首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The function of ultradian rhythms is not yet clearly elucidated. In particular, short-term rhythms are expressed during early ontogeny, especially in broods of precocial birds. We investigated the relationship between the clarity of the ultradian rhythm of the activity/rest cycle of a group of young Japanese quail (Coturnix japonica) and the level of social synchronisation and spatial cohesion between the birds within that group. The subjects were descended from two lines selected for either very pronounced rhythmic or arrhythmic circadian activity. We found a positive relationship between the clarity of the ultradian rhythm of the activity/rest cycle when birds were young and the clarity of the circadian rhythm of feeding activity when birds were older, but still immature. The temporal organisation of the behaviour of the chicks from these two lines was observed in outdoor aviaries, when they were 4, 8, 12 and 15 days old. The mean ultradian period expressed by groups of 12 chicks was variable, with a minimum of 6 minutes. The ultradian period lengthened regularly as chicks grew older, and reached approximately 40 min on day 15. The clarity of the ultradian rhythmicity of group activity was linked to the level of inter-individual social synchronisation and of spatial cohesion; the more pronounced the ultradian rhythms of a group, the greater the temporal and spatial cohesion of the chicks within the group. Moreover, these characteristics varied with the age of the chicks. Finally, chicks in the less rhythmic groups weighed less. These results stress the adaptive value of this temporal organisation strategy under natural conditions.  相似文献   

2.
The function of ultradian rhythms is not yet clearly elucidated. In particular, short-term rhythms are expressed during early ontogeny, especially in broods of precocial birds. We investigated the relationship between the clarity of the ultradian rhythm of the activity/rest cycle of a group of young Japanese quail (Coturnix japonica) and the level of social synchronisation and spatial cohesion between the birds within that group. The subjects were descended from two lines selected for either very pronounced rhythmic or arrhythmic circadian activity. We found a positive relationship between the clarity of the ultradian rhythm of the activity/rest cycle when birds were young and the clarity of the circadian rhythm of feeding activity when birds were older, but still immature. The temporal organisation of the behaviour of the chicks from these two lines was observed in outdoor aviaries, when they were 4, 8, 12 and 15 days old. The mean ultradian period expressed by groups of 12 chicks was variable, with a minimum of 6 minutes. The ultradian period lengthened regularly as chicks grew older, and reached approximately 40 min on day 15. The clarity of the ultradian rhythmicity of group activity was linked to the level of inter-individual social synchronisation and of spatial cohesion; the more pronounced the ultradian rhythms of a group, the greater the temporal and spatial cohesion of the chicks within the group. Moreover, these characteristics varied with the age of the chicks. Finally, chicks in the less rhythmic groups weighed less. These results stress the adaptive value of this temporal organisation strategy under natural conditions.  相似文献   

3.
Endogenous rhythms are adaptive responses to predictable changes of the environment, like the day/night cycle. Some researches demonstrated that social cycles can influence the circadian rhythm, while no study investigated the effect of endogenous rhythmicity on the sociability in Vertebrates. This study investigated whether differences in the functioning of the circadian system was associated with social motivation in Japanese quail (Coturnix c. japonica).We compared quail from a line expressing a robust circadian rhythm of feeding activity (R) to quail from a line expressing circadian arrhythmicity of feeding activity (A) under constant darkness. Classic behavioral tests evaluated social motivation of these birds.When socially isolated, the motivation of R quail to re-establish contact with conspecifics appeared stronger than that of A quail. When in the presence of conspecifics, R quail faced a stressful situation (change of environment) more calmly than did A quail. Thus, variation of circadian behavioral rhythmicity is associated with variation in social motivation in Japanese quail. Rhythmic animals appeared to respond more appropriately to environmental challenges than arrhythmic animals.  相似文献   

4.
The aim of the present study was to investigate the influence of mothers on the emotional reactivity and social behaviour in young precocial Japanese quail. We used a classical method of maternal deprivation. Ethological tests and observations analysed and compared the behaviour of young artificially raised quail to that of young raised by adoptive maternal quail. After separation from mothers, brooded young were more fearful (frightened easily) in the presence of humans (human-observer tests) and more neophobic in novel environments (open-field and hole-in-the-wall tests) than young raised artificially. As chicks rarely expressed fear during the brooding period, no differences related to mothering could be observed at that time. In separation tests, brooded chicks jumped significantly more frequently than non-brooded chicks and later, observations of groups revealed that brooded chicks remained closer to one another than non-brooded chicks. Social motivation of brooded chicks appeared to be higher. These results indicate that, during their first days of life, mothers influence the emotional and social behaviour of their young.  相似文献   

5.
A distinct daily rhythm of melatonin production was found in the pineal gland of both precocial Japanese quail (Coturnix coturnix japonica) and altricial European starling (Sturnus vulgaris) during the first day of postembryonic life. Rhythmic melatonin production was reflected in a rhythmic profile in the general circulation. Significant day-night differences in melatonin content were also observed in the eyes of Japanese quail.The amplitude of the rhythm in the quail pineal gland increased steadily during the first two weeks of postem-bryonic life. A transient increase in maximum melatonin concentration was observed at the end of the first week of life in the plasma but not in the pineal gland of quail suggesting that a metabolizing pathway or a changed ocular contribution may influence the melatonin profile in the circulation and its availability to other tissues. There was no delay in the postembryonic development of melatonin rhythmicity in the altricial starling in comparison with the precocial quail. The amplitude of the plasma melatonin rhythm did not increase over the first week of life in starlings as it did in quail and the only significant increase was found between 6- and 17-day old starlings.In general, the development of the rhythm resulted from an increase of dark-time values. The day-time concentrations were low in all age groups of both species. A one-hour light pulse suppressed the high dark-time melatonin concentrations in 1-, 7- and 14-day old Japanese quail as well as in 7- and 14-day old European starlings. The manner in which the rhythm develops suggests that the circadian pacemaker(s) as well as the mechanisms of photoreception and entrainment are developed in hatchlings of both species in spite of their otherwise different developmental strategies.  相似文献   

6.
A diverse range of organisms shows physiological and behavioural rhythms with various periods. Extensive studies have been performed to elucidate the molecular mechanisms of circadian rhythms with an approximately 24 h period in both Drosophila and mammals, while less attention has been paid to ultradian rhythms with shorter periods. We used a video-tracking method to monitor the movement of single flies, and clear ultradian rhythms were detected in the locomotor behaviour of wild type and clock mutant flies kept under constant dark conditions. In particular, the Pigment-dispersing factor mutant (Pdf 01 ) demonstrated a precise and robust ultradian rhythmicity, which was not temperature compensated. Our results suggest that Drosophila has an endogenous ultradian oscillator that is masked by circadian rhythmic behaviours.  相似文献   

7.
Abstract

To test the hypothesis that an oscillator located outside the suprachiasmatic nuclei (SCN) controls the circadian rhythm of body temperature, we conducted a study with 14 blinded rats, 10 of which receiving a SCN lesion. Body temperature was automatically and continuously recorded for about one month by intraperitoneal radio transmitters. Food intake, drinking and locomotor activity were also recorded. Periodograms revealed that 3 rats with histologically verified total bilateral SCN lesions did not exhibit any circadian rhythmicity. The 7 other rats appeared to have partial lesions. They showed shortening of period and severe amplitude reduction in all functions. Thus, no support was found for the hypothesis of a separate circadian ‘temperature oscillator’ located outside the SCN. Nevertheless, after large partial lesions body temperature showed more persistency than some of the other behavioral rhythms.

Ultradian rhythms in temperature persisted after partial and total lesions. Other functions showed parallel ultradian rhythms. In intact rats the ultradian peaks were restricted predominantly to the subjective night. After total lesions these peaks became more or less homogeneously distributed in time but more heterogeneously after partial lesions. So the SCN plays a role in the temporal structure of ultradian rhythms but does not generate them. Non‐24‐hour actograms showed instabilities of period and phase of ultradian rhythms. Intact and lesioned rats were similar with respect to the mean (about 3.5 hrs) and standard deviation (about 1.5 hrs) of ultradian periods in temperature. These features indicate that a mechanism outside the SCN is underlying ultradian rhythmicity, capable of generating short‐term oscillations. Two approaches, homeostatic sleep‐wake relaxation oscillations and multiple circadian oscillators, are discussed.  相似文献   

8.
Circadian clocks are fundamental machinery in organisms ranging from archaea to humans. Disruption of the circadian system is associated with premature aging in mice, but the molecular basis underlying this phenomenon is still unclear. In this study, we found that telomerase activity exhibits endogenous circadian rhythmicity in humans and mice. Human and mouse TERT mRNA expression oscillates with circadian rhythms and are under the control of CLOCK–BMAL1 heterodimers. CLOCK deficiency in mice causes loss of rhythmic telomerase activities, TERT mRNA oscillation, and shortened telomere length. Physicians with regular work schedules have circadian oscillation of telomerase activity while emergency physicians working in shifts lose the circadian rhythms of telomerase activity. These findings identify the circadian rhythm as a mechanism underlying telomere and telomerase activity control that serve as interconnections between circadian systems and aging.  相似文献   

9.
A clutch of young chicks housed with a mother hen exhibit ultradian (within day) rhythms of activity corresponding to the brooding cycle of the hen. In the present study clear evidence was found of ultradian activity rhythms in newly hatched domestic chicks housed in groups larger than natural clutch size without a mother hen or any other obvious external time-keeper. No consistent synchrony was found between groups housed in different pens within the same room. The ultradian rhythms disappeared with time and little evidence of group rhythmicity remained by the third night. This disappearance over time suggests that the presence of a mother hen may be pivotal for the long-term maintenance of these rhythms. The ultradian rhythm of the chicks may also play an important role in the initiation of brooding cycles during the behavioural transition of the mother hen from incubation to brooding. Computer simulations of individual activity rhythms were found to reproduce the observations made on a group basis. This was achievable even when individual chick rhythms were modelled as independent of each other, thus no assumptions of social facilitation are necessary to obtain ultradian activity rhythms on a group level.  相似文献   

10.
Circadian rhythms are regular oscillations in the value of behavioral and physiological variables of organisms that recur on a daily basis. The purpose of this study was to evaluate the extent of non-stationarity of circadian rhythms over several days, to determine how damaging is the violation of the assumption of stationarity in the analysis of circadian rhythms, and to formalize the concept of "rhythm robustness" as an index of oscillatory ("weak") stationarity. Simulated (computer-generated) and experimental data sets (rhythms of body temperature and running-wheel activity in several rodent species) were analysed. Tests of stationarity based on the variance of the daily means and the variance of the daily variances revealed that most experimental data sets are not stationary. Analysis of linear trends indicated that significant trends are rare in experimental data sets. Although the non-stationarity of the experimental data sets reduced the spectral energy of the Enright periodogram used to assess rhythmicity, detection of circadian rhythmicity was not prevented in any of the rhythmic data sets. The results of the various analyses allow the inference that, after high-frequency noise is filtered out, the value of the periodogram's Q(P) statistic reflects the extent of stationarity of the time series. Thus, the "robustness" of a circadian rhythm (i.e. the magnitude of the empirical Q(P) value as compared to the Q(P) value associated with a perfectly rhythmic time series) can serve as an index of the stationarity of the rhythm.  相似文献   

11.
Individual hamster pups were maintained in constant dim light from just prior to birth, and their circadian wheel-running activity rhythms were recorded beginning at 18 days of age. Records of the postweaning free-running activity rhythm were used to determine the phase of a pup's rhythm on the day of weaning. Two groups of pups (LD and DL) were born to mothers that had been entrained before birth to light-dark cycles 12 hr out of phase. Both groups of pups were raised in constant dim light by foster mothers that had been entrained to only one of the prenatal cycles (LD). Thus pups born to mothers from different cycles were exposed to identical rhythmic environments postnatally. Despite the similar postnatal treatment, the two groups of pups showed activity rhythms at weaning with very different phases. The LD pups, born to and raised by LD mothers, were approximately synchronous with one another and with their foster mothers. The DL pups, born to DL mothers, but raised by LD mothers, were not synchronous with one another or with their foster mothers. Half of the DL pups showed phases predicted by their prenatal treatment, but the other half showed scattered phases. The results demonstrate that phase at weaning is affected by prenatal rhythmicity, and suggest that the circadian pacemaker underlying the activity rhythm is already functional and entrained at, or before, birth.  相似文献   

12.
The purpose of this experiment was to study the possible role of the gastric antrum and small bowel in the rhythm(s) of plasma gastrin. The cat was used as the laboratory animal. Three groups of cats were provided with a gastric fistula for the study of gastric acid and plasma gastrin rhythms. The first group (N = 7) served as controls. A second group (N = 3) was antrectomized and later subjected to a 80% small bowel resection. Gastric acid secretions were collected every 30 min from 0800 to 2400. Blood samples for determination of gastrin were drawn every 2hr from 0800 to 2400. In control animals a circadian (i.e.<24hr) and 3 ultradian (i.e.<24 hr) rhythms were detected for acid output. In the antrectomized cats, circadian and ultradian rhythms were documented. After small bowel resection circadian and ultradian rhythms in gastric acid secretion were observed. For plasma gastrin, circadian and ultradian rhythms were found in the control cats. In the antrectomized cats no rhythms were observed. After small bowel resection an ultradian rhythm reappeared in these antrectomized cats. Removal of the antrum in the cat induces disappearance of circadian and ultradian rhythms of plasma gastrin but fails to modify the acid rhythms. Small bowel resection results in the reappearance of an ultradian rhythm for plasma gastrin and a shift in acrophase for the circadian rhythm in acid secretion.  相似文献   

13.
Age-related division of labor in honeybees is associated with plasticity in circadian rhythms. Young nest bees care for brood around the clock with no circadian rhythms while older foragers have strong circadian rhythms that are used for sun compass navigation and for timing visits to flowers. Since juvenile hormone (JH) is involved in the coordination of physiological and behavioral processes underlying age-related division of labor in honey bees, we tested the hypothesis that JH influences the ontogeny of circadian rhythms and other clock parameters in young worker bees. Treatments with the JH analog methoprene or allatectomy did not influence the onset of rhythmicity, overall locomotor activity, or the free-running period of rhythmic locomotor behavior. There were, however, significant differences in the onset of rhythmicity, overall locomotor activity, and longevity between bees from different source colonies, suggesting that there is significant genetic variation for these traits. Our results suggest that JH does not coordinate all aspects of division of labor in bees and that coordination of task performance with circadian rhythms is probably mediated by other regulatory systems.  相似文献   

14.
The activity rhythms of Japanese quail vary from one individual to another. Performing a divergent selection, we obtained one line of quail expressing a robust circadian rhythmicity of feeding activity (R) and one line of quail expressing circadian arrhythmicity of feeding activity (A). We questioned whether the endogenous rhythmicity of an individual could predict its integration in a group. For that, we introduced either an R- or an A-line chick into stable groups of standard chicks. First, we evaluated proximity and synchronization of the introduced chicks on the activities of the other group members. R-chicks remained spatially and temporally closer to other group members than did A-chicks. Second, we evaluated interactions of the introduced chicks and the level of their acceptance by the other group members. R-chicks were more competent to gain access to food than were A-chicks, and separation from their group stressed R-chicks more than A-chicks. Last, successive introductions assessed age effects: before, around, and after dispersal time (~11th day of chicks' life). Most differences between R- and A-chicks were observed between their 7th and 15th day of life. In conclusion, individual endogenous rhythms predict social integration. (Author correspondence: sophie.lumineau@univ-rennes1.fr)  相似文献   

15.
The early development of sleep-wake and food-intake rhythms in human infants is reviewed. The development of a 24h day-night rhythm contains two observable developmental processes: the alterations in the periodic structure of behavior (decreased ultradian, increased circadian components) and the process of synchronization to external time (entrainment). The authors present the results of their studies involving 26 German children and compare them with previous investigations. In their research, it became evident that, during the first weeks of life, the time pattern of sleep-wake and food-intake behavior is characterized by different ultradian periodicities, ranging from 2h to 8h. In the course of further ontogenesis, the share of ultradian rhythms in the sleep-wake behavior decreases, while it remains dominant for food-intake behavior. The circadian component is established as early as the first weeks of life and increases in the months that follow. Besides, the authors' study supports the notion of broad interindividual variation in ultradian rhythms and in the development of a day-night rhythm. Examples of free-running rhythms of sleep-wake and food-intake behavior by various authors are strong indicators of the endogenous nature of the circadian rhythms in infants and show that the internal clock is already functioning at birth. It is still uncertain when the process of synchronization to external and social time cues begins and how differences in the maturation of perceptive organs affect the importance of time cues for the entrainment. Prepartally, the physiological maternal entrainment factors and mother-fetus interactions may be most important; during the first weeks of life, the social time cues gain importance, while light acts as a dominant “zeitgeber” at a later time only.  相似文献   

16.
17.
The pineal gland plays a cental role in the circadian organization of birds, although it is clearly only one component in a system with other components that have not yet been positively identified. The relative importance of the pineal and other components may vary from one group of birds to another. In the most thoroughly studied species, the house sparrow, pineal removal abolishes circadian rhythmicity; rhythmicity is restored by transplantation of a donor bird's pineal and the restored rhythm has the phase of the donor. This, and other evidence, argues convincingly that the pineal is a pacemaker in the sparrow circadian system. The pineal of the chicken has circadian rhythms in several biochemical parameters that result in the rhythmic synthesis of melatonin. The activity of one enzyme in this pathway is rhythmic for at least two cycles in organ culture. In view of this result it is interesting that pineal removal does not abolish circadian rhythmicity in chickens. The fact that lesions of the suprachiasmatic nuclei abolish circadian rhythms in sparrows, several mammalian species, and perhaps Japanese quail and reptiles, suggests that vertebrate circadian organization may be based on differentially weighted interactions between the pineal, the suprachiasmatic nuclei, and perhaps other brain regions.  相似文献   

18.
Three types of rhythmic movements of Phaseolus vulgaris L. (pole beans) were examined collectively and their characteristics compared. Although the ultradian rhythms of shoot circumnutation and leaf movement, as well as the circadian rhythm of leaf movement, occurred simultaneously, each rhythm could be expressed independently of the other two. Shoot circumnutation and ultradian leaf movements displayed the same period (80 min at 25°C and Q10⋍2), while the period of the circadian leaf movements was not temperature dependent (Q10⋍1). Interaction into the plant between two ultradian rhythms (shoot circumnutation and ultradian leaf movement) with the same period and coexistence in the pulvinus of an ultradian with a circadian rhythm are discussed.  相似文献   

19.
Circadian rhythms enable organisms to coordinate multiple physiological processes and behaviors with the earth's rotation. In mammals, the suprachiasmatic nuclei (SCN), the sole master circadian pacemaker, has entrainment mechanisms that set the circadian rhythm to a 24‐h cycle with photic signals from retina. In contrast, the zebrafish SCN is not a circadian pacemaker, instead the pineal gland (PG) houses the major circadian oscillator. The SCN of flounder larvae, unlike that of zebrafish, however, expresses per2 with a rhythmicity of daytime/ON and nighttime/OFF. Here, we examined whether the rhythm of per2 expression in the flounder SCN represents the molecular clock. We also examined early development of the circadian rhythmicity in the SCN and PG. Our three major findings were as follows. First, rhythmic per2 expression in the SCN was maintained under 24 h dark (DD) conditions, indicating that a molecular clock exists in the flounder SCN. Second, onset of circadian rhythmicity in the SCN preceded that in the PG. Third, both 24 h light (LL) and DD conditions deeply affected the development of circadian rhythmicity in the SCN and PG. This is the first report dealing with the early development of circadian rhythmicity in the SCN in fish.  相似文献   

20.
Cardiovascular function is regulated by the rhythmicity of circadian, infradian and ultradian clocks. Specific time scales of different cell types drive their functions: circadian gene regulation at hours scale, activation-inactivation cycles of ion channels at millisecond scales, the heart''s beating rate at hundreds of millisecond scales, and low frequency autonomic signaling at cycles of tens of seconds. Heart rate and rhythm are modulated by a hierarchical clock system: autonomic signaling from the brain releases neurotransmitters from the vagus and sympathetic nerves to the heart’s pacemaker cells and activate receptors on the cell. These receptors activating ultradian clock functions embedded within pacemaker cells include sarcoplasmic reticulum rhythmic spontaneous Ca2+ cycling, rhythmic ion channel current activation and inactivation, and rhythmic oscillatory mitochondria ATP production. Here we summarize the evidence that intrinsic pacemaker cell mechanisms are the end effector of the hierarchical brain-heart circadian clock system. [BMB Reports 2015; 48(12): 677-684]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号