首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light influences the daily patterning of behavior by entraining circadian rhythms and through its acute effects on activity levels (masking). Mechanisms of entrainment are quite similar across species, but masking can be very different. Specifically, in diurnal species, light generally increases locomotor activity (positive masking), and in nocturnal ones, it generally suppresses it (negative masking). The intergeniculate leaflet (IGL), a subdivision of the lateral geniculate complex, receives direct retinal input and is reciprocally connected with the primary circadian clock, the suprachiasmatic nucleus (SCN). Here, we evaluated the influence of the IGL on masking and the circadian system in a diurnal rodent, the Nile grass rat (Arvicanthis niloticus), by determining the effects of bilateral IGL lesions on general activity under different lighting conditions. To examine masking responses, light or dark pulses were delivered in the dark or light phase, respectively. Light pulses at Zeitgeber time (ZT) 14 increased activity in control animals but decreased it in animals with IGL lesions. Dark pulses had no effect on controls, but significantly increased activity in lesioned animals at ZT0. Lesions also significantly increased activity, primarily during the dark phase of a 12:12 light/dark cycle, and during the subjective night when animals were kept in constant conditions. Taken together, our results suggest that the IGL plays a vital role in the maintenance of both the species-typical masking responses to light, and the circadian contribution to diurnality in grass rats.  相似文献   

2.
《Chronobiology international》2013,30(7):1290-1306
Circadian rhythms in behavior and physiology are very different in diurnal and nocturnal rodents. A pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus is responsible for generating and maintaining circadian rhythms in mammals, and cellular and molecular rhythms within the SCN of diurnal and nocturnal rodents are very similar. The neural substrates determining whether an animal has a diurnal or nocturnal phase preference are thus likely to reside downstream of the SCN. The ventral subparaventricular zone (vSPVZ), a major target of the SCN that is important for the expression of circadian rhythmicity in nocturnal lab rats (Rattus norvegicus), exhibits different rhythms in cFos expression in diurnal Nile grass rats compared to lab rats. We examined the effects of chemotoxic lesions of the cFos-expressing cells of the vSPVZ on activity rhythms of grass rats to evaluate the hypothesis that these cells support diurnality in this species. Male grass rats housed in a 12:12 light:dark (LD) cycle were given bilateral injections of the neurotoxin n-methyl-D-L-aspartic acid (NMA) or vehicle aimed at the vSPVZ; cells in the SCN are resistant to NMA, which kills neurons in other brain regions, but leaves fibers of passage intact. vSPVZ-damaged grass rats exhibited highly unstable patterns of activity in constant darkness (DD) and in the LD cycle that followed. However, crepuscular bouts of activity could be seen in all animals with vSPVZ lesions. Damage to the vSPVZ reduced cFos expression in this area but not in the SCN. Using correlational analyses, we found that the number of cFos-ir cells in the vSPVZ was unrelated to several parameters of the activity rhythms during the initial post-surgical period, when animals were in LD. However, the number of cells expressing cFos in the vSPVZ was positively correlated with general activity during the subjective day relative to the subjective night when the animals were switched to DD, and this pattern persisted when a LD cycle was reinstated. Also, the number of cFos-ir cells in the vSPVZ was negatively correlated with the strength of rhythmicity in DD and the number of days required to re-entrain to a LD cycle following several weeks in DD. These data suggest that the vSPVZ emits signals important for the expression of stable diurnal activity patterns in grass rats, and that species differences in these signals may contribute to differences in behavioral and physiological rhythms of diurnal and nocturnal mammals. (Author correspondence: )  相似文献   

3.
《Chronobiology international》2013,30(9):1123-1134
Daily rhythms are heavily influenced by light in two major ways. One is through photic entrainment of a circadian clock, and the other is through a more direct process, referred to as masking. Whereas entraining effects of photic stimuli are quite similar in nocturnal and diurnal species, masking is very different. Laboratory conditions differ greatly from what is experienced by individuals in their natural habitat, and several studies have shown that activity patterns can greatly differ between laboratory environment and natural condition. This is especially prevalent in diurnal rodents. We studied the daily rhythms and masking response in the fat sand rat (Psammomys obesus), a diurnal desert rodent, and activity rhythms of Tristram’s jird (Meriones tristrami), a nocturnal member of the same subfamily (Gerbillinae). We found that most sand rats kept on a 12?h:12?h light-dark (LD) cycles at two light intensities (500 and 1000?lux) have a nocturnal phase preferences of general activity and higher body temperature during the dark phase. In most individuals, activity was not as stable that of the nocturnal Tritram’s jirds, which showed a clear and stable nocturnal activity pattern under the same conditions. Sand rats responded to a 6-h phase advance and 6-h phase delay as expected, and, under constant conditions, all tested animals free ran. In contrast with the nocturnal phase preference, fat sand rats did not show a masking response to light pulses during the dark phase or to a dark pulse during the light phase. They did, however, have a significant preference to the light phase under a 3.5?h:3.5?h LD schedule. Currently, we could not identify the underlying mechanisms responsible for the temporal niche switch in this species. However, our results provide us with a valuable tool for further studies of the circadian system of diurnal species, and will hopefully lead us to understanding diurnality, its mechanisms, causes, and consequences.  相似文献   

4.
The term masking refers to immediate responses to stimuli that override the influence of the circadian timekeeping system on behavior and physiology. Masking by light and darkness plays an important role in shaping an organism's daily pattern of activity. Nocturnal animals generally become more active in response to darkness (positive masking) and less active in response to light (negative masking), and diurnal animals generally have opposite patterns of response. These responses can vary as a function of light intensity as well as time of day. Few studies have directly compared masking in diurnal and nocturnal species, and none have compared rhythms in masking behavior of diurnal and nocturnal species. Here, we assessed masking in nocturnal mice (Mus musculus) and diurnal grass rats (Arvicanthis niloticus). In the first experiment, animals were housed in a 12:12 light-dark (LD) cycle, with dark or light pulses presented at 6 Zeitgeber times (ZTs; with ZT0 = lights on). Light pulses during the dark phase produced negative masking in nocturnal mice but only at ZT14, whereas light pulses resulted in positive masking in diurnal grass rats across the dark phase. In both species, dark pulses had no effect on behavior. In the 2nd experiment, animals were kept in constant darkness or constant light and were presented with light or dark pulses, respectively, at 6 circadian times (CTs). CT0 corresponded to ZT0 of the preceding LD cycle. Rhythms in masking responses to light differed between species; responses were evident at all CTs in grass rats but only at CT14 in mice. Responses to darkness were observed only in mice, in which there was a significant increase in activity at CT 22. In the 3rd experiment, animals were kept on a 3.5:3.5-h LD cycle. Surprisingly, masking was evident only in grass rats. In mice, levels of activity during the light and dark phases of the 7-h cycle did not differ, even though the same animals had responded to discrete photic stimuli in the first 2 experiments. The results of the 3 experiments are discussed in terms of their methodological implications and for the insight they offer into the mechanisms and evolution of diurnality.  相似文献   

5.
The locomotor activity rhythms of domestic mice, laboratory rats, Syrian hamsters, Siberian hamsters, Mongolian gerbils, degus, and Nile grass rats were compared. Running-wheel activity was monitored under a light–dark cycle with 12 h of light and 12 h of darkness per day. Nile grass rats were found to be reliably diurnal, whereas laboratory rats, Siberian hamsters, domestic mice, and Syrian hamsters were reliably nocturnal. Both diurnal and nocturnal subgroups were observed in Mongolian gerbils and degus. A downward gradient of diurnality was observed from Mongolian gerbils classified as diurnal, degus classified as diurnal, gerbils classified as nocturnal, and degus classified as nocturnal. Nocturnal degus remained nocturnal when tested with an infrared motion detector without running wheels. Thus, although the diurnal–nocturnal dichotomy could be applied to some of the species, it was not appropriate for others. The dichotomy may reflect researchers’ needs for systematization more than a natural distinction between species. Through mechanisms as yet poorly understood, the balance between entraining and masking processes seems to generate a gradient of temporal niches that runs from predominantly diurnal species to predominantly nocturnal species with many chronotypes in between, including species that exhibit wide intra-species gradients of temporal niche.  相似文献   

6.
ABSTRACT

Diurnality in rodents is relatively rare and occurs primarily in areas with low nighttime temperatures such as at high altitudes and desert areas. However, many factors can influence temporal activity rhythms of animals, both in the field and the laboratory. The temporal activity patterns of the diurnal ice rat were investigated in the laboratory with, and without, access to running wheels, and in constant conditions with running wheels. Ice rats appeared to be fundamentally diurnal but used their running wheels during the night. In constant conditions, general activity remained predominantly diurnal while wheel running was either nocturnal or diurnal. In some animals, entrainment of the wheel running rhythm was evident, as demonstrated by free-running periods that were different from 24 h. In other animals, the wheel running activity abruptly switched from nocturnal to subjective day as soon as the animals entered DD, and reverted back to nocturnal once returned to LD, suggesting the rhythms were masked by light. Wheel running rhythms appears to be less robust and more affected by light compared to general activity rhythms. In view of present and future environmental changes, the existence of more unstable activity rhythms that can readily switch between temporal niches might be crucial for the survival of the species.  相似文献   

7.
Diurnal animals occupy a different temporal niche from nocturnal animals and are consequently exposed to different amounts of light as well as different dangers. Accordingly, some variation exists in the way that diurnal animals synchronize their internal circadian clock to match the external 24-hour daily cycle. First, though the brain mechanisms underlying photic entrainment are very similar among species with different daily activity patterns, there is evidence that diurnal animals are less sensitive to photic stimuli compared to nocturnal animals. Second, stimuli other than light that synchronize rhythms (i.e. nonphotic stimuli) can also entrain and phase shift daily rhythms. Some of the rules that govern nonphotic entrainment in nocturnal animals as well as the brain mechanisms that control nonphotic influences on rhythms do not appear to apply to diurnal animals, however. Some evidence supports the idea that arousal or activity plays an important role in entraining rhythms in diurnal animals, either during the light (active) or dark (inactive) phases, though no consistent pattern is seen. GABAergic stimulation induces phase shifts during the subjective day in both diurnal and nocturnal animals. In diurnal Arvicanthis niloticus (Nile grass rats), SCN GABAA receptor activation at this time results in phase delays while in nocturnal animals phase advances are induced. It appears that the effect of GABA at this circadian phase results from the inhibition of period gene expression in both diurnal and nocturnal animals. Nonetheless, the resulting phase shifts are in opposite directions. It is not known what stimuli or behaviours ultimately induce changes in GABA activity in the SCN that result in alterations of circadian phase in diurnal grass rats. Taken together, studies such as these suggest that it may be problematic to apply the principles governing nocturnal nonphotic entrainment and its underlying mechanisms to diurnal species including humans.  相似文献   

8.
Daily rhythms in the timing of the preovulatory surge and the display of reproductive behavior are reversed in diurnal and nocturnal rodents, but little is known about the neural mechanisms underlying these differences. We examined this issue by comparing a diurnal murid rodent, Arvicanthis niloticus (the grass rat), to a nocturnal one, Rattus norvegicus (the lab rat). In the first study, we established that sequential estradiol and progesterone treatment induces a proestrous-like rise in LH secretion and in the percentage of GnRH neurons that express Fos in grass rats, as is the case in lab rats. Next, we tested the hypothesis that differences in the timing of estrus-related events in diurnal and nocturnal species are caused by differences in rhythms in responsiveness to steroid hormones. We found rhythms in GnRH neuron activity, as indicated by Fos, that were 12 hours out of phase in grass rats and lab rats. These patterns persisted in both species when animals were housed in constant darkness for 5 days, suggesting that they are driven by an endogenous circadian mechanism. These results indicate that steroid-primed grass rats and lab rats are similar with respect to the temporal relationship among estrus-related events, but that the timing of these events relative to the light-dark cycle is dramatically different and that this difference is caused by endogenous circadian mechanisms.  相似文献   

9.
Mammalian species can be defined as diurnal or nocturnal, depending on the temporal niche during which they are active. Even if general activity occurs during nighttime in nocturnal rodents, there is a patchwork of general activity patterns in diurnal rodents, including frequent bimodality (so-called crepuscular pattern, i.e., dawn and dusk peaks of activity) and a switch to a nocturnal pattern under certain circumstances. This raises the question of whether crepuscular species have a bimodal or diurnal - as opposed to nocturnal - physiology. To this end, we investigated several daily behavioral, hormonal and neurochemical rhythms in the diurnal Sudanian grass rat (Arvicanthis ansorgei) and the nocturnal Long-Evans rat (Rattus norvegicus). Daily rhythms of general activity, wheel-running activity and body temperature, with or without blocked wheel, were diurnal and bimodal for A. ansorgei, and nocturnal and unimodal for Long-Evans rats. Moreover, A. ansorgei and Long-Evans rats exposed to light-dark cycles were respectively more and less active, compared to conditions of constant darkness. In contrast to other diurnal rodents, wheel availability in A. ansorgei did not switch their general activity pattern. Daily, unimodal rhythm of plasma leptin was in phase-opposition between the two rodent species. In the hippocampus, a daily, unimodal rhythm of serotonin in A. ansorgei occurred 7 h earlier than that in Long-Evans rats, whereas a daily, unimodal rhythm of dopamine was unexpectedly concomitant in both species. Multiparameter analysis demonstrates that in spite of bimodal rhythms linked with locomotor activity, A. ansorgei have a diurnally oriented physiology.  相似文献   

10.
A variety of nonphotic influences on circadian rhythms have been documented in mammals. In hamsters, one such influence, running in a novel wheel, is mediated in part by the pathway extending from neuropeptide-Y (NPY)-containing cells within the intergeniculate leaflet (IGL) of the thalamus to the hypothalamic suprachiasmatic nucleus (SCN). Arvicanthis niloticus is a species in which all individuals are diurnal with respect to general activity and body temperature when they are housed without a running wheel, but access to a running wheel induces a subset of individuals to become nocturnal. In the first study, the authors evaluated the possibility that nocturnal and diurnal patterns of wheel running in Arvicanthis are correlated with differences in IGL function. Adult male Arvicanthis housed in a 12:12 light-dark (LD) cycle were monitored in wheels, classified as nocturnal or diurnal, and then perfused either 4 h after lights-on or 4 h after lights-off. Sections through the intergeniculate leaflet were processed for immunohistochemical labeling of Fos and NPY. The percentage of NPY cells that expressed Fos was significantly influenced by an interaction between time of day and phenotype such that it rose from night to day in diurnal animals, and from day to night in nocturnal animals. In the second experiment, the authors established that running in a wheel actually induces Fos in the IGL of Arvicanthis. Specifically, the proportion of NPY cells expressing Fos was increased by access to wheels in nocturnal animals at night and in diurnal animals during the day. In the third experiment, the authors established that lesions of the IGL eliminate NPY fibers within the SCN, suggesting that these IGL cells project to the SCN in this species as has been established in other rodents. Together, these data demonstrate a clear difference in NPY cell function in nocturnal and diurnal Arvicanthis that appears to be caused, at least in part, by the differences in their wheel-running patterns, and that NPY cells within the IGL project to the SCN in Arvicanthis.  相似文献   

11.
The neural mechanisms governing circadian rhythms generate patterns of behavior and physiology that are very different in diurnal and nocturnal species. Here we review data bearing on the issue of where and how in the brain these differences might be generated. Molecular data from several species now confirm that the central circadian clock, located in the suprachiasmatic nucleus (SCN), is coupled to the light - dark cycle in the same manner in nocturnal and diurnal species, indicating that the fundamental differences arise from mechanisms coupling the clock to effector systems. Major differences in this coupling become apparent only when one steps beyond the SCN to look at brain regions that directly or indirectly receive input from it. This review focuses on our work on brain regions and cell populations to which the SCN projects in the diurnal species Arvicanthis niloticus (Nile grass rats). We have found rhythms in the numbers of cells containing cFos, or PER1, in a number of these regions, and the patterns of these rhythms are always different from those seen in nocturnal laboratory rats. In some areas these rhythms are simply inverted in the two species, but in other extra-SCN regions the phase of the rhythms in these two species differs in less extreme ways. Taken together, these data suggest that there is no single simple switch that causes some animals to be nocturnal and others to be diurnal. Rather, the differences likely emerge through a variety of mechanisms operating within and downstream of the cells to which the SCN projects.  相似文献   

12.
1. Carbon dioxide emission (VCO2) has been continuously recorded in three laboratory animal species (Sprague-Dawley rats, Japanese quail, Hartley guinea-pigs) which differ by their nocturnal and diurnal activities. A 100 lux stimulus has been delivered at various time intervals. 2. A regular alternation of 12, 3 or 1.5 hr light (L) and darkness (D) gives VCO2 circadian and ultradian rhythms of 24, 6 or 3 hr periods, respectively, in quail and rats. 3. Such circadian and ultradian LD rhythms are not induced in all guinea-pigs. 4. The amplitudes of the VCO2 responses are greatest at D----L when the animals have a maximum diurnal activity and at L----D when their maximum activity is nocturnal. 5. Interactions between circadian and ultradian rhythms are seen in all LD experiments, as well as in continuous light (LL) or continuous dark (DD). 6. No more well-marked or even inverted VCO2 responses to the light stimuli may occur after several days of exposure to these LD alternations.  相似文献   

13.
The underlying neural causes of the differences between nocturnal and diurnal animals with respect to their patterns of rhythmicity have not yet been identified. These differences could be due to differences in some subpopulation of neurons within the suprachiasmatic nucleus (SCN) or to differences in responsiveness to signals emanating from the SCN. The experiments described in this article were designed to address the former hypothesis by examining Fos expression within vasopressin (VP) neurons in the SCN of nocturnal and diurnal rodents. Earlier work has shown that within the SCN of the diurnal rodent Arvicanthis niloticus, approximately 30% of VP-immunoreactive (IR) neurons express Fos during the day, whereas Fos rarely is expressed in VP-IR neurons in the SCN of nocturnal rats. However, in earlier studies, rats were housed in constant darkness and pulsed with light, whereas Arvicanthis were housed in a light:dark (LD) cycle. To provide data from rats that would permit comparisons with A. niloticus, the first experiment examined VP/Fos double labeling in the SCN of rats housed in a 12:12 LD cycle and perfused 4 h into the light phase or 4 h into the dark phase. Fos was significantly elevated in the SCN of animals sacrificed during the light compared to the dark phase, but virtually no Fos at either time was found in VP-IR neurons, confirming that the SCN of rats and diurnal Arvicanthis are significantly different in this regard. The authors also evaluated the relationship between this aspect of SCN function and diurnality by examining Fos-IR and VP-IR in diurnal and nocturnal forms of Arvicanthis. In this species, most individuals exhibit diurnal wheel-running rhythms, but some exhibit a distinctly different and relatively nocturnal pattern. The authors have bred their laboratory colony for this trait and used animals with both patterns in this experiment. They examined Fos expression within VP-IR neurons in the SCN of both nocturnal and diurnal A. niloticus kept on a 12:12 LD cycle and perfused 4 h into the light phase or 4 h into the dark phase, and brains were processed for immunohistochemical identification of Fos and VP. Both the total number of Fos-IR cells and the proportion of VP-IR neurons containing Fos (20%) were higher during the day than during the night. Neither of these parameters differed between nocturnal and diurnal animals. The implications of these findings are discussed.  相似文献   

14.
Synergic contribution of light and temperature is known to cause a paradoxical masking effect (inhibition of activity by bright light and high temperature) on various rhythms of animals. The present study reports the paradoxical masking effects of 1000-lux photophase at 25°C on the locomotor activity rhythm of Drosophila malerkotliana. Flies were subjected to light (L)-dark (D) 12:12 cycles wherein the photophase was varied from 10 to 1000 lux, whereas the scotophase was set to 0 lux in these and subsequent LD cycles. At 10, 100, and 500 lux, the flies were diurnal; however, at 1000 lux they were nocturnal. Transfer from LD 12:12 cycles to continuous darkness (DD) initiated free-running rhythmicity in all flies. Free-running rhythms of the flies switched from the 10-lux to the 500-lux groups started from the last activity-onset phase of the rhythm following 3-5 transient cycles, suggesting involvement of the circadian pacemaker. In contrast, the free-running rhythm of the flies of the 1000-lux group began abruptly from the last lights-on phase of the LD cycle, indicating noninvolvement of the pacemaker. Furthermore, all flies showed nocturnal activity in the two types of LD 12:12 cycles when the photophase was 1000 lux. The first type of LD cycles had three succeeding photophases of 100, 1000, and again 100 lux, whereas the second type of LD cycles had only one photophase of 1000 lux, but the LD 12:12 cycles were reversed to DL 12:12 cycles. Apparently, the combined effects of light and temperature caused such paradoxical masking effects. This hypothesis was tested by repeating the above experiments at 20°C. Flies in all experiments exhibited a diurnal activity pattern, even when the photophase was 1000 lux. Thus, the present study demonstrates that the paradoxical masking effect in D. malerkotliana was caused by the additive influence of light intensity and temperature. This strategy appears to have physiological significance, i.e., to shun and thus protect against the bright photophase at high temperature in the field.  相似文献   

15.
With the widespread adoption of electrical lighting during the 20th century, human and nonhuman animals became exposed to high levels of light at night for the first time in evolutionary history. This divergence from the natural environment may have significant implications for certain ecological niches because of the important influence light exerts on the circadian system. For example, circadian disruption and nighttime light exposure are linked to changes in immune function. The majority of studies investigating the effects of light exposure and circadian disruption on the immune system use nocturnal rodents. In diurnal species, many hormones and immune parameters vary with secretion patterns 180° out of phase to those of nocturnal rodents. Thus, the authors investigated the effects of nighttime light exposure on immunocompetence in diurnal Nile grass rats (Arvicanthis niloticus). Rats were housed in either standard 14-h light (L):10-h dark (D) cycles with L ~150 lux and D 0 lux or dim light at night (dLAN) cycles of LD 14:10 with L ~150 lux and D 5 lux for 3 wks, then tested for plasma bactericidal capacity, as well as humoral and cell-mediated immune responses. Rats exposed to dLAN showed increased delayed-type hypersensitivity pinna swelling, which is consistent with enhanced cell-mediated immune function. dLAN rats similarly showed increased antibody production following inoculation with keyhole lymphocyte hemocyanin (KLH) and increased bactericidal capacity. Daytime corticosterone concentrations were elevated in grass rats exposed to nighttime dim light, which may have influenced immunological measures. Overall, these results indicate nighttime light affects immune parameters in a diurnal rodent.  相似文献   

16.
Synergic contribution of light and temperature is known to cause a paradoxical masking effect (inhibition of activity by bright light and high temperature) on various rhythms of animals. The present study reports the paradoxical masking effects of 1000-lux photophase at 25°C on the locomotor activity rhythm of Drosophila malerkotliana. Flies were subjected to light (L)-dark (D) 12:12 cycles wherein the photophase was varied from 10 to 1000 lux, whereas the scotophase was set to 0 lux in these and subsequent LD cycles. At 10, 100, and 500 lux, the flies were diurnal; however, at 1000 lux they were nocturnal. Transfer from LD 12:12 cycles to continuous darkness (DD) initiated free-running rhythmicity in all flies. Free-running rhythms of the flies switched from the 10-lux to the 500-lux groups started from the last activity-onset phase of the rhythm following 3–5 transient cycles, suggesting involvement of the circadian pacemaker. In contrast, the free-running rhythm of the flies of the 1000-lux group began abruptly from the last lights-on phase of the LD cycle, indicating noninvolvement of the pacemaker. Furthermore, all flies showed nocturnal activity in the two types of LD 12:12 cycles when the photophase was 1000 lux. The first type of LD cycles had three succeeding photophases of 100, 1000, and again 100 lux, whereas the second type of LD cycles had only one photophase of 1000 lux, but the LD 12:12 cycles were reversed to DL 12:12 cycles. Apparently, the combined effects of light and temperature caused such paradoxical masking effects. This hypothesis was tested by repeating the above experiments at 20°C. Flies in all experiments exhibited a diurnal activity pattern, even when the photophase was 1000 lux. Thus, the present study demonstrates that the paradoxical masking effect in D. malerkotliana was caused by the additive influence of light intensity and temperature. This strategy appears to have physiological significance, i.e., to shun and thus protect against the bright photophase at high temperature in the field. (Author correspondence: )  相似文献   

17.
With the widespread adoption of electrical lighting during the 20th century, human and nonhuman animals became exposed to high levels of light at night for the first time in evolutionary history. This divergence from the natural environment may have significant implications for certain ecological niches because of the important influence light exerts on the circadian system. For example, circadian disruption and nighttime light exposure are linked to changes in immune function. The majority of studies investigating the effects of light exposure and circadian disruption on the immune system use nocturnal rodents. In diurnal species, many hormones and immune parameters vary with secretion patterns 180° out of phase to those of nocturnal rodents. Thus, the authors investigated the effects of nighttime light exposure on immunocompetence in diurnal Nile grass rats (Arvicanthis niloticus). Rats were housed in either standard 14-h light (L):10-h dark (D) cycles with L ~150 lux and D 0 lux or dim light at night (dLAN) cycles of LD 14:10 with L ~150 lux and D 5 lux for 3 wks, then tested for plasma bactericidal capacity, as well as humoral and cell-mediated immune responses. Rats exposed to dLAN showed increased delayed-type hypersensitivity pinna swelling, which is consistent with enhanced cell-mediated immune function. dLAN rats similarly showed increased antibody production following inoculation with keyhole lymphocyte hemocyanin (KLH) and increased bactericidal capacity. Daytime corticosterone concentrations were elevated in grass rats exposed to nighttime dim light, which may have influenced immunological measures. Overall, these results indicate nighttime light affects immune parameters in a diurnal rodent. (Author correspondence: )  相似文献   

18.
Circadian disruption is a common by-product of modern life. Although jet lag and shift work are well-documented challenges to circadian organization, many more subtle environmental changes cause circadian disruption. For example, frequent fluctuations in the timing of the sleep/wake schedule, as well as exposure to nighttime lighting, likely affect the circadian system. Most studies of these effects have focused on nocturnal rodents, which are very different from diurnal species with respect to their patterns of light exposure and the effects that light can have on their activity. Thus, the authors investigated the effect of nighttime light on behavior and the brain of a diurnal rodent, the Nile grass rat. Following 3 weeks of exposure to standard light/dark (LD; 14:10 light [~150 lux] /dark [0 lux]) or dim light at night (dLAN; 14:10 light [~150 lux] /dim [5 lux]), rats underwent behavioral testing, and hippocampal neurons within CA1, CA3, and the dentate gyrus (DG) were examined. Three behavioral effects of dLAN were observed: (1) decreased preference for a sucrose solution, (2) increased latency to float in a forced swim test, and (3) impaired learning and memory in the Barnes maze. Light at night also reduced dendritic length in DG and basilar CA1 dendrites. Dendritic length in the DG positively correlated with sucrose consumption in the sucrose anhedonia task. Nighttime light exposure did not disrupt the pattern of circadian locomotor activity, and all grass rats maintained a diurnal activity pattern. Together, these data suggest that exposure to dLAN can alter affective responses and impair cognition in a diurnal animal.  相似文献   

19.
《Chronobiology international》2013,30(7):1365-1379
There are two main processes involved in the expression of circadian rhythmicity: entrainment and masking. Whereas the first operates via the central pacemaker to anticipate predictable environmental conditions, masking (mainly induced by light) functions as a direct modulator of the circadian output signal induced by nonpredictable events. The Chilean rodent Octodon degus presents both diurnal and nocturnal chronotypes when given free access to an exercise wheel. Two steady-entrainment phases and graded masking by light seem to generate the wide variability of chronotypes in this species. The aim of this study was to characterize the differential masking by light according to the individual chronotypes, their stability over time, and the influence of wheel running availability and ambient temperature upon the degus' nocturnality. To this end, diurnal and nocturnal degus were subjected to ultradian cycles (1:1-h light-dark [LD]), with and without wheel running availability, and under both normal and high diurnal ambient temperature cycles. The present results show that diurnal and nocturnal degus present a stable masking by light, each according to its respective chronotype. Thus, whereas diurnal animals increased their activity with light, in nocturnal degus light induced a sharp drop in wheel running activity. These two types of masking responses appeared not only when the animals were synchronized to the 12:12-h LD cycle, but also under ultradian cycles. Different masking effects persisted when wheel running was made unavailable and when the animals shifted their circadian activity patterns in response to ultradian cycles or to diurnal exposure to high temperatures. In conclusion, our results show that the positive and negative masking effects of light on diurnal and nocturnal degus, respectively, seem to occur independently of relative phase control by the central pacemaker or the negative masking induced by high environmental temperatures. (Author correspondence: )  相似文献   

20.
Processes involved in the operation of the circadian pacemaker are well characterized; however; little is known about what mechanisms drive the overt diurnal, nocturnal, or crepuscular behavior in a species. In this context, dual‐phasing rodents, such as Octodon degus, emerge as a useful model to decipher these keys. Two main chronotypes, nocturnal and diurnal, have been traditionally described in laboratory‐housed degus based on the percentage of activity displayed by the animals during the scotophase or photophase. However, if one considers also the entrainment phase angle during the first days following a change from LD to DD conditions, a third chronotype (intermediate)—or more properly, a continuous grading of circadian expressions between diurnal and nocturnal chronotype—can be observed. Our experiments suggest the pacemaker of the diurnal animal is entrained to the photophase, and light does not exert a negative masking effect. The pacemaker of the nocturnal degus, on the other hand, is entrained to the scotophase, and light exerts a strong negative masking effect. Finally, the intermediate chronotype is characterized by variable negative masking effect of light overlapping a pacemaker entrained to the photophase. The phase shift inversion from diurnal to nocturnal chronotype is related to the availability of a wheel in the cage, and the effect may be located downstream from the clock. However, body temperature rhythm recordings, less affected by masking effects, point to an involvement of the circadian pacemaker in chronotype differentiation, as transient entrainment cycles, and not an abrupt phase shift, were detected after providing access to the wheel. The diurnality of degus seems to be the result of a variety of mechanisms, which may explain how different processes can lead to similar chronotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号