首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SYNOPSIS. The association of the sepiolid squid Euprymna scolopeswith its marine luminous bacterial symbiont Vibrio fischeriis an emerging model system to study the initiation and developmentof bacterial symbioses in higher animals, in particular theinfluence of bacteria on the ontogenic development of symbiotic-specifichost tissues. Experiments comparing the development of juvenilesquid infected with symbiotic V. fischeri with that of uninfectedjuveniles suggest postembryonic development of the light organrequires cell-cell interactions with the bacterial symbionts.The presence of symbiotic bacteria induces specific morphologicalchanges by affecting such fundamental processes as cell deathand cell differentiation. The surface of the juvenile organis largely composed of ciliated cells that appear to facilitateinfection of the light organ. These cells begin to undergo celldeath within hours of infection with symbiotic V. fischeri.Within three days the epithelial cells that form the bacteriacontainingcrypts of the light organ increase in size; these cells do notappear mitotically active, and may represent a terminally differentiatedstate. The light organs of uninfected juvenile E. scolopes,however, do not exhibit any of these early postembryonic developmentalevents but remain in a state of arrested morphogenesis.  相似文献   

2.
Although most Vibrio fischeri isolates are capable of symbiosis, the coevolution of certain strains with the Hawaiian bobtail squid, Euprymna scolopes, has led to specific adaptation to this partnership. For instance, strains from different hosts or from a planktonic environment are ineffective squid colonists. Even though bioluminescence is a symbiotic requirement, curiously, symbionts of E. scolopes are dim in culture relative to fish symbionts and free-living isolates. It is unclear whether this dim phenotype is related to the symbiosis or simply coincidental. To further explore the basis of symbiont specificity, we developed an experimental evolution model that utilizes the daily light organ venting behavior of the squid and horizontal acquisition of symbionts for serial passage of cultures. We passaged six populations each derived from the squid-naïve strains of V. fischeri MJ11 (a fish symbiont) and WH1 (a free-living isolate) through a series of juvenile squid light organs. After 15 serially colonized squid for each population, or an estimated 290–360 bacterial generations, we isolated representatives of the light organ populations and characterized their bioluminescence. Multiple evolved lines of both strains produced significantly less bioluminescence both in vitro and in vivo. This reduction in bioluminescence did not correlate with reduced quorum sensing for most isolates tested. The remarkable phenotypic convergence with squid symbionts further emphasizes the importance of bioluminescence in this symbiosis, and suggests that reduced light production is a specific adaptation to the squid.  相似文献   

3.
Genetically altered or tagged Vibrio fischeri strains can be observed in association with their mutualistic host Euprymna scolopes, providing powerful experimental approaches for studying this symbiosis. Two limitations to such in situ analyses are the lack of suitably stable plasmids and the need for a fluorescent tag that can be used in tandem with green fluorescent protein (GFP). Vectors previously used in V. fischeri contain the p15A replication origin; however, we found that this replicon is not stable during growth in the host and is retained by fewer than 20% of symbionts within a day after infection. In contrast, derivatives of V. fischeri plasmid pES213 were retained by ~99% of symbionts even 3 days after infection. We therefore constructed pES213-derived shuttle vectors with a variety of selectable and visual markers. To include a visual tag that can be used in conjunction with GFP, we compared seven variants of the DsRed2 red fluorescent protein (RFP): mRFP1, tdimer2(12), DsRed.T3, DsRed.T4, DsRed.M1, DsRed.T3_S4T, and DsRed.T3(DNT). The last variant was brightest, displaying >20-fold more fluorescence than DsRed2 in V. fischeri. RFP expression did not detectably affect the fitness of V. fischeri, and cells were readily visualized in combination with GFP-expressing cells in mixed infections. Interestingly, even when inocula were dense enough that most E. scolopes hatchlings were infected by two strains, there was little mixing of the strains in the light organ crypts. We also used constitutive RFP in combination with the luxICDABEG promoter driving expression of GFP to visualize the spatial and temporal induction of this bioluminescence operon during symbiotic infection. Our results demonstrate the utility of pES213-based vectors and RFP for in situ experimental approaches in studies of the V. fischeri-E. scolopes symbiosis.  相似文献   

4.
5.
The luminous bacterium Vibrio fischeri colonizes a specialized light-emitting organ within its squid host, Euprymna scolopes. Newly hatched juvenile squid must acquire their symbiont from ambient seawater, where the bacteria are present at low concentrations. To understand the population dynamics of V. fischeri during colonization more fully, we used mini-Tn7 transposons to mark bacteria with antibiotic resistance so that the growth of their progeny could be monitored. When grown in culture, there was no detectable metabolic burden on V. fischeri cells carrying the transposon, which inserts in single copy in a specific intergenic region of the V. fischeri genome. Strains marked with mini-Tn7 also appeared to be equivalent to the wild type in their ability to infect and multiply within the host during coinoculation experiments. Studies of the early stages of colonization suggested that only a few bacteria became associated with symbiotic tissue when animals were exposed for a discrete period (3 h) to an inoculum of V. fischeri cells equivalent to natural population levels; nevertheless, all these hosts became infected. When three differentially marked strains of V. fischeri were coincubated with juvenile squid, the number of strains recovered from an individual symbiotic organ was directly dependent on the size of the inoculum. Further, these results indicated that, when exposed to low numbers of V. fischeri, the host may become colonized by only one or a few bacterial cells, suggesting that symbiotic infection is highly efficient.  相似文献   

6.
Vibrio fischeri is a bioluminescent bacterial symbiont of sepiolid squids (Cephalopoda: Sepiolidae) and monocentrid fishes (Actinopterygii: Monocentridae). V. fischeri exhibit competitive dominance within the allopatrically distributed squid genus Euprymna, which have led to the evolution of V. fischeri host specialists. In contrast, the host genus Sepiola contains sympatric species that is thought to have given rise to V. fischeri that have evolved as host generalists. Given that these ecological lifestyles may have a direct effect upon the growth spectrum and survival limits in contrasting environments, optimal growth ranges were obtained for numerous V. fischeri isolates from both free-living and host environments. Upper and lower limits of growth were observed in sodium chloride concentrations ranging from 0.0% to 9.0%. Sepiola symbiotic isolates possessed the least variation in growth throughout the entire salinity gradient, whereas isolates from Euprymna were the least uniform at <2.0% NaCl. V. fischeri fish symbionts (CG101 and MJ101) and all free-living strains were the most dissimilar at >5.0% NaCl. Growth kinetics of symbiotic V. fischeri strains were also measured under a range of salinity and temperature combinations. Symbiotic V. fischeri ES114 and ET101 exhibited a synergistic effect for salinity and temperature, where significant differences in growth rates due to salinity existed only at low temperatures. Thus, abiotic factors such as temperature and salinity have differential effects between free-living and symbiotic strains of V. fischeri, which may alter colonization efficiency prior to infection.  相似文献   

7.
In most symbioses between animals and luminous bacteria it has been assumed that the bacterial symbionts luminesce continuously, and that the control of luminescent output by the animal is mediated through elaborate accessory structures, such as chromatophores and muscular shutters that surround the host light organ. However, we have found that while in the light organ of the sepiolid squid Euprymna scolopes, symbiotic cells of Vibrio fischeri do not produce a continuously uniform level of luminescence, but instead exhibit predictable cyclic fluctuations in the amount of light emitted per cell. This daily biological rhythm exhibits many features of a circadian pattern, and produces an elevated intensity of symbiont luminescence in juvenile animals during the hours preceding the onset of ambient darkness. Comparisons of the specific luminescence of bacteria in the intact light organ with that of newly released bacteria support the existence of a direct host regulation of the specific activity of symbiont luminescence that does not require the intervention of accessory tissues. A model encompassing the currently available evidence is proposed for the control of growth and luminescence activity in the E. scolopes/V. fischeri light organ symbiosis.Abbreviations CFU colony-forming-unit - LD light-dark  相似文献   

8.
A pure culture of the luminous bacterium Vibrio fischeri is maintained in the light-emitting organ of the sepiolid squid Euprymna scolopes. When the juvenile squid emerges from its egg it is symbiont-free and, because bioluminescence is part of an anti-predatory behavior, therefore must obtain a bacterial inoculum from the surrounding environment. We document here the kinetics of the process by which newly hatched juvenile squids become infected by symbiosis-competent V. fischeri. When placed in seawater containing as few as 240 colony-forming-units (CFU) per ml, the juvenile became detectably bioluminescent within a few hours. Colonization of the nascent light organ was initiated with as few as 1 to 10 bacteria, which rapidly began to grow at an exponential rate until they reached a population size of approximately 105 cells by 12 h after the initial infection. Subsequently, the number of bacteria in the established symbiosis was maintained essentially constant by a combination of both a >20-fold reduction in bacterial growth rate, and an expulsion of excess bacteria into the surrounding seawater. While V. fischeri cells are normally flagellated and motile, these bacteria did not elaborate these appendages once the symbiosis was established; however, they quickly began to synthesize flagella when they were removed from the light organ environment. Thus, two important biological characteristics, growth rate and flagellation, were modulated during establishment of the association, perhaps as part of a coordinated series of symbiotic responses.  相似文献   

9.
Two genera of sepiolid squids—Euprymna, found primarily in shallow, coastal waters of Hawaii and the Western Pacific, and Sepiola, the deeper-, colder-water-dwelling Mediterranean and Atlantic squids—are known to recruit luminous bacteria into light organ symbioses. The light organ symbiont of Euprymna spp. is Vibrio fischeri, but until now, the light organ symbionts of Sepiola spp. have remained inadequately identified. We used a combination of molecular and physiological characteristics to reveal that the light organs of Sepiola affinis and Sepiola robusta contain a mixed population of Vibrio logei and V. fischeri, with V. logei comprising between 63 and 100% of the bacteria in the light organs that we analyzed. V. logei had not previously been known to exist in such symbioses. In addition, this is the first report of two different species of luminous bacteria co-occurring within a single light organ. The luminescence of these symbiotic V. logei strains, as well as that of other isolates of V. logei tested, is reduced when they are grown at temperatures above 20°C, partly due to a limitation in the synthesis of aliphatic aldehyde, a substrate of the luminescence reaction. In contrast, the luminescence of the V. fischeri symbionts is optimal above 24°C and is not enhanced by aldehyde addition. Also, V. fischeri strains were markedly more successful than V. logei at colonizing the light organs of juvenile Euprymna scolopes, especially at 26°C. These findings have important implications for our understanding of the ecological dynamics and evolution of cooperative, and perhaps pathogenic, associations of Vibrio spp. with their animal hosts.  相似文献   

10.
The evolutionary relationship among Vibrio fischeri isolates obtained from the light organs of Euprymna scolopes collected around Oahu, Hawaii, were examined in this study. Phylogenetic reconstructions based on a concatenation of fragments of four housekeeping loci (recA, mdh, katA, pyrC) identified one monophyletic group (‘Group-A'') of V. fischeri from Oahu. Group-A V. fischeri strains could also be identified by a single DNA fingerprint type. V. fischeri strains with this fingerprint type had been observed to be at a significantly higher abundance than other strains in the light organs of adult squid collected from Maunalua Bay, Oahu, in 2005. We hypothesized that these previous observations might be related to a growth/survival advantage of the Group-A strains in the Maunalua Bay environments. Competition experiments between Group-A strains and non-Group-A strains demonstrated an advantage of the former in colonizing juvenile Maunalua Bay hosts. Growth and survival assays in Maunalua Bay seawater microcosms revealed a reduced fitness of Group-A strains relative to non-Group-A strains. From these results, we hypothesize that there may exist trade-offs between growth in the light organ and in seawater environments for local V. fischeri strains from Oahu. Alternatively, Group-A V. fischeri may represent an example of rapid, evolutionarily significant, specialization of a horizontally transmitted symbiont to a local host population.  相似文献   

11.
Environmentally acquired beneficial associations are comprised of a wide variety of symbiotic species that vary both genetically and phenotypically, and therefore have differential colonization abilities, even when symbionts are of the same species. Strain variation is common among conspecific hosts, where subtle differences can lead to competitive exclusion between closely related strains. One example where symbiont specificity is observed is in the sepiolid squid-Vibrio mutualism, where competitive dominance exists among V. fischeri isolates due to subtle genetic differences between strains. Although key symbiotic loci are responsible for the establishment of this association, the genetic mechanisms that dictate strain specificity are not fully understood. We examined several symbiotic loci (lux-bioluminescence, pil = pili, and msh-mannose sensitive hemagglutinin) from mutualistic V. fischeri strains isolated from two geographically distinct squid host species (Euprymna tasmanica-Australia and E. scolopes-Hawaii) to determine whether slight genetic differences regulated host specificity. Through colonization studies performed in naïve squid hatchlings from both hosts, we found that all loci examined are important for specificity and host recognition. Complementation of null mutations in non-native V. fischeri with loci from the native V. fischeri caused a gain in fitness, resulting in competitive dominance in the non-native host. The competitive ability of these symbiotic loci depended upon the locus tested and the specific squid species in which colonization was measured. Our results demonstrate that multiple bacterial genetic elements can determine V. fischeri strain specificity between two closely related squid hosts, indicating how important genetic variation is for regulating conspecific beneficial interactions that are acquired from the environment.  相似文献   

12.
We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory.  相似文献   

13.
Euprymna scolopes, a Hawaiian species of bioluminescent squid, harbors Vibrio fischeri as its specific light organ symbiont. The population of symbionts grew inside the adult light organ with an average doubling time of about 5 h, which produced an excess of cells that were expelled into the surrounding seawater on a diurnal basis at the beginning of each period of daylight. These symbionts, when expelled into the ambient seawater, maintain or slightly increase their numbers for at least 24 h. Hence, locations inhabited by their hosts periodically receive a daily input of symbiotic V. fischeri cells and, as a result, become significantly enriched with these bacteria. As estimated by hybridization with a species-specific luxA gene probe, the typical number of V. fischeri CFU, both in the water column and in the sediments of E. scolopes habitats, was as much as 24 to 30 times that in similar locations where squids were not observed. In addition, the number of symbiotic V. fischeri CFU in seawater samples that were collected along a transect through Kaneohe Bay, Hawaii, decreased as a function of the distance from a location inhabited by E. scolopes. These findings constitute evidence for the first recognized instance of the abundance and distribution of a marine bacterium being driven primarily by its symbiotic association with an animal host.  相似文献   

14.
Efficient symbiotic colonization of the squid Euprymna scolopes by the bacterium Vibrio fischeri depends on bacterial biofilm formation on the surface of the squid’s light organ. Subsequently, the bacteria disperse from the biofilm via an unknown mechanism and enter through pores to reach the interior colonization sites. Here, we identify a homolog of Pseudomonas fluorescens LapG as a dispersal factor that promotes cleavage of a biofilm-promoting adhesin, LapV. Overproduction of LapG inhibited biofilm formation and, unlike the wild-type parent, a ΔlapG mutant formed biofilms in vitro. Although V. fischeri encodes two putative large adhesins, LapI (near lapG on chromosome II) and LapV (on chromosome I), only the latter contributed to biofilm formation. Consistent with the Pseudomonas Lap system model, our data support a role for the predicted c-di-GMP-binding protein LapD in inhibiting LapG-dependent dispersal. Furthermore, we identified a phosphodiesterase, PdeV, whose loss promotes biofilm formation similar to that of the ΔlapG mutant and dependent on both LapD and LapV. Finally, we found a minor defect for a ΔlapD mutant in initiating squid colonization, indicating a role for the Lap system in a relevant environmental niche. Together, these data reveal new factors and provide important insights into biofilm dispersal by V. fischeri.  相似文献   

15.
16.
Apart from the ability to nodulate legumes, fast-and slow-growing rhizobia have few bacteriological traits in common. Given that there is only one pathway to nodulation, DNA sequences conserved in fast- and slow-growing organisms that nodulate the same host should be strongly enriched in infectivity genes. We tested this hypothesis with seven fast-growing and five slow-growing strains that produced responses varying from fully effective nodulation through various ineffective associations to non-nodulation on four different hosts (Lotus pedunculatus, Lupinus nanus, Macroptilium atropurpureum, and Vigna unguiculata). When restriction enzyme digested total DNA from 10 of the strains was separately hybridized with nick-translated plasmid DNA isolated from 4 fast-growing strains, variable but significant homologies were found with all 10 strains. Part of this homology was shown to be associated with the nifKDH genes for nitrogenase and part with putative nodulation genes carried on pC2, a cosmid clone containing a 37 kbp region of the large sym plasmid present in the fast-growing broad-host range Rhizobium sp. strain NGR234. Analysis of the extent of homology between the plasmids of 3 fastgrowing strains (NGR234, TAL 996 and UMKL 19) able to effectively nodulate Vigna unguiculata showed them to have homologous DNA fragments totalling 47 kbp. This core homology represents less than 12% of the total coding capacity of the sym plasmid present in each of these strains.Abbreviations Sym symbiotic sequences/plasmids - nod genes required for nodulation - nod putative nod genes - nif genes required for the synthesis of the enzyme nitrogenase  相似文献   

17.
18.
Symbiosis between southern dumpling squid, Euprymna tasmanica (Cephalopoda: Sepiolidae), and its luminescent symbiont, the bacterium Vibrio fischeri, provides an experimentally tractable system to examine interactions between the eukaryotic host and its bacterial partner. Luminescence emitted by the symbiotic bacteria provides light for the squid in a behavior termed “counter‐illumination,” which allows the squid to mask its shadow amidst downwelling moonlight. Although this association is beneficial, light generated from the bacteria requires large quantities of oxygen to maintain this energy‐consuming reaction. Therefore, we examined the vascular network within the light organ of juveniles of E. tasmanica with and without V. fischeri. Vessel type, diameter, and location of vessels were measured. Although differences between symbiotic and aposymbiotic squid demonstrated that the presence of V. fischeri does not significantly influence the extent of vascular branching at early stages of symbiotic development, these finding do provide an atlas of blood vessel distribution in the organ. Thus, these results provide a framework to understand how beneficial bacteria influence the development of a eukaryotic closed vascular network and provide insight to the evolutionary developmental dynamics that form during mutualistic interactions.  相似文献   

19.
Outer membrane vesicles (OMV) are critical elements in many host‐cell/microbe interactions. Previous studies of the symbiotic association between Euprymna scolopes and Vibrio fischeri had shown that within 12 h of colonizing crypts deep within the squid's light organ, the symbionts trigger an irreversible programme of tissue development in the host. Here, we report that OMV produced by V. fischeri are powerful contributors to this process. The first detectable host response to the OMV is an increased trafficking of macrophage‐like cells called haemocytes into surface epithelial tissues. We showed that exposing the squid to other Vibrio species fails to induce this trafficking; however, addition of a high concentration of their OMV, which can diffuse into the crypts, does. We also provide evidence that tracheal cytotoxin released by the symbionts, which can induce haemocyte trafficking, is not part of the OMV cargo, suggesting two distinct mechanisms to induce the same morphogenesis event. By manipulating the timing and localization of OMV signal delivery, we showed that haemocyte trafficking is fully induced only when V. fischeri, the sole species able to reach and grow in the crypts, succeeds in establishing a sustained colonization. Further, our data suggest that the host's detection of OMV serves as a symbiotic checkpoint prior to inducing irreversible morphogenesis.  相似文献   

20.
Vibrio fischeri isolated from Euprymna scolopes (Cephalopoda: Sepiolidae) was used to create 24 lines that were serially passaged through the non-native host Euprymna tasmanica for 500 generations. These derived lines were characterized for biofilm formation, swarming motility, carbon source utilization, and in vitro bioluminescence. Phenotypic assays were compared between “ES” (E. scolopes) and “ET” (E. tasmanica) V. fischeri wild isolates to determine if convergent evolution was apparent between E. tasmanica evolved lines and ET V. fischeri. Ecological diversification was observed in utilization of most carbon sources examined. Convergent evolution was evident in motility, biofilm formation, and select carbon sources displaying hyperpolymorphic usage in V. fischeri. Convergence in bioluminescence (a 2.5-fold increase in brightness) was collectively evident in the derived lines relative to the ancestor. However, dramatic changes in other properties—time points and cell densities of first light emission and maximal light output and emergence of a lag phase in growth curves of derived lines—suggest that increased light intensity per se was not the only important factor. Convergent evolution implies that gnotobiotic squid light organs subject colonizing V. fischeri to similar selection pressures. Adaptation to novel hosts appears to involve flexible microbial metabolism, establishment of biofilm and swarmer V. fischeri ecotypes, and complex changes in bioluminescence. Our data demonstrate that numerous alternate fitness optima or peaks are available to V. fischeri in host adaptive landscapes, where novel host squids serve as habitat islands. Thus, V. fischeri founder flushes occur during the initiation of light organ colonization that ultimately trigger founder effect diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号