首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mathematical models designed to predict alertness or performance have been developed primarily as tools for evaluating work and/or sleep‐wake schedules that deviate from the traditional daytime orientation. In general, these models cope well with the acute changes resulting from an abnormal sleep but have difficulties handling sleep restriction across longer periods. The reason is that the function representing recovery is too steep—usually exponentially so—and with increasing sleep loss, the steepness increases, resulting in too rapid recovery. The present study focused on refining the Three‐Process Model of alertness regulation. We used an experiment with 4 h of sleep/night (nine participants) that included subjective self‐ratings of sleepiness every hour. To evaluate the model at the individual subject level, a set of mixed‐effect regression analyses were performed using subjective sleepiness as the dependent variable. These mixed models estimate a fixed effect (group mean) and a random effect that accounts for heterogeneity between participants in the overall level of sleepiness (i.e., a random intercept). Using this technique, a point was sought on the exponential recovery function that would explain maximum variance in subjective sleepiness by switching to a linear function. The resulting point explaining the highest amount of variance was 12.2 on the 1–21 unit scale. It was concluded that the accumulation of sleep loss effects on subjective sleepiness may be accounted for by making the recovery function linear below a certain point on the otherwise exponential function.  相似文献   

2.
The purpose of this study was to determine whether delaying bedtime or advancing rising time by 4 h affects anaerobic performance of individuals the following day in the morning and afternoon. Eleven subjects participated in the study, during which we measured the maximal, peak, and mean powers (i.e., Pmax [force‐velocity test], Ppeak, and Pmean [Wingate test], respectively). Measurements were performed twice daily, at 07∶00 and 18∶00 h, following a reference normal sleep night (RN), a partial sleep deprivation timed at the beginning of the night (SDB), and a partial sleep deprivation timed at the end of the night (SDE), and oral temperature was measured every 4 h. Each of the three experimental conditions was separated by a one‐week period. Our results showed a circadian rhythm in oral temperature, and analysis of variance revealed a significant sleep×test‐time effect on peak power (Ppeak), mean power (Pmean), and maximal power (Pmax). These variables improved significantly from the morning to the afternoon for all three experimental conditions. Whereas the morning‐afternoon improvement in the measures was similar after the RN and SDB conditions, it was smaller following the SDE condition. There was no significant difference in the effect of the two sleep‐deprivation conditions on anaerobic performances at 07∶00 and at 18∶00 h under the SDB condition in comparison with the post‐reference night. However, the performance variables were significantly lower at 18∶00 h after the SDE condition. In conclusion, a 4 h partial sleep deprivation at the end of the night appears to be more disturbing than partial sleep deprivation at the beginning of the night.  相似文献   

3.
There is an ongoing debate of how best to measure the effects of sleep loss in a reliable and feasible way, partly because well controlled laboratory studies and field studies have come to different conclusions. The aims of the present study were to investigate both sleepiness and performance in response to long‐term sleep restriction and recovery in a semi‐laboratory environment, investigate order effects (i.e., whether levels return to baseline) in a study with seven days of recovery, and characterize individual differences in tolerance to restricted sleep. Nine healthy men (age 23–28 yrs) participated in the protocol, which included one habituation day (sleep 23:00–07:00 h), two baseline days (23:00–07:00 h), five days with restricted sleep (03:00–07:00 h), and seven recovery days (23:00–07:00 h). Participants went outdoors at least twice each day. Reaction‐time tests were performed at 08:00, 14:00, and 20:00 h each day in the laboratory. Sleepiness was self‐rated by the Karolinska Sleepiness Scale (KSS) after each test. The mixed‐effect regression models showed that each day of restricted sleep resulted in an increase of sleepiness by 0.64±.05 KSS units (a nine‐step scale, p<.001), increase of median reaction times of 6.6±1.6 ms (p=.003), and increase of lapses/test of 0.69±.16 ms (p<.001). Seven days of recovery allowed participants to return to the baseline for sleepiness and median reaction time, but not for lapses. The individual differences were larger for performance measures than for sleepiness; the between‐subject standard deviation for the random intercept was in the magnitude of the effects of 1.1 days of restricted sleep for sleepiness, 6.6 days of restricted sleep for median reaction time, and 3.2 days for lapses. In conclusion, the present study shows that sleepiness is closely related to sleep pressure, while performance measures, to a larger extent, appear determined by specific individual traits. Moreover, it is suggested to measure sleepiness in a standardized situation so as to minimize the influences of contextual factors.  相似文献   

4.
To compare the behavioral effects of sleep‐loss sleepiness (performance impairment due to sleep loss) and sleep inertia (period of impaired performance that follows awakening), mean response latencies and number of lapses from a visual simple reaction‐time task were analyzed. Three experimental conditions were designed to manipulate sleepiness and sleep‐inertia levels: uninterrupted sleep, partial sleep reduction, and total sleep deprivation. Each condition included two consecutive nights (the first always a night of uninterrupted sleep, and the second either a night of uninterrupted sleep, a night when sleep was reduced to 3 h, or a night of total sleep deprivation), as well as two days in which performance was assessed at 10 different time points (08:00, 08:30, 09:00, 09:30, 10:00, 11:00, 14:00, 17:00, 20:00, and 23:00 h). From 08:00 to 09:00 h, reaction times in the partial sleep‐reduction and total sleep‐deprivation conditions were at a similar level and were slower than those observed in the uninterrupted sleep condition. In the same time period, the frequency of lapses in the total sleep‐deprivation condition was higher than in the partial sleep‐reduction condition, while this latter condition never differed from the uninterrupted sleep condition. The results indicate that both sleep inertia and sleep‐loss sleepiness lead to an increase in response latencies, but only extreme sleepiness leads to an increase in lapse frequency. We conclude that while reaction times slow as a result of both sleep inertia and sleep‐loss sleepiness, lapses appear to be a specific feature of sleep‐loss sleepiness.  相似文献   

5.
Some of the sleep disruption seen in seniors (>65 yrs) may be due to alteration of the circadian pacemaker phase and/or its phase angle with bedtime. The purpose of this study was to determine the effects of 2 h changes in the timing of bedtime (both earlier and later) on the sleep of seniors. Ten healthy seniors (9 F, 1 M, age 70–82 yrs) were each studied individually during three 120 h sessions (each separated by >2 weeks) in a time‐isolation laboratory. On nights 1 and 2, bedtime and rise‐time occurred at the subjects' habitual times; on nights 3–5, bedtime was specified by the experiment, but rise‐time was at the subjects' discretion (without knowledge of clock time). Under the control condition, subjects went to bed at their habitual bedtime (HBT), under the earlier bedtime condition at (HBT?2 h), and under the later bedtime condition at (HBT+2 h). Sleep was polysomnnographically recorded and rectal temperature continuously monitored. Although total sleep time increased in the earlier compared to the later condition (p<0.01), sleep efficiency decreased and wake after sleep onset increased (p<0.01). Subjective ratings of sleep were also worse under the earlier (HBT?2 h) than under later (HBT+ 2 h) condition (p<0.05). Performance did not differ between the earlier and later conditions. The larger the phase angle between actual bedtime and circadian temperature minimum (Tmin), the longer the time spent in bed and total sleep time, and the worse the sleep efficiency and subjective sleep ratings. There were no effects related to the phase angle between Tmin and rise‐time. The relative benefits of longer vs. more efficient sleep in the elderly require further investigation.  相似文献   

6.
Inter‐individual differences in tolerance for shift work have been studied primarily in terms of external factors affecting alertness on the job or the ability to rest and sleep while at home. However, there is increasing evidence that neurobiological factors play a role as well, particularly the major processes involved in the regulation of sleep and wakefulness. These include a sleep homeostatic process seeking to balance wakefulness and sleep and a circadian process seeking to promote wakefulness during the day and sleep during the night. Shift work is associated with a temporal misalignment of these two endogenous processes. During nightwork, this misalignment makes it difficult to stay awake during the nightshift and sleep during the day. However, inter‐individual variability in the processes involved in sleep/wake regulation is substantial. Recent studies have demonstrated the existence of inter‐individual differences in vulnerability to cognitive deficits from sleep loss. Moreover, these inter‐individual differences were shown to constitute a trait. Interestingly, self‐evaluations of sleepiness did not correspond well with the trait inter‐individual variability in objective levels of performance impairment during sleep deprivation. Perhaps because of this discrepancy, in operational settings, the inter‐individual differences in vulnerability to sleep loss do not appear to be limited due to self‐selection mechanisms. Indeed, even among a highly select group of active‐duty jet fighter pilots flying a series of simulated night missions, systematic inter‐individual differences in performance impairment from sleep loss were still observed. There are significant personal and economic consequences to human error and accidents caused by performance deficits due to sleep loss. It is important, therefore, to study the inter‐individual differences in the regulation of sleep and wakefulness in the work environment so that cognitive impairment during shift work may be better anticipated and prevented.  相似文献   

7.
Individual variation in the phase and amplitude of human circadian rhythms is well known, but the impact of heritable factors on such variation is less clear. We estimated the narrow‐sense heritability for selected circadian and sleep timing, quality, and duration measures among related members of the Hutterites, an endogamous, religious community (n=521 participants). “Morningness‐eveningness” (M/E), a stable trait reflecting circadian phase, was evaluated using the Composite Scale (CS). Subjective sleep measures were assessed using the Sleep Timing Questionnaire. Initial analyses reconfirmed the impact of age on M/E. Previously reported correlations between M/E scores and the sleep measures were also noted, demonstrating the construct validity of the questionnaires among the participants. Following corrections for age, gender, and colony of residence, significant narrow‐sense heritability was noted for M/E (23%). The heritability for subjective sleep measures (related to timing, duration, and quality) were statistically significant for all but one variable, and varied between 12.4% and 29.4%. Thus, significant heritable influences on human circadian phase and subjective sleep indices can be detected through family‐based studies. In view of the impact of circadian malfunction on human health, it may be worthwhile to map genetic factors impacting circadian and sleep variation.  相似文献   

8.
The work presents comparative data on changes of neurophysiological, time characteristics of the wakefulness–sleep cycle (WSC) and morphofunctional state of neurosecretory cells in supraoptic nucleus of the hypothalamus, which develop under influence of a 6-h long sleep deprivation in adult and one-month old rats. It is shown that the rebound of sleep develops in adult animals with a delay, after the 3rd hour and is characterized by a moderate increase of portions of slow-wave (SSP) and fast-wave (FSP) sleep phases in WSC and by a decrease of the wakefulness portion. Morphological analysis of the hypothalamus nonapeptidergic system has revealed a rise of content of neurosecretory material in fibers of supraoptic nucleus cells an in area of supraoptic-pituitary tract, as well as marked hyperemia that indicates activation of processes of secretion of neurohormones into the general blood flow; these reactions are similar to reactions of this system to stress. In rat pups the sleep rebound develops in 0.5 h after the end of the deprivation procedure and is characterized by more pronounced, statistically significant changes in WSC. Individual WSC become very short and almost all of them are completed with episodes of FSP. A statistically significant rise of power of the -wave band in electrogram spectra of hippocampus and somatosensory cortex in SSP, whereas peak of the activity in FSP is shifted to -waves. Ratios of SSP and FSP to wakefulness in individual WSC in mature animals increase after the deprivation 1.53 and 1.85 times, while they are elevated in one-month old animals 5.25 and 6.75 times, respectively. The obtained morphofunctional data allow believing that deprivation is the stress factor of low intensity for adult animals, whereas it may be considered as the stress action of intermediate and even high intensity for rat pups, which changes essentially the interrelations in WSC. Participation of central mechanisms of regulation of sleep and vigilance, which provide processes of compensation of damaging action of deprivation on WSC in the maturing animals, is discussed.  相似文献   

9.
The aim of this study was to evaluate patterns of sleepiness, comparing working and non‐working students. The study was conducted on high school students attending evening classes (19:00–22:30 h) at a public school in São Paulo, Brazil. The study group consisted of working (n=51) and non‐working (n=41) students, aged 14–21 yrs. The students answered a questionnaire about working and living conditions and reported health symptoms and diseases. For seven consecutive days, actigraphy measurements were recorded, and the students also filled in a sleep diary. Sleepiness ratings were given six times per day, including upon waking and at bedtime, using the Karolinska Sleepiness Scale. Statistical analyses included three‐way ANOVA and t‐test. The mean sleep duration during weekdays was shorter among workers (7.2 h) than non‐workers (8.8 h) (t=4.34; p<.01). The mean duration of night awakenings was longer among workers on Tuesdays and Wednesdays (28.2 min) and shorter on Mondays (24.2 min) (t=2.57; p=.03). Among workers, mean napping duration was longer on Mondays and Tuesdays (89.9 min) (t=2.27; p=.03) but shorter on Fridays and Sundays (31.4 min) (t=3.13; p=.03). Sleep efficiency was lower on Fridays among non‐workers. Working students were moderately sleepier than non‐workers during the week and also during class on specific days: Mondays (13:00–15:00 h), Wednesdays (19:00–22:00 h), and Fridays (22:00–00:59 h). The study found that daytime sleepiness of workers is moderately higher in the evening. This might be due to a work effect, reducing the available time for sleep and shortening the sleep duration. Sleepiness and shorter sleep duration can have a negative impact on the quality of life and school development of high school students.  相似文献   

10.
Abstract

A total of 171 female subjects completed a self‐report questionnaire dealing with activation (AD‐ACL) during the premenstrual and menstrual phases of their cycles. Significant variation between the two phases was found for all four activation factors: activation was highest premenstrually. Contraceptive use interacted significantly with cycle phase for the General Activation factor. Subjects taking oral contraceptive preparations also had lower scores on the Deactivation‐Sleep factor.  相似文献   

11.
Large‐scale construction work often requires people to work longer daily hours and more than the ordinary five days in a row. In order to minimize transportation times and optimize the use of personnel, workers are sometimes asked to live in temporary building‐site camps in the proximity of the work site. However, little is known about the biological and psychological effects of this experience. The objective of the present study was to investigate whether exposure to long work hours and extended workweeks while living in building‐site camps in between work shifts was associated with a build‐up of increased complaints of poor sleep, daytime sleepiness, physical exertion, and fatigue across a two‐week work cycle. Two groups of construction workers were examined. The camp group of 13 participants (mean age: 42±11 S.D. yrs) lived in building‐site camps and worked extended hours (between 07:00 and 18:00 h) and extended workweeks (six days in a row, one day off, five days in a row, nine days off). The home group of 16 participants (mean age 40±9 yrs) worked ordinary hours between 07:00 and 15:00 h and returned home after each workday. Self‐ratings of daytime sleepiness (Karolinska Sleepiness Scale), physical exertion (Borg CR‐10), and mood were obtained six or seven times daily during two workweeks. Fatigue ratings were obtained once daily in the evening, and ratings of sleep disturbances were obtained once daily in the morning with the Karolinska Sleep Diary. Data were evaluated in a repeated measures design. The results showed that both groups reported a similar level of daytime sleepiness, physical exertion, and mood across workdays and time points within a workday (all three‐way interactions had p>0.898). Although the home group reported earlier wake‐up times, the pattern of sleep disturbance ratings across the workdays did not differ between the groups. Both groups reported few sleep disturbances and good mood. However, the camp group reported higher physical exertion already at the start of work and showed a more gentle increase in ratings during the work shift and a smaller decline between the end of work and bedtime. The camp group also reported higher fatigue scores than the home group. However, none of the groups showed signs of increasing ratings in the progress of the two workweeks. For both groups, the ratings of daytime sleepiness formed a U‐shaped pattern, with the highest scores at awakening and at bedtime. Yet, the camp group reported higher daytime sleepiness than the home group at lunch break and at the second break in the afternoon. In conclusion, there were no signs of fatigue build‐up or accumulation of daytime sleepiness, physical exertion, or sleep disturbances in either group. Despite the fact that the camp group showed some signs of having trouble in recuperating in between work shifts, as indicated by the higher physical exertion ratings at the start of work, higher fatigue scores, and higher daytime sleepiness, the results constitute no real foundation for altering the camp group's current work schedule and living arrangements.  相似文献   

12.
13.
14.
Light influences sleep and alertness either indirectly through a well-characterized circadian pathway or directly through yet poorly understood mechanisms. Melanopsin (Opn4) is a retinal photopigment crucial for conveying nonvisual light information to the brain. Through extensive characterization of sleep and the electrocorticogram (ECoG) in melanopsin-deficient (Opn4−/−) mice under various light–dark (LD) schedules, we assessed the role of melanopsin in mediating the effects of light on sleep and ECoG activity. In control mice, a light pulse given during the habitual dark period readily induced sleep, whereas a dark pulse given during the habitual light period induced waking with pronounced theta (7–10 Hz) and gamma (40–70 Hz) activity, the ECoG correlates of alertness. In contrast, light failed to induce sleep in Opn4−/− mice, and the dark-pulse-induced increase in theta and gamma activity was delayed. A 24-h recording under a LD 1-h∶1-h schedule revealed that the failure to respond to light in Opn4−/− mice was restricted to the subjective dark period. Light induced c-Fos immunoreactivity in the suprachiasmatic nuclei (SCN) and in sleep-active ventrolateral preoptic (VLPO) neurons was importantly reduced in Opn4−/− mice, implicating both sleep-regulatory structures in the melanopsin-mediated effects of light. In addition to these acute light effects, Opn4−/− mice slept 1 h less during the 12-h light period of a LD 12∶12 schedule owing to a lengthening of waking bouts. Despite this reduction in sleep time, ECoG delta power, a marker of sleep need, was decreased in Opn4−/− mice for most of the (subjective) dark period. Delta power reached after a 6-h sleep deprivation was similarly reduced in Opn4−/− mice. In mice, melanopsin''s contribution to the direct effects of light on sleep is limited to the dark or active period, suggesting that at this circadian phase, melanopsin compensates for circadian variations in the photo sensitivity of other light-encoding pathways such as rod and cones. Our study, furthermore, demonstrates that lack of melanopsin alters sleep homeostasis. These findings call for a reevaluation of the role of light on mammalian physiology and behavior.  相似文献   

15.
Cells exposed to stress of different origins synthesize triacylglycerols and generate lipid droplets (LD), but the physiological relevance of this response is uncertain. Using complete nutrient deprivation of cells in culture as a simple model of stress, we have addressed whether LD biogenesis has a protective role in cells committed to die. Complete nutrient deprivation induced the biogenesis of LD in human LN18 glioblastoma and HeLa cells and also in CHO and rat primary astrocytes. In all cell types, death was associated with LD depletion and was accelerated by blocking LD biogenesis after pharmacological inhibition of Group IVA phospholipase A2 (cPLA2α) or down-regulation of ceramide kinase. Nutrient deprivation also induced β-oxidation of fatty acids that was sensitive to cPLA2α inhibition, and cell survival in these conditions became strictly dependent on fatty acid catabolism. These results show that, during nutrient deprivation, cell viability is sustained by β-oxidation of fatty acids that requires biogenesis and mobilization of LD.  相似文献   

16.
Nursing personnel in Brazil are usually submitted to fixed 12 h shifts with no consecutive working days or nights. Moonlighting is common in this group, with a consequent increase in the number of working hours. The possibility of sleeping on the job during the night shift in the studied hospitals had already been described. The present study aims to analyze whether the time devoted to daily activities (sleep, rest, leisure, housework, commuting, personal needs, care of children or other people, non‐paid work, and study) is related to the number of worked hours and to nap‐taking during the night shift. The field study took place at two public hospitals in Rio de Janeiro, Brazil. Workers filled out a structured form on time devoted to the above‐mentioned activities for at least four consecutive days. The time devoted to sleep was analyzed according to its occurrence at home or on the job. Workers were classified according to the number of jobs (one job/two jobs) and the time dedicated to work according to the median of the whole series (below the median/above the median). All workers who had at least one working night were analyzed as to nap‐taking on the job. They were classified according to the sleep occurrence during the night shift—the sleep group and the non‐sleep group, both of which were compared to daytime workers. Statistical treatment of data included non‐parametrical procedures. The study group comprised 144 workers (mean age: 35.7±10.5 years old; 91% women; 78% nurse assistants, the remainder registered nurses). They recorded their daily activities for 4–11 days; 829 cumulative days were analyzed for the whole group. A total of 165 working nights were analyzed; sleep or rest occurred during 112 (68%) of them, with mean sleep/rest duration of 141±86 min. Time devoted to sleep and leisure varied according to the number of working hours, being significantly reduced in those submitted to longer work hours (p<0.001 and p=0.002, respectively). Results close to significance point to a reduction in the time dedicated to housework among workers with long work hours (p=0.053). The time spent on sleep/rest per working night did not differ according to the number of worked hours (p=0.490). A tendency was observed for those who have two jobs to devote more time to sleep/rest on the job (p=0.058). The time of personal needs was significantly lower among those who did not sleep on the job as compared to day workers (p=0.036). The total sleep time was significantly lower among those who did not sleep on the job, as compared to day workers and to those who slept on the job (p=0.004 and p=0.05, respectively). As to home sleep length, workers who slept and those who did not sleep on the job were similar and slept significantly less than exclusively daytime workers (p<0.001 and p=0.002, respectively). Sleeping on the job during the night shift seems to partially compensate for the shorter sleep at home among night workers and may play a beneficial effect in coping with two jobs.  相似文献   

17.

Background

Androgen deprivation therapy (ADT) is a common treatment for non-metastatic, low-risk prostate cancer, but a potential side effect of ADT is impaired brain functioning. Previous work with functional magnetic resonance imaging (MRI) demonstrated altered prefrontal cortical activations in cognitive control, with undetectable changes in behavioral performance. Given the utility of brain imaging in identifying the potentially deleterious effects of ADT on brain functions, the current study examined the effects of ADT on cerebral structures using high resolution MRI and voxel-based morphometry (VBM).

Methods

High resolution T1 weighted image of the whole brain were acquired at baseline and six months after ADT for 12 prostate cancer patients and 12 demographically matched non-exposed control participants imaged at the same time points. Brain images were segmented into gray matter, white matter and cerebral ventricles using the VBM toolbox as implemented in Statistical Parametric Mapping 8.

Results

Compared to baseline scan, prostate cancer patients undergoing ADT showed decreased gray matter volume in frontopolar cortex, dorsolateral prefrontal cortex and primary motor cortex, whereas the non-exposed control participants did not show such changes. In addition, the decrease in gray matter volume of the primary motor cortex showed a significant correlation with longer reaction time to target detection in a working memory task.

Conclusions

ADT can affect cerebral gray matter volumes in prostate cancer patients. If replicated, these results may facilitate future studies of cognitive function and quality of life in men receiving ADT, and can also help clinicians weigh the benefits and risks of hormonal therapy in the treatment of prostate cancer.  相似文献   

18.
Surfactants can potentially improve the efficiency of pump‐and‐treat technology for remediation of aquifers contaminated by nonaqueous phase liquids (NAPLs). However, the formation of emulsions during the removal process can Increase the viscosity in the system. This can result in pore clogging and reduction of flow, which inhibits the contaminant removal process. Formation of viscous emulsions has been identified in previous research as one of the probable causes for in situ field test failures using surfactant‐enhanced soil‐flushing technology. However, the effects of in situ emulsification and viscosity increases have not been quantified previously. The purpose of this article is to investigate effects of in situ emulsification on the remediation process. Laboratory column studies examined the mobilization of m‐xylene from porous media using a 1% alcohol ethoxylate surfactant solution (Witconol® SN90). Effects of in situ emulsification were determined. Glass columns (1.1 cm i.d. × 30 cm) were packed with 0.2‐mm glass beads to model soil media. Viscosities of emulsion solutions prepared with 1 % SN90 and various concentrations of m‐xylene were measured and compared with effluent collected during column‐flushing experiments. It was determined that as m‐xylene concentration in the emulsion solution Increases, viscosity increases. Viscosity increases caused a decrease in relative permeability within the soil column. As a result, the hydraulic gradient required to maintain a constant flowrate of 1.1 ml/min (using a syringe pump) through the soil column increased. Results show that a relatively small increase in viscosity could have a noticeable effect on the mobilization process. It is suggested that the surfactant/contaminant systems be screened to determine emulsion theology and the potential effects on the remediation process. The use of low‐concentration alcohol cosurfactants to reduce system viscosity was evaluated and was shown to be ineffective.  相似文献   

19.
Previous studies established that a single daily dose of olmesartan remains effective for the entire 24 h without alteration of the day‐night blood pressure (BP) pattern. On the other hand, the administration of valsartan or telmisartan at bedtime, as opposed to upon wakening, improves the sleep‐time relative BP decline toward a greater dipper pattern without loss of 24 h efficacy. Yet to be determined is whether this administration‐time‐dependent efficacy is a class‐related feature, characteristic of all angiotensin‐receptor‐blocker (ARB) medications. We studied 123 grade 1 and 2 hypertensive patients, 46.6±12.3 yrs of age, randomly assigned to receive olmesartan (20 mg/day) as a monotherapy either upon awakening or at bedtime for three months. BP was measured by ambulatory monitoring for 48 consecutive hours before and after treatment. The 24 h BP reduction was similar for both treatment times. Administration of olmesartan at bedtime, however, was significantly more efficient than morning administration in reducing the nocturnal BP mean. The sleep‐time relative BP decline was slightly reduced with olmesartan ingestion upon awakening but significantly increased with ingestion at bedtime, thus reducing the prevalence of non‐dipping from baseline by 48%. Olmesartan administration at bedtime, as opposed to in the morning, improved the awake/asleep BP ratio toward a greater dipper pattern without loss of 24 h efficacy. Nocturnal BP regulation was significantly better achieved with bedtime as compared to morning dosing of olmesartan. These effects are comparable to those previously reported for valsartan and telmisartan, thus suggesting that they may be class‐related features of ARB medications in spite of differences in their half‐life kinetics. These administration‐time‐dependent effects should be taken into account when prescribing ARB medications for treatment of essential hypertension  相似文献   

20.
Breakdown of the major sleep-promoting neurotransmitter, γ-aminobutyric acid (GABA), in the GABA shunt generates catabolites that may enter the tricarboxylic acid cycle, but it is unknown whether catabolic by-products of the GABA shunt actually support metabolic homeostasis. In Drosophila, the loss of the specific enzyme that degrades GABA, GABA transaminase (GABAT), increases sleep, and we show here that it also affects metabolism such that flies lacking GABAT fail to survive on carbohydrate media. Expression of GABAT in neurons or glia rescues this phenotype, indicating a general metabolic function for this enzyme in the brain. As GABA degradation produces two catabolic products, glutamate and succinic semialdehyde, we sought to determine which was responsible for the metabolic phenotype. Through genetic and pharmacological experiments, we determined that glutamate, rather than succinic semialdehyde, accounts for the metabolic phenotype of gabat mutants. This is supported by biochemical measurements of catabolites in wild-type and mutant animals. Using in vitro labeling assays, we found that inhibition of GABAT affects energetic pathways. Interestingly, we also observed that gaba mutants display a general disruption in bioenergetics as measured by altered levels of tricarboxylic acid cycle intermediates, NAD+/NADH, and ATP levels. Finally, we report that the effects of GABAT on sleep do not depend upon glutamate, indicating that GABAT regulates metabolic and sleep homeostasis through independent mechanisms. These data indicate a role of the GABA shunt in the development of metabolic risk and suggest that neurological disorders caused by altered glutamate or GABA may be associated with metabolic disruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号