首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary

This review deals with the studies which have been conducted for the past 30 years on the endocrine and neuroendocrine regulations in embryos and larvae of crustaceans, mostly in decapods. Y-organs, mandibular organs and the X-organ sinus gland complex of the eyestalks are present in the first post-embryonic instar of most investigated species. Y-organs, the X-organs and the sinus glands have also been located in embryos of a few species. Larval molting appears to be regulated in a way similar to that in adults involving a MIH-ecdysteroid system. Evidence points to a control of metamorphosis through the eyestalks. Experimental evidence points to a neuroendocrine control of changes in pigmentation and of osmoregulation. Progress in the isolation and characterization of the hormones and neurohormones controlling these metabolic changes in adults should help and promote further research on regulation during the embryonic and early postembryonic development.  相似文献   

2.
This study deals with the localization of crustacean hyperglycemic hormone (CHH) and gonad-inhibiting hormone (GIH) in the eyestalk of larvae and postlarvae ofHomarus gammarus, by immunocytochemistry and in situ hybridization. The CHH and GIH neuropeptides are located in the perikarya of neuroendocrine cells belonging to the X-organ of the medulla terminalis, in their tract joining the sinus gland, and in the neurohemal organ itself, at larval stages I, II and III and at the first postlarval stage (stage IV). In all the investigated stages, the mRNA encoding the aforementioned neuropeptides could only be detected in the perikarya of these neuroendocrine cells. In stage I, approximately 19 CHH-immunopositive and 20 GIH-immunopositive cells are present, both with a mean diameter of 7±1 μm. GIH cells are preferably localized at the periphery of the X-organ surrounding the CHH cells that are centrally situated. Colocalization of CHH and GIH immunoreactions can be observed in some cells. The cell system producing CHH and GIH in the larval and postlarval eyestalk is thus functional and is morphologically comparable to the corresponding neuroendocrine center in the adult lobster.  相似文献   

3.
Summary

The mysid Siriella armata provides a new biological model for investigations on the molting and reproductive physiology in crustaceans. The main endocrine centres (Y-organ, mandibular organ, androgenic gland, X-organ and sinus gland) have been described and are available for experimentation. Experimental cautery of Medulla Interna-Medulla Externa-X-organ-sinus gland complex (MI-ME-X-organ-SG) of the eyestalk inhibited molt and brood production demonstrating that the complex plays a role in regulation, at least via a positive action upon the circulating ecdysteroids. In the present paper, the results already obtained are reviewed and the perspectives offered by this biological model discussed in reference to other crustaceans.  相似文献   

4.
Summary

In the last few years, (bio)chemical and molecular biological studies have shown that several members of the hyperglycemic hormone family are present in different molecular forms. In vivo and in vitro bioassays revealed that some of these isoforms also play a role in the control of reproduction in decapod crustaceans. This communication gives a review of the cytological aspects of the eyestalk X-organ sinus gland complex, responsible for the synthesis, storage and release of these neuropeptides, and the molecular and functional aspects of those members involved in the control of reproduction. Finally, the role of the hyperglycemic hormone family in the regulation of reproduction in the female lobster is described as an example of the (possible) interactions of the members of the hyperglycemic hormone family with other (neuro)endocrine factors in the reproductive process of crustaceans.  相似文献   

5.
Neuroendocrine Correlates of Circadian Rhythmicity in Crustaceans   总被引:1,自引:0,他引:1  
The secretion of neurohormones from the crustacean X-organ –sinus gland system is controlled by environmental influences,light being the most conspicuous. Two sets of photoreceptorsappear to mediate the influence of light on neurosecretion basedon intracellular recordings from X-organ neurons and estimationsof hormone release. Extra-retinal photoreceptors can initiateneurohormonal release from the eyestalk. Neurosecretory activity is also influenced by putative neurotransmitters.GABA is found in high concentrations in the medulla temninalisof the eyestalk and is released by stimulation, in a calcium-dependentmanner. Diurnal variations occur in the amounts of eyestalk neurohormones,either those present in the eyestalk or released by electricalstimulation of the isolated sinus gland. Rhythm phases varyfrom one hormone to another. Neurohormones secreted in the eyestalkare also found in other regions of the central nervous system.Rhythms of neurosecretion are present both in the secretionin the isolated eyestalk and in eyestalkless animals, thus indicatingthat rhythmicity is a distributed property of the neurosecretorysystem.  相似文献   

6.
Lee KJ  Watson RD 《Peptides》2002,23(5):853-862
In crustaceans, the synthesis of ecdysteroid molting hormones is regulated by molt-inhibiting hormone (MIH), a neuropeptide produced by an eyestalk neuroendocrine system, the X-organ/sinus gland complex. Using sequence analysis software, two regions of the blue crab (Callinectes sapidus) MIH peptide were selected for antibody production. Two 14-mer peptides were commercially synthesized and used to generate polyclonal antisera. Western blot analysis revealed that each antiserum bound to proteins of the predicted size in extracts of C. sapidus sinus glands, and lysates of insect cells containing recombinant MIH. Thin section immunocytochemistry using either antiserum showed specific immunoreactivity in X-organ neurosecretory cell bodies, their associated axons and collaterals, and their axon terminals in the sinus gland.  相似文献   

7.
The existence of an egg-laying hormone (ELH) was identified for the first time in the black tiger shrimp, Penaeus monodon, by means of immunoenzyme and immunofluorescence techniques. This was achieved using a polyclonal antibody produced against expressed recombinant ELH of the female Australian blacklip abalone, Haliotis rubra. The shrimp ELH reactive material was found to be localised within female neurosecretory tissues and the secretory tissue of the antennal gland, but was not identified in the X-organ sinus gland within the eyestalk. It was also present in the ovary, where the amount of ELH present was observed to be greatest in the period prior to spawning. These findings implied that the induction of P. monodon spawning might be involved with humoral regulation relating to ELH expression.  相似文献   

8.
In penaeid shrimp species, vitellogenin (VTG) synthesis in the ovary and hepatopancreas is under the inhibitory regulation of a neuroendocrine system, the X-organ/sinus gland complex in the paired eyestalks, and eyestalk ablation (removal of the X-organ/sinus gland complex) is widely used for inducing ovarian development. However, the difference in effects of bilateral and unilateral ablation on VTG gene expression has not been clarified so far. In the present study, VTG synthesis was monitored over a 16-day period after ablation and compared between replicates of immature female kuruma prawns, Marsupenaeus (Penaeus) japonicus, that had been bilaterally or unilaterally ablated and control specimens. After bilateral ablation, ovarian development was induced, and the ovarian weight, hemolymph VTG levels, and VTG mRNA levels in the ovary increased significantly. Significant VTG mRNA increase was detected 12 h after bilateral ablation. In contrast, after unilateral ablation, ovarian development was not induced, and the ovarian weight, hemolymph VTG levels, and VTG mRNA levels in the ovary did not change significantly from the control. These results indicate that in immature female prawns, unilateral ablation does not induce VTG gene expression, whereas bilateral ablation induces rapid VTG gene expression (<12 h). The ineffectiveness of unilateral ablation suggests that the remaining X-organ/sinus gland complex in the unilaterally ablated female prawns may secrete sufficient VIH to suppress VTG synthesis.  相似文献   

9.
Summary The axonal connections between the medulla terminalis ganglionic X-organ (MTGXO) and the sinus gland are traced by iontophoretic application of cobalt dye to the neurosecretory system in the eyestalks of the crayfish, Orconectes limosus. The MTGXO consists of about 15 large perikarya, forming a distinct subgroup of neurosecretory cells in the medulla terminalis and giving rise to a prominent fibre bundle. Additional axons reaching the sinus gland from the medulla interna, the medulla externa and the optic nerve are less conspicuous.Supported by a grant from the Deutsche Forschungsgemeinschaft (SFB 87, Projekt A 3).Part of the work has been presented at the 9th Conference of European Comparative Endocrinologists in Giessen, August 1977Thanks are due to Dr. H.G. Wolff of the Universität Köln for his advice during the initial stage of this work  相似文献   

10.
The effects of glutamate, aspartate, glycine, proline, alanine, taurine, glycerol, glucose and lactate injections on the haemolymph levels of the crustancean hyperglycemic hormone and/or glucose and lactate in the shore crab, Carcinus maenas, were investigated. Only glucose and lactate caused significant changes of hyperglycaemic hormone levels. Glucose injections resulted in a drop of both hormone and lactate, while lactate had an opposite effect, i.e. it raised both crustacean hormone and glucose levels. The results suggest that during increases in glycolytic flux, lactate may cause a release of hormone by a positive feedback mechanism. The hormone would then stimulate glycogenolysis, thus increasing glucose availability. If more glucose is released than is metabolized, excess glucose may leak from the cells and suppress crustancean hyperglycemic hormone release from the X-organ/sinus gland complex by negative feedback.Abbreviations ABTS 2,2-azino-bis (3-ethylbenzthiazoline sulphonic acid) - ANOVA one-way analysis of variance - BSA bovine serum albumin - BW body weight - CHH crustacean hyperglycemic hormone - ELISA cnzyme-liked immunosorbent assay - GIH gonadinhibiting hormone - IgG immunoglobin G - MIH moult-inhibiting hormone - MTGXO medulla terminalis X-organ - PB sodium phosphate buffer - PBS phosphate buffered saline - Pi inorganic phosphate - XO-SG X-organ-sinus gland complex  相似文献   

11.
The production of ecdysteroid molting hormones by crustacean Y-organs is negatively regulated by a neuropeptide, molt-inhibiting hormone. It is generally agreed that molt-inhibiting hormone is produced and released by the eyestalk neuroendocrine system. In the present study, immunocytochemical methods were used to detect molt-inhibiting hormone immunoreactive neurons in eyestalk ganglia of the blue crab, Callinectes sapidus. The primary antiserum used was generated against molt-inhibiting hormone of the green shore crab, Carcinus maenas. A preliminary Western blot analysis indicated the antiserum binds molt-inhibiting hormone of Callinectes sapidus. Using confocal and conventional immunofluorescence microscopy, molt-inhibiting hormone immunoreactivity was visualized in whole mounts and thin sections of Callinectes sapidus eyestalk ganglia. Immunoreactivity was detected in 15-25 neurosecretory cell bodies in the medulla terminalis X-organ, their associated axons and collateral branches, and their axon terminals in the neurohemal sinus gland. The cellular organization of molt-inhibiting hormone immunoreactive neurons in blue crabs is generally similar to that reported for other crab species. The combined results suggest the cellular structure of the molt-inhibiting hormone neuroendocrine system is highly conserved among brachyurans.  相似文献   

12.
Summary Antiserum raised in rabbits against extracts of sinus glands from Carcinus and shown by several criteria to contain antibodies directed against the neurosecretory hyperglycemic hormone was used to locate the hormone-producing perikarya in the optic ganglia. By means of the double antibody fluorescence technique, selective staining of the large neurosecretory perikarya of the medulla terminalis ganglionic X-organ (MTGXO) and their axons is obtained. The axon endings of the sinus gland are also stained. None of the other groups of neurosecretory cells in the eyestalk shows fluorescence. Preabsorption of the antiserum with pure hyperglycemic hormone abolishes the fluorescence.Supported by the Deutsche Forschungsgemeinschaft (SFB 87, A 3; Ke 206/2). Thanks are due to E. Schmid (Ulm) for excellent technical assistance and to Prof. R. Martin and E. Weber for help and suggestions. A short version of parts of the results has been presented at theXth Conference of European Comparative Endocrinologists, Sorrento, May 1979  相似文献   

13.
The eyestalk of Astacus leptodactylus is investigated immunocytochemically by light, fluorescence, and electron microscopy, using an antiserum raised against purified crustacean hyperglycemic hormone (CHH). CHH can be visualized in a group of neurosecretory perikarya on the medualla terminalis (medulla terminalis ganglionic X-organ: MTGX), in fibers forming part of the MTGX-sinus gland tractus, and in a considerable part of the axon terminals composing the sinus gland. Immunocytochemical combined with ultrastructural investigations led to the identification of the CHH-producing cells and the CHH-containing neurosecretory granule type.  相似文献   

14.
In crustaceans, the X-organ-sinus gland (XO-SG) neurosecretory system is formed of distinct populations of neurons that produce two families of neuropeptides: crustacean hyperglycemic hormone and adipokinetic hormone/red pigment-concentrating hormone. On the basis of electrophysiological evidence, it has been proposed that γ-aminobutyric acid (GABA) regulates both electrical and secretory activity of the XO-SG system. In this work we observed that depolarizing current pulses to neurons located in the external rim of the X-organ induced repetitive firing that suppressed the spontaneous firing of previously active X-organ neurons. Picrotoxin reversibly blocked this inhibitory effect suggesting that the GABA released from the stimulated neuron inhibited neighboring cells. Immunoperoxidase in X-organ serial sections showed co-localization of GABA and glutamic acid decarboxylase (GAD) including the aforementioned neurons. Immunofluorescence in whole mount preparations showed that two subpopulations of crustacean hyperglycemic hormone-containing neurons colocalized with GABA. The expression of GAD mRNA was determined in crayfish tissue and X-organ single cells by RT-PCR. Bioinformatics analysis shows, within the amplified region, 90.4% consensus and 41.9% identity at the amino acid level compared with Drosophila melanogaster and Caenorhabditis elegans. We suggest that crustacean hyperglycemic hormone-GABA-containing neurons can regulate the excitability of other X-organ neurons that produce different neurohormones.  相似文献   

15.
We studied the ontogeny of the eyestalk structure and of the L-CHH and d-Phe3-CHH synthesis in the X-organ/sinus gland (XO/SG) complex by light microscopy and immunocytochemistry in the freshwater crustacean Astacus leptodactylus. The optic ganglia start to differentiate in embryos at EI 190 microm (EI: eye index; close to 410 microm at hatching). At EI 270 microm, the three medullae (externa, interna, and terminalis) and the lamina ganglionaris are present and are organized as in the adult eyestalk. The L-CHH was localized in perikarya of neuroendocrine cells, in their tracts, and in SG from the metanauplius stage to the adult. The d-Phe3-CHH was visualized in XO perikarya, in their tracts and in SG of embryos from EI 350 microm and in all later studied stages. Co-localization of both CHH stereoisomers always occurred in the d-Phe3-CHH-producing cells. These results show that the synthesis of CHH enantiomers starts during the embryonic life in A. leptodactylus, and that the d-isomer is synthesized later than its L-counterpart. We discuss the post-translational isomerization as a way to generate hormonal diversity and the putative relation between d-Phe3-CHH synthesis and the ability to osmoregulate, occurring late during the embryonic life of Astacus leptodactylus.  相似文献   

16.
Summary An antiserum was obtained by immunizing rabbits with sinus gland extracts from Carcinus maenas. The antiserum is almost exclusively directed against neurosecretory material in the medulla terminalis X-organ (MTGXO), as demonstrated by the peroxidase—antiperoxidase (PAP) staining method in light and electron microscopic studies. Radioimmunological binding studies indicate the presence of antibodies against the crustacean hyperglycemic hormone (CHH) or the black pigment dispersing hormone (BPDH) in the antiserum. The results suggest that the neurosecretory perikarya of the MTGXO are the sites of production of CHH and/or BPDH.Supported by the Deutsche Forschungsgemeinschaft (Ke 206/2)  相似文献   

17.
The eyestalk of the astacideans Orconects limosus, Nephrops norvegicus, and Homarus gammarus, and the palinuran Palinurus vulgaris, was examined with an antiserum raised against purified crustacean hyperglycemic hormone (CHH) of the astacidean species Astacus leptodactylus. A distinct immunopositive reaction occurs in a group of neurosecretory cells in the medulla terminalis ganglionic X-organ (MTGX), in the MTGX-sinus gland tractus, and in a considerable part of the sinus gland. The immunoreactive sites in the eyestalk of the investigated species correspond to the site of production, storage, and release of the CHH. Preliminary investigations with this antiserum also indicate that a positive immunoreaction can be obtained in the eyestalk of other decapod crustaceans, for example, of the brachyuran Macropipus puber and the caridean Palaemon serratus.  相似文献   

18.
19.
Eyestalks of the palinuran species Jasus lalandii and Panulirus homarus, and the brachyuran species Carcinus maenas, were examined with antisera raised against purified crustacean hyperglycaemic hormone (cHH) of the astacidean species Homarus americanus and Procambarus bouvieri, as well as the brachyuran species Cancer pagurus. Other antisera used in this investigation were raised against purified moult-inhibiting hormone (MIH) of C. pagurus and vitellogenesis-inhibiting hormone (VIH) of H. americanus. Positive immunoreactions to all the antisera were localised in perikarya of the X-organ and the axon terminals in the sinus gland of all the crustaceans investigated. These results illustrate the existence of an immunological similarity, detectable at the immunocytochemical level, between the cHH/MIH/VIH neurohormones of the Astacidae, Palinura and Brachyura infraorders. Furthermore, results from consecutive tissue sections indicate that cHH, MIH and VIH are co-localised in a subpopulation of X-organ neurons.  相似文献   

20.
Summary The occurrence and distribution of substance P (SP)-like, methionine-(Met)- and leucine-(Leu)-enkephalinlike, and FMRFamide-like immunoreactivities were determined in the neuroendocrine complex of the eyestalk of the fiddler crab, Uca pugilator, by immunocytochemistry. SP-like immunoreactivity was found in the optic peduncle, sinus gland, medulla externa, medulla interna, lamina ganglionaris, and retinular cells. Met-enkephalin-like and Leuenkephalin-like immunoreactivity was observed in most of the retinular cells, optic peduncle, sinus gland, medulla terminalis, and lamina ganglionaris. However, Met-enkephalin-like, but no Leu-enkephalin-like, immunoreactivity was seen in the medulla terminalis X-organ. FMRFamide-like immunoreactivity could be seen in all parts of the eyestalk except in the sinus gland, lamina ganglionaris, and retinular cells. FMRF-amide-like activity was especially strong in the three chiasmatic regions connecting the optic ganglia. The possibility that these four peptides may function as neuroregulators in the fiddler crab is discussed.This investigation was supported in part by Grant No. PCM-8300064 from the National Science Foundation to MF and Biomedical Research Support Grant No. 2 SO7RRO5373 SUB from the University of Kansas Medical Center to LLV  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号