首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

This study examined the efficacy of daytime napping to supplement night-time sleep in athletes. Twelve well-trained male soccer players completed three conditions in a randomised, counterbalanced order: 9 h in bed overnight with no daytime nap (9 h + 0 h); 8 h in bed overnight with a 1-h daytime nap (8 h + 1 h); and 7 h in bed overnight with a 2-h daytime nap (7 h + 2 h). Sleep was assessed using polysomnography. The total amount of sleep obtained in the three conditions was similar, i.e. 8.1 h (9 h + 0 h), 8.2 h (8 h + 1 h), and 8.0 h (7 h + 2 h). Daytime napping may be an effective strategy to supplement athletes’ night-time sleep.  相似文献   

2.
Introduction: Bright light exposure in the late evening can affect cognitive function the following morning either by changing the biological clock and/or disturbing sleep, but the evidence for this effect is scarce, and the underlying mechanism remains unknown. In this study, we first aimed to evaluate the effect of bright light exposure before bedtime on frontal lobe activity the following morning using near-infrared spectroscopy (NIRS) during a Go/NoGo task. Second, we aimed to evaluate the effects of bright light exposure before bedtime on polysomnographic measures and on a frontal lobe function test the following morning.

Methods: Twenty healthy, young males (mean age, 25.5 years) were recruited between September 2013 and August 2014. They were first exposed to control light (150 lux) before bedtime (from 20:00 h to 24:00 h) for 2 days and then to bright light (1,000 lux) before bedtime for an additional 5 days. We performed polysomnography (PSG) on the final night of each light exposure period (on nights 2 and night 7) and performed NIRS, which measures the concentrations of oxygenated and deoxygenated hemoglobin (OxyHb and DeoxyHb, respectively), coupled with a Go/NoGo task the following morning (between 09:30 h and 11:30 h). The participants also completed frontal lobe function tests the following morning.

Results: NIRS showed decreased hemodynamic activity (lower OxyHb and a tendency toward higher DeoxyHb concentration) in the right frontal lobe during the NoGo block after 1000-lux light exposure compared with that during the NoGo block after 150-lux light exposure. The commission error rate (ER) during the Go/NoGo task was higher after 1000-lux light exposure than that during the Go/NoGo task after 150-lux light exposure (1.24 ± 1.09 vs. 0.6 ± 0.69, = 0.002), suggesting a reduced inhibitory response.

Conclusion: This study shows that exposure to bright light before bedtime for 5 days impairs right frontal lobe activation and response inhibition the following morning.  相似文献   


3.
ABSTRACT

This pilot study investigated the impact of breaking up prolonged sitting with light-intensity walking on postprandial glucose responses and sleep architecture. In a randomized, counterbalanced, crossover design, six healthy males completed a sitting condition and an active condition (sitting interrupted with light-intensity walking) for three consecutive days, following 5-h sleep opportunities at night. Postprandial glucose response and sleep (time spent in all stages) was assessed. Breaking up prolonged sitting with light-intensity walking did not affect postprandial glucose responses in sleep-restricted participants; however a small increase (~9 min) in slow-wave sleep was observed.  相似文献   

4.
ABSTRACT

Patient diurnal mood fluctuation, sleep characteristics and factors affecting sleep homeostasis predict antidepressant response to the combination of total sleep deprivation and light therapy (TSD + LT). In order to study if chronotype could influence response to TSD+LT, we considered 194 bipolar depressed patients. Severity of depression was rated with Hamilton Depression Rating Scale; perceived mood levels were assessed by a self-administered 10-cm visual analogue scale and chronotype was assessed using the Mornigness-Eveningness Questionnaire.

More than 60% of patients resulted responders to treatment with chronotype influencing the antidepressant response with evening type subjects showing higher response rates.  相似文献   

5.
Light therapy is a well-established treatment option for seasonal affective disorders and is effective in reducing sleep problems and daytime fatigue. Symptoms of severe burnout include feelings of exhaustion and impaired sleep and mood. Thus, light therapy seems promising for burnout treatment. So far, light therapy effects in burnout were investigated in outpatient settings only, with inconclusive results. The present study targeted light therapy effects in an inpatient setting. Participants with severe burnout were recruited in two psychosomatic clinics and randomly assigned to a control group with multimodal psychiatric treatment or an add-on light treatment group. Participants in the latter group were additionally exposed to morning bright light (illuminance: 4246 lux, irradiance: 1802.81 µW.cm?2) for 3 weeks, 30 minutes a day, timed to their chronotypes. Light effects on burnout symptoms, depression, well-being, daytime sleepiness, sleep quality, and attentional performance were measured twice (pre-/postintervention design). Adjunctive chronotype-based bright light therapy was well tolerated and improved burnout symptoms and well-being without additional effect on severity of depression. Furthermore, reduced daytime sleepiness, improved nighttime sleep quality, a sleep phase advance of 25 minutes, shortened sleep latency, less sleep disturbances and increased sleep duration were observed in the light treatment group. No group differences were found in attentional performance. Chronotype-based bright light therapy seems to be effective in improving burnout symptoms and sleep problems in patients with severe burnout symptoms. Further studies with larger sample sizes and objective measures of sleep are necessary to confirm these preliminary results before practical recommendations can be made.  相似文献   

6.
ABSTRACT

Fatigue is recognized as an important safety concern in the transportation industry. In this study, our goal was to investigate how circadian and sleep–wake dependent factors influence St-Lawrence River pilots’ sleep–wake cycle, alertness and psychomotor performance levels at work. A total of 18 male St-Lawrence River ship pilots were recruited to a 16–21-day field study. Pilots’ chronotype, sleepiness and insomnia levels were documented using standardized questionnaires. Their sleep–wake cycle was documented by a sleep–wake log and wrist-worn activity monitoring. Subjective alertness and objective psychomotor performances were assessed ~5×/day for each work and rest day. Ship transits were distributed throughout the 24-h day and lasted on average (± SEM) 5.93 ± 0.67 h. Main sleep periods occurred mainly at night, and objectively lasted 6.04 ± 1.02 h before work days. When going to bed at the end of work days, pilots subjectively reported sleeping 7.64 ± 1.64 h in the prior 24 h. Significant diurnal and wake-dependent effects were observed for subjective alertness and objective psychomotor performance, with minimum levels occurring between 09:00 and 10:00. Thus, despite their irregular work schedule, ship pilots presented, as a group, a diurnal variation of alertness and psychomotor performance indicative of a day-oriented circadian system. Important inter-individual differences were observed on psychomotor performance mesor and phase. In individuals, earlier phases in psychomotor performance were correlated with earlier chronotype. This study indicates that both circadian and homeostatic processes modulate alertness and psychomotor performance levels with worst levels reached when long shifts ended in the morning. This work has potential applications as it indicates fatigue countermeasures considering both processes are scientifically based.  相似文献   

7.
Partial sleep deprivation is increasingly common in modern society. This study examined for the first time if partial sleep deprivation alters circadian phase shifts to bright light in humans. Thirteen young healthy subjects participated in a repeated-measures counterbalanced design with 2 conditions. Each condition had baseline sleep, a dim-light circadian phase assessment, a 3-day phase-advancing protocol with morning bright light, then another phase assessment. In one condition (no sleep deprivation), subjects had an 8-h sleep opportunity per night during the advancing protocol. In the other condition (partial sleep deprivation), subjects were kept awake for 4 h in near darkness (<0.25 lux), immediately followed by a 4-h sleep opportunity per night during the advancing protocol. The morning bright light stimulus was four 30-min pulses of bright light (~5000 lux), separated by 30-min intervals of room light. The light always began at the same circadian phase, 8 h after the baseline dim-light melatonin onset (DLMO). The average phase advance without sleep deprivation was 1.8 ± 0.6 (SD) h, which reduced to 1.4 ± 0.6 h with partial sleep deprivation (p < 0.05). Ten of the 13 subjects showed reductions in phase advances with partial sleep deprivation, ranging from 0.2 to 1.2 h. These results indicate that short-term partial sleep deprivation can moderately reduce circadian phase shifts to bright light in humans. This may have significant implications for the sleep-deprived general population and for the bright light treatment of circadian rhythm sleep disorders such as delayed sleep phase disorder.  相似文献   

8.
This study investigated the effect of using an artificial bright light on the entrainment of the sleep/wake cycle as well as the reaction times of athletes before the Rio 2016 Olympic Games. A total of 22 athletes from the Brazilian Olympic Swimming Team were evaluated, with the aim of preparing them to compete at a time when they would normally be about to go to bed for the night. During the 8-day acclimatization period, their sleep/wake cycles were assessed by actigraphy, with all the athletes being treated with artificial light therapy for between 30 and 45 min (starting at day 3). In addition, other recommendations to improve sleep hygiene were made to the athletes. In order to assess reaction times, the Psychomotor Vigilance Test was performed before (day 1) and after (day 8) the bright light therapy. As a result of the intervention, the athletes slept later on the third (p = 0.01), seventh (p = 0.01) and eighth (p = 0.01) days after starting bright light therapy. Regarding reaction times, when tested in the morning the athletes showed improved average (p = 0.01) and minimum reaction time (p = 0.03) when comparing day 8 to day 1. When tested in the evening, they showed improved average (p = 0.04), minimum (p = 0.03) and maximum reaction time (p = 0.02) when comparing day 8 to day 1. Light therapy treatment delayed the sleep/wake cycles and improved reaction times of members of the swimming team. The use of bright light therapy was shown to be effective in modulating the sleep/wake cycles of athletes who had to perform in competitions that took place late at night.  相似文献   

9.
Studies suggest that there may be an association between sleep and growth; however, the relationship is not well understood. Changes in biology and external factors such as school schedule heavily impact the sleep of adolescents, during a critical phase for growth. This study assessed the changes in sleep across school days, weekends and school holidays, while also measuring height and weight changes, and self-reported alterations in food intake and physical activity. The impact of morningness–eveningness (M-E) on height change and weight gain was also investigated. In a sample of 63 adolescents (mean age = 13.13, SD = 0.33, 31 males) from two independent schools in South Australia, height and weight were measured weekly for 4 weeks prior to the school holidays and 4 weeks after the school holidays. Participants also completed a Morningness/Eveningness Scale and 7-day sleep, diet and physical activity diaries prior to, during and after the school holidays. Participants at one school had earlier wake times during the weekends than participants attending the other school, leading to a significantly shorter sleep duration on weekends for those participants. Regardless of school, sleep was significantly later and longer during the holidays (< 0.001) and those with a stronger morning preference fell asleep (F18,36 = 3.4, = 0.001) and woke (F18,44 = 2.0, = 0.027) earlier than evening types. Growth rate was lower during the holiday weeks. For those attending the school with limited sleep in opportunities, growth after the holidays was lower for those with greater evening preference, whereas for those at the other school, growth was greater for those with greater evening preference. The increase in average weight from pre- to post-holidays was greater for those attending the school with limited opportunities to sleep longer. Participants reported greater food intake during the holidays compared to school days and greater physical activity levels on weekends compared to school days, and school days compared to holidays. Results suggest that time of day preference may impact growth, with evening types who cannot sleep in growing at a slower rate than evening types who can or morning types. This may be related to sleep restriction. Despite sleep being both later and longer during the school holidays, participants’ growth slowed during the holiday period. It is possible that this may be a reflection of other behavioural changes in the holidays (increased food intake and reduced physical activity), as sleep timing during the school period was related to growth.  相似文献   

10.
The timing of the circadian clock, circadian period and chronotype varies among individuals. To date, not much is known about how these parameters vary over time in an individual. We performed an analysis of the following five common circadian clock and chronotype measures: 1) the dim light melatonin onset (DLMO, a measure of circadian phase), 2) phase angle of entrainment (the phase the circadian clock assumes within the 24-h day, measured here as the interval between DLMO and bedtime/dark onset), 3) free-running circadian period (tau) from an ultradian forced desynchrony protocol (tau influences circadian phase and phase angle of entrainment), 4) mid-sleep on work-free days (MSF from the Munich ChronoType Questionnaire; MCTQ) and 5) the score from the Morningness–Eveningness Questionnaire (MEQ). The first three are objective physiological measures, and the last two are measures of chronotype obtained from questionnaires. These data were collected from 18 individuals (10 men, eight women, ages 21–44 years) who participated in two studies with identical protocols for the first 10 days. We show how much these circadian rhythm and chronotype measures changed from the first to the second study. The time between the two studies ranged from 9 months to almost 3 years, depending on the individual. Since the full experiment required living in the laboratory for 14 days, participants were unemployed, had part-time jobs or were freelance workers with flexible hours. Thus, they did not have many constraints on their sleep schedules before the studies. The DLMO was measured on the first night in the lab, after free-sleeping at home and also after sleeping in the lab on fixed 8-h sleep schedules (loosely tailored to their sleep times before entering the laboratory) for four nights. Graphs with lines of unity (when the value from the first study is identical to the value from the second study) showed how much each variable changed from the first to the second study. The DLMO did not change more than 2 h from the first to the second study, except for two participants whose sleep schedules changed the most between studies, a change in sleep times of 3 h. Phase angle did not change by more than 2 h regardless of changes in the sleep schedule. Circadian period did not change more than 0.2 h, except for one participant. MSF did not change more than 1 h, except for two participants. MEQ did not change more than 10 points and the categories (e.g. M-type) did not change. Pearson’s correlations for the DLMO between the first and second studies increased after participants slept in the lab on their individually timed fixed 8-h sleep schedules for four nights. A longer time between the two studies did not increase the difference between any of the variables from the first to the second study. This analysis shows that the circadian clock and chronotype measures were fairly reproducible, even after many months between the two studies.  相似文献   

11.
ABSTRACT

Exposure to light at night results in disruption of endogenous circadian rhythmicity and/or suppression of pineal melatonin, which can consequently lead to acute or chronic adverse health problems. In the present study, we investigated whether exposure to very dim light or very bright light for a short duration influences melatonin suppression, subjective sleepiness, and performance during exposure to constant moderately bright light. Twenty-four healthy male university students were divided into two experimental groups: Half of them (mean age: 20.0 ± 0.9 years) participated in an experiment for short-duration (10 min) light conditions of medium intensity light (430 lx, medium breaks) vs. very dim light (< 1 lx, dim breaks) and the other half (mean age: 21.3 ± 2.5 years) participated in an experiment for short-duration light conditions of medium intensity light (430 lx, medium breaks) vs. very bright light (4700 lx, bright breaks). Each simulated night shift consisting of 5 sets (each including 50-minute night work and 10-minute break) was performed from 01:00 to 06:00 h. The subjects were exposed to medium intensity light (550 lx) during the night work. Each 10-minute break was conducted every hour from 02:00 to 06:00 h. Salivary melatonin concentrations were measured, subjective sleepiness was assessed, the psychomotor vigilance task was performed at hourly intervals from 21:00 h until the end of the experiment. Compared to melatonin suppression between 04:00 and 06:00 h in the condition of medium breaks, the condition of dim breaks significantly promoted melatonin suppression and the condition of bright breaks significantly diminished melatonin suppression. However, there was no remarkable effect of either dim breaks or bright breaks on subjective sleepiness and performance of the psychomotor vigilance task. Our findings suggest that periodic exposure to light for short durations during exposure to a constant light environment affects the sensitivity of pineal melatonin to constant light depending on the difference between light intensities in the two light conditions (i.e., short light exposure vs. constant light exposure). Also, our findings indicate that exposure to light of various intensities at night could be a factor influencing the light-induced melatonin suppression in real night work settings.  相似文献   

12.
《Chronobiology international》2013,30(7):1469-1492
Adolescents often report shorter time in bed and earlier wake-up times on school days compared to weekend days. Extending sleep on weekend nights may reflect a “recovery” process as youngsters try to compensate for an accumulated school-week sleep debt. The authors examined whether the circadian timing system of adolescents shifted after keeping a common late weekend “recovery” sleep schedule; it was hypothesized that a circadian phase delay shift would follow this later and longer weekend sleep. The second aim of this study was to test whether modifying sleep timing or light exposure on weekends while still providing recovery sleep can stabilize the circadian system. Two experiments addressed these aims. Experiment 1 was a 4-wk, within-subjects counterbalanced design comparing two weekend sleep schedule conditions, “TYPICAL” and “NAP.” Compared to weeknights, participants retired 1.5?h later and woke 3?h later on TYPICAL weekends but 1?h later on NAP weekends, which also included a 2-h afternoon nap. Experiment 2 was a 2-wk, between-subjects design with two groups (“TYPICAL” or “LIGHT”) that differed by weekend morning light exposure. TYPICAL and LIGHT groups followed the TYPICAL weekend schedule of Experiment 1, and the LIGHT group received 1?h of light (454–484?nm) upon weekend wake-up. Weekend time in bed was 1.5?h longer/night than weeknights in both experimental protocols. Participants slept at home during the study. Dim light melatonin onset (DLMO) phase was assessed in the laboratory before (Friday) and after (Sunday) each weekend. Participants were ages 15 to 17 yrs. Twelve participants (4 boys) were included in Experiment 1, and 33 (10 boys) were included in Experiment 2. DLMO phase delayed over TYPICAL weekends in Experiment 1 by (mean?±?SD) 45?±?31?min and Experiment 2 by 46?±?34?min. DLMO phase also delayed over NAP weekends (41?±?34?min) and did not differ from the TYPICAL condition of Experiment 1. DLMO phase delayed over LIGHT weekends (38?±?28?min) and did not differ from the TYPICAL group of Experiment 2. In summary, adolescents phase delay after keeping a commonly observed weekend sleep schedule. Waking earlier or exposure to short-wavelength light on weekend mornings, however, did not stabilize circadian timing in this sample of youngsters. These data inform chronotherapy interventions and underscore the need to test circadian phase-shifting responses to light in this age group. (Author correspondence: )  相似文献   

13.
Overweight is a worldwide increasing public health issue. Physical exercise is a useful countermeasure. Overweight individuals choose rather low exercise intensities, but especially high exercise intensities lead to higher energy expenditure and show beneficial health effects compared to lower exercise intensities. However, especially in the morning higher exercise intensities are likely to be avoided due to higher subjective effort. Bright light exposure has shown to increase maximum performance. The aim of this study was to investigate if bright light exposure can also increase self-chosen exercise intensity. We hypothesized that morning bright light exposure increases self-chosen exercise intensity of subsequent exercise through increased mood and reduced sleepiness in overweight individuals. In this randomized controlled single-blind parallel group design, 26 overweight individuals (11 males, 15 females; age 25 ± 5.7 years; body mass index 28.9 ± 2.1 kg/m2) underwent three measurement appointments. On the first appointment, subjects performed a cardiopulmonary exercise test to measure maximum oxygen uptake (VO2max). Two days later a 30-min exercise session with self-chosen exercise intensity was performed for familiarization. Then subjects were randomly allocated to bright light (~4400 lx) or a control light (~230 lx) condition. Three to seven days later, subjects were exposed to light for 30 min starting at 8:00 am, immediately followed by a 30-min exercise session with persisting light exposure. Multidimensional mood questionnaires were filled out before and after the light exposure and after the exercise session. The primary outcome was the mean power output during the exercise session and the secondary outcome the rating on the three domains (i.e. good-bad; awake-tired; calm-nervous) of the multidimensional mood questionnaire. Mean power output during the exercise session was 92 ± 19 W in bright light and 80 ± 37 W in control light, respectively. In the multivariate analysis adjusted for VO2max, the mean power output during the exercise session was 8.5 W higher (95% confidence interval ?12.7, 29.7; p = 0.416) for participants in bright light compared to control light. There were no significant differences between the groups for any of the three domains of the questionnaire at any time point. This is in contrast to longer lasting intervention studies that show positive influences on mood and suggests that bright light therapy requires repetitive sessions to improve mood in overweight individuals. In conclusion bright light exposure does not acutely increase self-chosen exercise intensity or improve mood in a 30-min exercise session starting at 08:30. However, regarding the fact that overweight is a worldwide and rapidly increasing public health issue even small increases in exercise intensity may be relevant. The trend toward superiority of bright light over control light implicates that further studies may be conducted in a larger scale.

Abbreviations: VO2max: maximum oxygen uptake; 95% CI: 95% confidence interval; SD: standard deviation  相似文献   

14.
The human circadian system is maximally sensitive to short-wavelength (blue) light. In a previous study we found no difference between the magnitude of phase advances produced by bright white versus bright blue-enriched light using light boxes in a practical protocol that could be used in the real world. Since the spectral sensitivity of the circadian system may vary with a circadian rhythm, we tested whether the results of our recent phase-advancing study hold true for phase delays. In a within-subjects counterbalanced design, this study tested whether bright blue-enriched polychromatic light (17000 K, 4000 lux) could produce larger phase delays than bright white light (4100 K, 5000 lux) of equal photon density (4.2×1015 photons/cm2/sec). Healthy young subjects (n?=?13) received a 2 h phase delaying light pulse before bedtime combined with a gradually delaying sleep/dark schedule on each of 4 consecutive treatment days. On the first treatment day the light pulse began 3 h after the dim light melatonin onset (DLMO). An 8 h sleep episode began at the end of the light pulse. Light treatment and the sleep schedule were delayed 2 h on each subsequent treatment day. A circadian phase assessment was conducted before and after the series of light treatment days to determine the time of the DLMO and DLMOff. Phase delays in the blue-enriched and white conditions were not significantly different (DLMO: ?4.45±2.02 versus ?4.48±1.97 h; DLMOff: ?3.90±1.97 versus ?4.35±2.39 h, respectively). These results indicate that at light levels commonly used for circadian phase shifting, blue-enriched polychromatic light is no more effective than the white polychromatic lamps of a lower correlated color temperature (CCT) for phase delaying the circadian clock. (Author correspondence: )  相似文献   

15.
Previous forced desynchrony studies have highlighted the close relationship between the circadian rhythms of core body temperature (CBT) and sleep propensity. In particular, these studies have shown that a “forbidden zone” for sleep exists on the rising limb of the CBT rhythm. In these previous studies, the length of the experimental day was either ultrashort (90?min), short (20?h), or long (28?h), and the ratio of sleep to wake was normal (i.e., 1:2). The aim of the current study was to examine the relative effects of the circadian and homeostatic processes on sleep propensity using a 28-h forced desynchrony protocol in which the ratio of sleep to wake was substantially lower than normal (i.e., 1:5). Twenty-seven healthy males lived in a time-isolation sleep laboratory for 11 consecutive days. Participants completed either a control (n?=?13) or sleep restriction (n?=?14) condition. In both conditions, the protocol consisted of 2?×?24-h baseline days followed by 8?×?28-h forced desynchrony days. On forced desynchrony days, the control group had 9.3?h in bed and 18.7?h of wake, and the sleep restriction group had 4.7?h in bed and 23.3?h of wake. For all participants, each 30-s epoch of time in bed was scored as sleep or wake based on standard polysomnography recordings, and was also assigned a circadian phase (360°?=?24?h) based on a cosine equation fitted to continuously recorded CBT data. For each circadian phase (i.e., 72?×?5° bins), sleep propensity was calculated as the percentage of epochs spent in bed scored as sleep. For the control group, there was a clear circadian rhythm in sleep propensity, with a peak of 98.5% at 5° (~05:20?h), a trough of 64.9% at 245° (~21:20?h), and an average of 82.3%. In contrast, sleep propensity for the sleep restriction group was relatively high at all circadian phases, with an average of 96.7%. For this group, the highest sleep propensity (99.0%) occurred at 60° (~09:00?h), and the lowest sleep propensity (91.3%) occurred at 265° (~22:40?h). As has been shown previously, these current data indicate that with a normal sleep-to-wake ratio, the effect of the circadian process on sleep propensity is pronounced, such that a forbidden zone for sleep exists at a phase equivalent to evening time for a normally entrained individual. However, these current data also indicate that when the ratio of sleep to wake is substantially lower than normal, this circadian effect is masked. In particular, sleep propensity is very high at all circadian phases, including those that coincide with the forbidden zone for sleep. This finding suggests that if the homeostatic pressure for sleep is sufficiently high, then the circadian drive for wakefulness can be overridden. In future studies, it will be important to determine whether or not this masking effect occurs with less severe sleep restriction, e.g., with a sleep-to-wake ratio of 1:3. (Author correspondence: )  相似文献   

16.
ABSTRACT

Previous studies have found that keeping the room dark at night was associated with a decrease in manic symptoms for patients with bipolar disorder (BD). However, the association between light at night of real-life conditions and manic symptoms is unclear. We investigated the association between bedroom light exposure at night and manic symptoms in BD patients. One-hundred and eighty-four outpatients with BD participated in this cross-sectional study. The average light intensity at night during sleep was evaluated using a portable photometer for seven consecutive nights. Manic symptoms were assessed using the Young Mania Rating Scale (YMRS), and scores ≥5 were treated as a “hypomanic state.” The median (interquartile range) YMRS score was 2.0 (0–5.0), and 52 (28.2%) participants were in a hypomanic state. The prevalence of a hypomanic state was significantly higher in the participants with an average light intensity at night exposure of ≥3 lux than in those with <3 lux (36.7% versus 21.9%; P = .02). In multivariable logistic regression analysis adjusted for BD type, depressive symptoms, sleep duration, and daytime physical activity, the odds ratio (OR) for a hypomanic state was significantly higher for the participants with an average light intensity at night exposure of ≥3 lux than for those with <3 lux (OR: 2.15, 95% confidence interval: 1.09–4.22, P = .02). This association remained significant at the cutoff value of YMRS score ≥6 (OR: 2.51, 95% confidence interval: 1.15–5.46; P = .02). The findings of this study indicate bedroom light exposure at night is significantly associated with manic symptoms in BD patients. Although the results of this cross-sectional investigation do not necessarily imply causality, they may serve to inform beneficial nonpharmacological intervention and personalized treatment of BD patients.  相似文献   

17.
The nature of on-call work is such that workers can be called and required to respond immediately after being woken. However, due to sleep inertia, impaired performance immediately upon waking is typical. We investigated the impact of a preceding stressor (an alarm/mobilisation procedure) on sleepiness and performance upon waking. Healthy, adult males (n = 16) attended the sleep laboratory for four consecutive nights which included two, counterbalanced on-call sleeps where participants were woken at 04:00 h by (a) an alarm/mobilisation procedure (Alarm) or (b) gently by a researcher (Control). Following waking was a 2-h testing session comprising the repeated administration of the Karolinska Sleepiness Scale (KSS) and 5-min Psychomotor Vigilance Task (PVT). Results from within-subjects analysis of variance in both the Control and Alarm conditions showed that for subjective sleepiness (KSS) there was a significant fixed effect of time (p = 0.012), with participants becoming less sleepy as time post-wake increased. In terms of PVT performance outcomes, in neither the Alarm or Control conditions were there measurable signs of sleep inertia with performance remaining stable across the 2-h testing period. Based on previous research measuring impact of sleep inertia when woken near the circadian nadir, performance findings in particular were unexpected. We propose that stress caused by study procedures (i.e. finger pricks using lancets) unrelated to the simulated wake-up protocols may have countered any impact of sleep inertia on performance.  相似文献   

18.
Mental and physical stress is common in physicians during night shifts. Neurocognitive effects of sleep deprivation as well as alterations in hormonal and metabolic parameters have previously been described. The aim of this crossover study was to evaluate the effects of night-shift work with partial sleep deprivation on steroid hormone excretion and possible associations with mood, sleep characteristics and cognitive functions in physicians.

In total, 34 physicians (mean age 42 ± 8.5 years, 76.5% male) from different departments of the General Hospital of Vienna, Austria, were randomly assigned to two conditions: a regular day shift (8 h on duty, condition 1) and a continuous day-night shift (24 h on duty, condition 2). In both conditions, physicians collected a 24 h urine sample for steroid hormone concentration analysis and further completed psychological tests, including the sleep questionnaire (SF-A), the questionnaire for mental state (MDBF) and the computer-assisted visual memory test (FVW) before and at the end of their shifts, respectively.

Although mean sleep deprivation during night shift was relatively small (~1.5 h) the impairment in participants’ mental state was high in all three dimensions (mood, vigilance and agitation, p ≤ 0.001). Sleep quality (SQ), feeling of being recovered after sleep and mental balance decreased (≤ 0.001), whereas mental exhaustion increased (p < 0.05). Moreover, we could show a nearly linear relationship between most of these self-rating items. Testing visual memory participants made significantly more mistakes after night shift (p = 0.011), however, mostly in incorrectly identified items and not in correctly identified ones (FVW). SQ and false identified items were negatively correlated, whereas SQ and time of reaction were positively associated. It is assumed that after night shift, a tendency exists to make faster wrong decisions. SQ did not influence correctly identified items in FVW. In contrast to previous investigations, we found that only excretion rates for pregnanetriol and androsterone/etiocholanolone ratios (p < 0.05, respectively) were slightly reduced in 24-h urine samples after night shift. A considerable stimulation of the adrenocortical axis could not be affirmed. In general, dehydroepiandrosteron (DHEA) was negatively associated with the sense of recreation after sleep and with the time of reaction and positively correlated with correctly identified items in the FVW test.

These results, on the one hand, are in line with previous findings indicating that stress and sleep deprivation suppress gonadal steroids, but, on the other hand, do not imply significant adrenocortical-axis stimulation (e.g. an increase of cortisol) during the day-night shift.  相似文献   


19.
ABSTRACT

The present study aimed to explore the effects of a single 10-mg dose of melatonin (MEL) administration after exhaustive late-evening exercise on sleep quality and quantity, and short-term physical and cognitive performances in healthy teenagers. Ten male adolescent athletes (mean ± SD, age = 15.4 ± 0.3 years, body-mass = 60.68 ± 5.7 kg, height = 167.9 ± 6.9 cm and BMI = 21.21 ± 2.5) performed two test sessions separated by at least one week. During each session, participants completed the Yo-Yo intermittent-recovery-test level-1 (YYIRT-1) at ~20:00 h. Then, sleep polysomnography was recorded from 22:15 min to 07:00 h, after a double blind randomized order administration of a single 10-mg tablet of MEL (MEL-10 mg) or Placebo (PLA). The following morning, Hooper wellness index was administered and the participants performed the Choice Reaction Time (CRT) test, the Zazzo test and some short-term physical exercises (YYIRT-1, vertical and horizontal Jumps (VJ; HJ), Hand grip strength (HG), and five-jump test (5-JT)). Evening total distance covered in the YYIRT-1 did not change during the two conditions (p > 0.05). Total sleep time (Δ = 24.55 mn; p < 0.001), sleep efficiency (Δ = 4.47%; p < 0.001), stage-3 sleep (N3 sleep) (Δ = 1.73%; p < 0.05) and rapid-eye-movement sleep (Δ = 2.15%; p < 0.001) were significantly higher with MEL in comparison with PLA. Moreover, sleep-onset-latency (Δ = –8.45mn; p < 0.001), total time of nocturnal awakenings after sleep-onset (NA) (Δ = –11 mn; p < 0.001), stage-1 sleep (N1 sleep) (Δ = –1.7%; p < 0.001) and stage-2 sleep (N2 sleep) (Δ = ?1.9%; p < 0.05) durations were lower with MEL. The Hooper index showed a better subjective sleep quality, a decrease of the subjective perception of fatigue and a reduced level of muscle soreness with MEL. Moreover, MEL improved speed and performance but not inaccuracy during the Zazzo test. CRT was faster with MEL. Morning YYIRT-1 (Δ = 82 m; p < 0.001) and 5-JT (Δ = 0.08 m; p < 0.05) performances were significantly higher with MEL in comparison with PLA. In contrast, HG, VJ and HJ performances did not change during the two conditions (p > 0.05). The administration of a single dose of MEL-10 mg after strenuous late-evening exercise improved sleep quality and quantity, selective attention, subjective assessment of the general wellness state, and some short-term physical performances the following morning in healthy teenagers.  相似文献   

20.
ABSTRACT

Travel across time zones disrupts circadian rhythms causing increased daytime sleepiness, impaired alertness and sleep disturbance. However, the effect of repeated consecutive transmeridian travel on sleep–wake cycles and circadian dynamics is unknown. The aim of this study was to investigate changes in alertness, sleep–wake schedule and sleepiness and predict circadian and sleep dynamics of an individual undergoing demanding transmeridian travel. A 47-year-old healthy male flew 16 international flights over 12 consecutive days. He maintained a sleep–wake schedule based on Sydney, Australia time (GMT + 10?h). The participant completed a sleep diary and wore an Actiwatch before, during and after the flights. Subjective alertness, fatigue and sleepiness were rated 4 hourly (08:00–00:00), if awake during the flights. A validated physiologically based mathematical model of arousal dynamics was used to further explore the dynamics and compare sleep time predictions with observational data and to estimate circadian phase changes. The participant completed 191?h and 159 736?km of flying and traversed a total of 144 time-zones. Total sleep time during the flights decreased (357.5?min actigraphy; 292.4?min diary) compared to baseline (430.8?min actigraphy; 472.1?min diary), predominately due to restricted sleep opportunities. The daily range of alertness, sleepiness and fatigue increased compared to baseline, with heightened fatigue towards the end of the flight schedule. The arousal dynamics model predicted sleep/wake states during and post travel with 88% and 95% agreement with sleep diary data. The circadian phase predicted a delay of only 34?min over the 16 transmeridian flights. Despite repeated changes in transmeridian travel direction and flight duration, the participant was able to maintain a stable sleep schedule aligned with the Sydney night. Modelling revealed only minor circadian misalignment during the flying period. This was likely due to the transitory time spent in the overseas airports that did not allow for resynchronisation to the new time zone. The robustness of the arousal model in the real-world was demonstrated for the first time using unique transmeridian travel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号