首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ondansetron (Zophren®) is a serotonin 5HT3-receptor antagonist used primarily to control nausea and vomiting caused by cytotoxic chemo‐and radio‐therapy. Tolerance to this drug shows both 24 and 8 h periodicities. In this framework, this study aimed to determine whether these ondansetron tolerance rhythms are modulated by season. The chronotoxic effect of a fixed dose (3.5 mg/kg, i.p.) of the drug was investigated with reference to both time of the day and year dependencies. Season‐related studies were performed on 560 male Swiss mice, 10 to 12 wks old, synchronized with L:D=12:12 for three weeks. During a 1 yr span (2005), four 24 h studies were performed with a single dosing time at 1, 7, 13, and 19 hours after light onset (HALO), respectively. Tolerance was assessed daily during a 40‐day span after acute ondansetron treatment. Both χ2 test and cosinor methods were used to analyze the time series data. Statistically significant dosing time‐dependent changes were validated in both yearly and daily time scales. The 24 h mean survival rate peaked in spring (92%) compared to fall (72%), the 20% difference being statistically significant (χ2 test with p<0.05 and cosinor with p<0.0001 for seasonal rhythm detection and with a peak time, Ø,=April 3±6.6 days). A 24 h rhythm was also detected in each of the seasonal time points. However, the curve pattern was monophasic in fall as well as spring. In fall, a large amplitude (A) circadian rhythm was detected that peaked at 19 HALO, while in the spring, a small circadian rhythm was detected that peaked at 1 HALO. The curve pattern was biphasic in summer (with large A) and in winter (with a small A). The existence of two peaks of equal magnitude in winter (100% survival rate) and in summer (100% and 90%) suggests the presence of both circadian and ultradian rhythms rather than an ultradian component of the 24 h period. The seasonal modulation of ondansetron circadian chronotolerance seems to involve several rhythm parameters: season‐related changes in the 24 h mean (M), amplitude (A), acrophase location (Ø), as well as bimodal curve patterns including the coexistence of rhythms with respectively 24 and 8 h periods in winter and summer. In conclusion, tolerance to ondansetron varies not only according to the 24 and 8 h periods but also according to seasons, which suggests the complexity of ondansetron toxicity rhythms. Seasonal modulation of ondansetron tolerance may also influence the strategies of chemo‐and chrono‐therapy, and it is therefore necessary to take it into account in clinical drug‐delivery protocols to minimize side effects of cytotoxic anticancer and antiemetic agents.  相似文献   

2.
Cardiovascular functions (blood pressure [BP], heart rate [HR]) were radiotelemetrically studied in endothelial nitric oxide synthase (NOS) knock‐out mice (eNOS‐/‐) and their wild type C57BL/6 (WT) controls. Studies were performed with and without inhibition of the NOS with the non‐specific inhibitor Nω‐Nitro‐L‐Arginin‐Methylester (L‐NAME). Six eNOS‐/‐and five WT mice, kept under a light:dark schedule of 12:12 h (lights on 07:00 h), were treated with L‐NAME in tap water containing different concentrations (94, 282, and 940 mg/kg) each for three days. Under control conditions, the eNOS‐/‐mice are mildly hypertensive in comparison to WT. L‐NAME increased systolic [SBP] and diastolic [DBP] blood pressures in WT mice to the levels of eNOS‐/‐mice after two days of L‐NAME application with no dose‐dependency, whereas L‐NAME had no effects on SBP and DBP in eNOS‐/‐mice. In neither mouse strain were the circadian rhythms in BP and HR affected by drug treatment. The similarity of the 24 h BP profiles in eNOS‐/‐and L‐NAME‐treated WT mice support the notion that only the enothelial NOS and not other NOS isoenzymes are of importance for hypertension in the knock‐out mouse strain.  相似文献   

3.
4.
5.
S100β is a soluble calcium binding protein released by glial cells. It has been reported as a neurotrophic factor that promotes neurite maturation and outgrowth during development. This protein also plays a role in axonal stability and in long term potentiation in the adult brain. The ability of S100β to modulate neuronal morphology raises the important question whether there is an age-related difference in the expression of S100β in the cerebral and cerebellar cortices of AKR strain mice and is this change is region specific. Our RT–PCR and Western blotting experiments show that the expression of S100β gene in the cerebral and cerebellar cortices starts from 0 day, peaks at about 45 days. However, in 70-week old mice its expression is significantly up-regulated as compared to that of 20-week old mice. S100β follows the same age-related pattern in both cerebral and cerebellar cortices. These results suggest that S100β is important for brain development and establishment of proper brain functions. Up-regulation of S100β in old age may have some role in development of age-related pathological systems in the brain.  相似文献   

6.
7.
The present study was conducted to evaluate the effect of a 7 d continuous infusion of ropivacaine on the 24 h rhythms of body temperature, heart rate, and locomotor activity. After an initial 7 d baseline, rats were randomly divided into two groups of 4 rats each to receive ropivacaine or saline via an osmotic pump for 7 consecutive days. The pumps were removed thereafter and observed during a 7 d recovery span. The studied circadian rhythms were measured by radiotelemetry throughout each of the 7 d periods. An additional group of 4 rats was studied under the same experimental conditions to assess the plasma levels of ropivacaine on days 3 and 8 following pump implantation. Our results indicate that ropivacaine does not induce loss of the circadian rhythms of body temperature, heart rate, or locomotor activity; a prominent period of 24 h was found for all variables in all animals, before, during, and after ropivacaine treatment. However, ropivacaine treatment did modify some characteristics of the rhythms; it increased the MESOR (24 h mean) of the heart rate and locomotor activity rhythms and advanced the acrophase (peak time) of the locomotor activity circadian rhythm. The present study indicates that the circadian rhythms of heart rate and locomotor activity are modified after continuous infusion of ropivacaine, which is of particular interest, given the potential cardiotoxicity of this local anesthetic agent.  相似文献   

8.
9.
The nitric oxide (NO) system is involved in the regulation of the cardiovascular system in controlling central and peripheral vascular tone and cardiac functions. It was the aim of this study to investigate in wild‐type C57BL/6 and endothelial nitric oxide synthase (eNOS) knock‐out mice (eNOS‐/‐) the contribution of NO on the circadian rhythms in heart rate (HR), motility (motor activity [MA]), and body temperature (BT) under various environmental conditions. Experiments were performed in 12∶12 h of a light:dark cycle (LD), under free‐run in total darkness (DD), and after a phase delay shift of the LD cycle by ?6 h (i.e., under simulation of a westward time zone transition). All parameters were monitored by radiotelemetry in freely moving mice. In LD, no significant differences in the rhythms of HR and MA were observed between the two strains of mice. BT, however, was significantly lower during the light phase in eNOS‐/‐ mice, resulting in a significantly greater amplitude. The period of the free‐running rhythm in DD was slightly shorter for all variables, though not significant. In general, rhythmicity was greater in eNOS‐/‐ than in C57 mice both in LD and DD. After a delay shift of the LD cycle, HR and BT were resynchronized to the new LD schedule within 5–6 days, and resynchronization of MA occurred within 2–3 days. The results in telemetrically instrumented mice show that complete knock‐out of the endothelial NO system—though expressed in the suprachiasmatic nuclei and in peripheral tissues—did not affect the circadian organization of heart rate and motility. The circadian regulation of the body temperature was slightly affected in eNOS‐/‐ mice.  相似文献   

10.
Steroid hormones control the expression of many cellular regulators, and a role for estrogen in cardiovascular function and disease has been well documented. To address whether the activity of the L-type Ca2+ channel, a critical element in cardiac excitability and contractility, is altered by estrogen and its nuclear receptor, we examined cardiac myocytes from male mice in which the estrogen receptor gene had been disrupted (ERKO mice). Binding of dihydropyridine Ca2+ channel antagonist isradipine (PN200-110) was increased 45.6% in cardiac membranes from the ERKO mice compared to controls, suggesting that a lack of estrogen receptors in the heart increased the number of Ca2+ channels. Whole-cell patch clamp of acutely dissociated adult cardiac ventricular myocytes indicated that Ca2+ channel current was increased by 49% and action potential duration was increased by 75%. Examination of electrocardiogram parameters in ERKO mice showed a 70% increase in the QT interval without significant changes in PQ or QRS intervals. These results show that the membrane density of the cardiac L-type Ca2+ channel is regulated by the estrogen receptor and suggest that decreased estrogen may lead to an increase in the number of cardiac L-type Ca2+ channels, abnormalities in cardiac excitability, and increased risk of arrhythmia and cardiovascular disease.  相似文献   

11.
The nature of the hormone(s) secreted by the pars tuberalis (PT) is still unknown. This pituitary lobe is mainly formed by specific glandular cells that differ in their ultrastructural features from the other adenohypophysial cell types. Data from the literature indicate the presence of thyroid-stimulating hormone immunoreactivity in the PT-specific cells of the rat and the Djungarian hamster but not of other species, including the mouse and guinea-pig. The PT also encloses variable numbers of pars distalis cells, essentially gonadotrophs that are mainly dispersed in its caudal area. We studied the expression of the glycoprotein hormone -subunit in the PT of the rat, mouse and guinea-pig by in situ hybridization and immunocytochemistry. In situ hybridization, using an oligonucleotide probe complementary to rat cDNA sequence 196–237 revealed the expression of the -subunit gene throughout the PT of the rat and the mouse; in the guinea-pig, the probe labelled no pituitary cells. Light-and electron-microscopic immunocytochemistry demonstrated -subunit immunoreactivity in the secretory granules of the PT-specific cells in the three species examined. These cells did not react with a specific antibody against the -subunit of luteinizing hormone, an antibody that labelled scattered gonadotrops. The present data suggest that hormone(s) produced by the PT-specific glandular cells are, at least partly, related to glycoprotein hormones.  相似文献   

12.
It has been suggested that epidermal growth factors (EGF) are responsible for the inhibition of locomotion by light (i.e., masking) in nocturnal rodents (Kramer et al., ). The poor masking response of waved‐2 (Egfrwa2) mutant mice, with reduced EGF receptor activity, was adduced in support of this idea. In the present work, we studied the responses to light over a large range in illumination levels, in a variety of tests, with pulses of light and with ultradian light‐dark cycles in Egfrwa2 mutant mice. No evidence suggested that normal functioning of epidermal growth factor receptors was required, or even involved, in masking.  相似文献   

13.
14.
Little is known about the chronopharmacokinetics of loratadine, a long‐acting tricyclic antihistamine H1 widely used in the treatment of allergic diseases. Hence, the pharmacokinetics of loratadine and its major metabolite, desloratadine, were investigated after a 20 mg/kg dose of loratadine had been orally administered to comparable groups of mice (n=33), synchronized for three weeks to 12 h light (rest span)/12 h dark (activity span). The drug was administered at three different circadian times (1, 9, and 17 h after light onset [HALO]). Multiple blood samples were collected over 48 h, and plasma concentrations of loratadine and desloratadine were determined by high performance liquid chromatography. There were no significant differences in Tmax of loratadine and desloratadine between treatment‐time different groups. However, the elimination half‐life (t1/2) of the parent compound and its metabolite was significantly longer (p<0.01) following administration at 9 HALO (t1/2 loratadine and desloratadine 5.62 and 4.08 h at 9 HALO vs. 4.29 and 2.6 h at 17 HALO vs. 3.26 and 3.27 at 1 HALO). There were relevant (p<0.05) differences in Cmax between the three treated groups for loratadine and desloratadine; 133.05±3.55 and 258.07±14.45 ng/mL at 9 HALO vs. 104.5±2.61 and 188.62±7.20 ng/mL at 1 HALO vs. 94.33±20 and 187.75±10.79 ng/mL at 17 HALO. Drug dosing at 17 HALO resulted in highest loratadine and desloratadine total apparent clearance values: 61.46 and 15.97 L/h/kg, respectively, whereas loratadine and desloratadine clearances (CL) were significantly slower (p<0.05) at the other administration times (loratadine and desloratadine CL was 57.3 and 14.22 L/h/kg at 1 HALO vs. 43.79 and 12.89 L/h/kg at 9 HALO, respectively). The area under the concentration‐time curve (AUC) of loratadine and desloratadine was significantly (p<0.05) greater following drug administration at 9 HALO (456.75 and 1550.57 (ng/mL) · h, respectively); it was lowest following treatment at 17 HALO (325.39 and 1252.53 (ng/mL) · h, respectively). These pharmacokinetic data indicate that the administration time of loratadine significantly affected its pharmacokinetics: the elimination of loratadine and its major metabolite desloratadine.  相似文献   

15.
16.
Estrogen receptor α (ERα) may play important roles in many estrogen physiological effects, but little is known about the fluctuation of ERα during the estrous cycle. In this study, the dynamic expression of ERα mRNA and protein in periodontal tissue during the estrous cycle were examined. Forty 12‐week‐old female rats were divided into four groups, based on the estrous cycle stage, and sacrificed. Immunohistochemistry and in situ hybridization were used to detect dynamic changes in ERα protein and mRNA in periodontal tissue during the estrous cycle, and data were analyzed by one‐way ANOVA and cosinor analysis for temporal patterns. Significant differences (p<0.05) were found in the expression of ERα protein and mRNA among the four groups. The expression of ERα protein and mRNA exhibited an infradian rhythm with a period of about 120 h (five days). The phase and amplitude differences between ERα protein and mRNA were not significant (p>0.05). The results suggest the expression of ERα is dynamic during the estrous cycle and that in the future chronobiologic methods should be used to study the mechanism of estrogen effect on periodontal tissue.  相似文献   

17.
Transcutaneous electric nerve stimulation (TENS) analgesic effect is produced by β‐endorphin release which interacts with captopril, a drug used for arterial hypertension treatment that affects thyroid hormone secretion, mainly 3,5,3′‐triiodothyronine (T3). To study a correlation between TENS (9 Hz × 30 min), captopril and T3, Mus musculus mice received nociceptive stimulation (writhe‐induced model) and were treated with captopril (1 mg/kg) and TENS and the T3 serum level was evaluated. As a result, T3 serum level rose slightly after TENS application and captopril separately but increased more after captopril alone. In addition, the antinociceptive effect produced by electric stimulation was enhanced by captopril with a high statistical significance (p < 0.001). Additionally, the TENS–captopril treatment increased T3 serum level to values 117.7% higher than control groups, reinforcing the supposed link between neuroelectric stimulation, captopril, and T3 secretion.  相似文献   

18.
19.
20.
Abstract

β‐galactosidase has been chosen as an indicator of glycoprotein metabolism in Acetabularia, an unicellular and uninucleate green alga. This catabolic enzyme was quantified by fluorecence spectrometry. It was found at all developmental stages, but the activity levels differed, peaking at the end of the growth phase, at the time of cap morphogenesis initiation, β‐galactosidase activity is also subjected to periodic modulation, displaying a bimodal rhythm with a prominent peak at 16 h. The distribution of the enzyme was examined by cytochemistry, using a substrate analogue (X‐gal). It is present both in the cytoplasm and in the cell wall. No apico‐basal gradient was detectable. The physiological role of glycoproteins was assessed with tunicamycin, an inhibitor of N‐linked glycoprotein synthesis. Two pulses of 3 or 4 h of inhibitor (10 μg ml‐1) always inhibited growth, but more severely during the light period. One pulse may inhibit growth during the light period and stimulate it during the dark one; it may also have little effect, in both periods. Cap formation is inhibited between time 0 and 7. During the dark or subjective dark period, it is often stimulated or not affected. The same results were obtained in constant light. Cap formation is also inhibited in anucleate algae treated during the light period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号