of neuromodulation, visual system function, and the circadian clock. 相似文献
13.
Wil Witting Majid Mirmiran Nico P. A. Bos Dick F. Swaab 《Chronobiology international》1994,11(2):103-112
The free-running period is regarded to be an exclusive feature of the endogenous circadian clock. Changes during aging in the free-running period may therefore reflect age-related changes in the internal organization of this clock. However, the literature on alterations in the free-running period in aging is not unequivocal. In the present study, with various confounding factors kept to a minimum, it was found that the free-running periods for active wakefulness, body temperature, and drinking behavior were significantly shorter (by 12-17 min) in old than in young rats. In addition, it was found that the day-to-day stability of the different sleep states was reduced in old rats, whereas that of the drinking rhythm was enhanced. Transient cycles were not observed, nor were there any age-related differences in daily totals of the various sleep-wake states. The amplitudes of the circadian rhythms of active wakefulness, quiet sleep, and temperature were reduced, whereas those of paradoxical sleep and quiet wakefulness remained unchanged. 相似文献
14.
《Chronobiology international》2013,30(3):451-461
Mitochondrial experiments are of increasing interest in different fields of research. Inhibition of mitochondrian activities seems to play a role in Parkinson's disease and in this regard several animal models have used inhibitors of mitochondrial respiration such as rotenone or MPTP. Most of these experiments were done during the daytime. However, there is no reason for mitochondrial respiration to be constant during the 24h. This study investigated the circadian variation of oxidative phosphorylation in isolated rat brain mitochondria and the administration-time-dependent effect of rotenone and melatonin. The respiratory control ratio, state 3 and state 4, displayed a circadian fluctuation. The highest respiratory control ratio value (3.01) occurred at 04:00h, and the lowest value (2.63) at 08:00h. The highest value of state 3 and state 4 oxidative respiration occurred at 12:00h and the lowest one at 20:00h. The 24h mean decrease in the respiratory control ratio following incubation with melatonin and rotenone was 7 and 32%, respectively; however, the exact amount of the inhibition exerted by these agents varied according to the time of the mitochondria isolation. Our results show the time of mitochondrial isolation could lead to interindividual variability. When studies require mitochondrial isolation from several animals, the time between animal experiments has to be minimized. In oxidative phosphorylation studies, the time of mitochondria isolation must be taken into account, or at least specified in the methods section. 相似文献
15.
H. Underwood 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1994,175(5):639-653
Japanese quail exhibit a robust circadian rhythm in body temperature. This rhythm is readily entrainable by 24 h light-dark (LD) cycles and persists under constant conditions. Because both the pineal organ and the eyes have been implicated as major components of the circadian system of birds, the role of these organs in generating the rhythm of body temperature was investigated. Pinealectomy, when performed alone, had little effect on the body temperature rhythm of quail either under LD or under constant darkness (DD). Most birds subjected to optic nerve section alone remained rhythmic in DD although the robustness of the rhythm was decreased, and 25% became arrhythmic. Birds subjected to both pinealectomy and optic nerve section behaved similarly to birds subjected to optic nerve section alone. However, complete eye removal, when performed alone or in combination with pinealectomy, caused all birds to become arrhythmic in DD. The data support the hypothesis that the eyes are the loci of circadian pacemakers in quail that act, via both neural and hormonal outputs, to preserve the integrity of (self-sustaining or damped) circadian oscillators located elsewhere. 相似文献
16.
《Chronobiology international》2013,30(6):1103-1116
The aim of the study was to learn whether the lethal and the motor incoordination (ataxia) side effect of ondansetron (Zophren®) administration is dosing‐time dependent. Ondansetron is a serotonin 5‐HT3 receptor antagonist used primarily to control nausea and vomiting arising from cytotoxic chemo‐ and radiotherapy. A total of 210 male Swiss mice 10 to 12 weeks of age were synchronized for 3 weeks by 12h light (rest span)/12h dark (activity span). Different doses of ondansetron were injected intraperitoneally (i.p.) at fixed times during the day to determine both the sublethal (TD50) and lethal (LD50) doses, which were, respectively, 3.7 ± 0.6 mg/kg and 4.6 ± 0.5 mg/kg. In the chronotoxicologic study a single dose of ondansetron (3.5 mg/kg, i.p.) was administered to different and comparable groups of animals at four different circadian stages [1, 7, 13, and 19h after light onset (HALO)]. The lethal toxicity was statistically significantly dosing time‐dependent (χ2 = 21.51, p < 0.0001). Drug dosing at 1 HALO resulted in 100% survival rate whereas drug dosing at 19 HALO was only one‐half that (52%). Similarly, lowest and highest ataxia occurred when ondansetron was injected at 1 and 19 HALO, respectively (χ2 = 22.24, p < 0.0001). Effects on rectal temperature were also dosing‐time related (Cosinor analysis, p < 0.0001). The characteristics of the waveform describing the temporal patterns differed between the studied variables, e.g., lethal toxicity and survival rate showing two peaks and rectal temperature showing one peak in the 24h time series waveform pattern. Cosinor analysis also revealed a statistically significant ultradian (τ ≡ 8h) rhythmic component in the considered variables. Differences in curve patterns in toxicity elicited by ondansetron on a per end point basis are hypothesized to represent the phase relations between the identified 24h and 8h periodicities. 相似文献
17.
《Chronobiology international》2013,30(2):237-251
Periodogram techniques on detrended data were used to determine the incidence of Trypanosoma brucei brucei infection on the distribution of the core temperature of rats and the expression of temperature rhythms. In such an animal model, sudden episodic hypothermic bouts were described. These episodes of hypothermia are used here as temporal marks for the purpose of performing punctual comparisons on temperature organization. The experiment was conducted on 10 infected and 3 control Sprague‐Dawley rats reared under a 24 h light‐dark cycle. Core temperature was recorded continuously throughout the experiment, until the animals' death. Temperature distributions, analyzed longitudinally across the full duration of the experiment, exhibited a progressive shift from a bimodal to unimodal pattern, suggesting a weakening of the day/night core temperature differences. After hypothermic events, the robustness of the circadian rhythm substantially weakened, also affecting the ultradian components. The ultradian periods were reduced, suggesting fragmentation of temperature generation. Moreover, differences between daytime and nighttime ultradian patterns decreased during illness, confirming the weakening of the circadian component. The results of the experiments show that both core temperature distribution and temperature rhythm were disrupted during the infection. These disruptions worsened after each episode of hypothermia, suggesting an alteration of the temperature regulatory system. 相似文献
18.
《Chronobiology international》2013,30(5):499-510
All physicochemical and biological oscillators maintain a balance between destabilizing reactions (as, for example, intrinsic autocatalytic or amplifying reactions) and stabilizing processes. These two groups of processes tend to influence the period in opposite directions and may lead to temperature compensation whenever their overall influence balances. This principle of “antagonistic balance” has been tested for several chemical and biological oscillators. The Goodwin negative feedback oscillator appears of particular interest for modeling the circadian clocks in Neurospora and Drosophila and their temperature compensation. Remarkably, the Goodwin oscillator not only gives qualitative, correct phase response curves for temperature steps and temperature pulses, but also simulates the temperature behavior of Neurospora frq and Drosophila per mutants almost quantitatively. The Goodwin oscillator predicts that circadian periods are strongly dependent on the turnover of the clock mRNA or clock protein. A more rapid turnover of clock mRNA or clock protein results, in short, a slower turnover in longer period lengths. (Chronobiology International, 14(5), 499–510, 1997) 相似文献
19.
Lithium has been shown to lengthen free-running circadian periods in a variety of species. Here we show that lithium carbonate differentially lengthens the free-running period of a circadian wheel running rhythm in BALB/CByJ and C57BL/10Sn inbred mouse strains. This result supports previous evidence that lithium lengthens mammalian circadian rhythms, and also demonstrates that gene differences can mediate individual differences in response to lithium treatment. 相似文献
20.
Berge B Chevrier C Blanc A Rehailia M Buguet A Bourdon L 《Chronobiology international》2005,22(2):237-251
Periodogram techniques on detrended data were used to determine the incidence of Trypanosoma brucei brucei infection on the distribution of the core temperature of rats and the expression of temperature rhythms. In such an animal model, sudden episodic hypothermic bouts were described. These episodes of hypothermia are used here as temporal marks for the purpose of performing punctual comparisons on temperature organization. The experiment was conducted on 10 infected and 3 control Sprague-Dawley rats reared under a 24 h light-dark cycle. Core temperature was recorded continuously throughout the experiment, until the animals' death. Temperature distributions, analyzed longitudinally across the full duration of the experiment, exhibited a progressive shift from a bimodal to unimodal pattern, suggesting a weakening of the day/night core temperature differences. After hypothermic events, the robustness of the circadian rhythm substantially weakened, also affecting the ultradian components. The ultradian periods were reduced, suggesting fragmentation of temperature generation. Moreover, differences between daytime and nighttime ultradian patterns decreased during illness, confirming the weakening of the circadian component. The results of the experiments show that both core temperature distribution and temperature rhythm were disrupted during the infection. These disruptions worsened after each episode of hypothermia, suggesting an alteration of the temperature regulatory system. 相似文献