首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three lysine auxotrophs, strains AU363, 7305d, and 8201-7A, were investigated genetically and biochemically to determine their gene loci, biochemical lesions, and roles in the lysine biosynthesis of Saccharomyces cerevisiae. These mutants were leaky and blocked after the alpha-aminoadipate step. Complementation studies placed these three mutations into a single, new complementation group, lys14. Tetrad analysis from appropriate crosses provided evidence that the lys14 locus represented a single nuclear gene and that lys14 mutants were genetically distinct from the other mutants (lys1, lys2, lys5, and lys9) blocked after the alpha-aminoadipate step. The lys14 strains, like lys9 mutants, accumulated alpha-aminoadipate-semialdehyde and lacked significant amounts of saccharopine reductase activity. On the bases of these results, it was concluded, therefore, that LYS9 and LYS14, two distinct genes, were required for the biosynthesis of saccharopine reductase in wild-type S. cerevisiae.  相似文献   

2.
Pipecolic acid is a component of several secondary metabolites in plants and fungi. This compound is useful as a precursor of nonribosomal peptides with novel pharmacological activities. In Penicillium chrysogenum pipecolic acid is converted into lysine and complements the lysine requirement of three different lysine auxotrophs with mutations in the lys1, lys2, or lys3 genes allowing a slow growth of these auxotrophs. We have isolated two P. chrysogenum mutants, named 7.2 and 10.25, that are unable to convert pipecolic acid into lysine. These mutants lacked, respectively, the pipecolate oxidase that converts pipecolic acid into piperideine-6-carboxylic acid and the saccharopine reductase that catalyzes the transformation of piperideine-6-carboxylic acid into saccharopine. The 10.25 mutant was unable to grow in Czapek medium supplemented with alpha-aminoadipic acid. A DNA fragment complementing the 10.25 mutation has been cloned; sequence analysis of the cloned gene (named lys7) revealed that it encoded a protein with high similarity to the saccharopine reductase from Neurospora crassa, Magnaporthe grisea, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Complementation of the 10.25 mutant with the cloned gene restored saccharopine reductase activity, confirming that lys7 encodes a functional saccharopine reductase. Our data suggest that in P. chrysogenum the conversion of pipecolic acid into lysine proceeds through the transformation of pipecolic acid into piperideine-6-carboxylic acid, saccharopine, and lysine by the consecutive action of pipecolate oxidase, saccharopine reductase, and saccharopine dehydrogenase.  相似文献   

3.
Normal strains of Saccharomyces cerevisiae do not use alpha-aminoadipate as a principal nitrogen source. However, alpha-aminoadipate is utilized as a nitrogen source by lys2 and lys5 strains having complete or partial deficiencies of alpha-aminoadipate reductase and, to a limited extent, by heterozygous lys2/+ strains. Lys2 mutants were conveniently selected on media containing alpha-aminoadipate as a nitrogen source, lysine, and other supplements to furnish other possible auxotrophic requirements. The lys2 mutations were obtained in a variety of laboratory strains containing other markers, including other lysine mutations. In addition to the predominant class of lys2 mutants, low frequencies of lys5 mutants and mutants not having any obvious lysine requirement were recovered on alpha-aminoadipate medium. The mutants not requiring lysine appeared to have mutations at the lys2 locus that caused partial deficiencies of alpha-aminoadipate reductase. Such partial deficiencies are believed to be sufficiently permissive to allow lysine biosynthesis, but sufficiently restrictive to allow for the utilization of alpha-aminoadipate. Although it is unknown why partial or complete deficiencies of alpha-aminoadipate reductase cause utilization of alpha-aminoadipate as a principal nitrogen source, the use of alpha-aminoadipate medium has considerable utility as a selective medium for lys2 and lys5 mutants.  相似文献   

4.
The alpha-aminoadipate (AA) pathway for the biosynthesis of lysine was investigated in the wild type and in lysine auxotrophs of the fission yeast Schizosaccharomyces pombe. Of the eight enzyme activities of the AA pathway that have been examined so far, six were present in the extract of wild-type S. pombe cells. Growth response to AA and accumulation studies indicated that three lysine auxotrophs, the lys2-97, lys4-95, and lys8-1 strains, were blocked before the AA step and that four lysine auxotrophs, the lys1-131, lys3-37, lys6-3, and lys7-2 strains, were blocked after the AA step. Among the mutants investigated, the lys2-97 mutant exhibited an enzyme lesion at the cis-homoaconitate hydratase step, the lys1-131 and lys7-2 mutants exhibited lesions at the AA reductase step, and lys3-37 exhibited a lesion at the saccharopine dehydrogenase step. These results demonstrated the basic similarity of the AA pathway in S. pombe and Saccharomyces cerevisiae.  相似文献   

5.
Two strategies have been used for targeted integration at the lys2 locus of Penicillium chrysogenum. In the first strategy the disruption of lys2 was obtained by a single crossing over between the endogenous lys2 and a fragment of the same gene located in an integrative plasmid. lys2-disrupted mutants were obtained with 1.6% efficiency when the lys2 homologous region was 4.9 kb, but no homologous integration was observed with constructions containing a shorter homologous region. Similarly, lys2-disrupted mutants were obtained by a double crossing over (gene replacement) with an efficiency of 0.14% by using two lys2 homologous regions of 4.3 and 3.0 kb flanking the pyrG marker. No homologous recombination was observed when the selectable marker was flanked by short lys2 homologous DNA fragments. The disruption of lys2 was confirmed by Southern blot analysis of three different lysine auxotrophs obtained by a single crossing over or gene replacement. The lys2-disrupted mutants lacked α-aminoadipate reductase activity (encoded by lys2) and showed specific penicillin yields double those of the parental nondisrupted strain, Wis 54-1255. The α-aminoadipic acid precursor is channelled to penicillin biosynthesis by blocking the lysine biosynthesis branch at the α-aminoadipate reductase level.  相似文献   

6.
Lysine-rich protein gene (lys) was cloned from Psophocarpus tetragonolobus (L.) DC. A plant expression plasmid was constructed and lys gene was under the control of maize ubiquitin promoter which is the highest efficient monocotyledon promoter. The plasmid was introduced into rice embryogenic calli by microprojectile bombardment. The regenerated fertile plants were obtained by effective selection for hygromycin B resistance. Genomic PCR and Southern blotting analyses showed that the lys gene has been integrated into rice genome. Simultaneously, the results of GUS histochemical assay demonstrated the transgenic rice plants. Data analysis showed that lysine content in most of the 11 transgenic plants is differently improved, and in one of them increased by 16.04%.  相似文献   

7.
Summary When studying mutants affecting lysyl-tRNA synthetase or tRNALys (hisT, hisW), a lack of correlation is clearly observed between the amount of lysyl-tRNA and the level of derepression of several lysine biosynthetic enzymes. This excludes the possible role of lysyl-tRNA as the specific corepressor of the lysine regulon. However, the level of derepression of DAP-decarboxylase, the last enzyme of the lysine pathway, is very low in the hisT mutant; this indicates that tRNALys is a secondary effector involved in the regulation of the synthesis of this enzyme.Abbreviations DAP diaminopimelate - KRS lysyl-tRNA synthetase - L-lysine tRNA ligase (AMP) (EC6.1.16) - AK III lysinesensitive aspartokinase (EC 2.7.24) - ASA-dehydrogenase aspartic semialdehyde dehydrogenase (EC 1.2.1.10) - DHDP-reductase dihydrodipicolinic acid reductase - DAP-decarboxylase diaminopimelate decarboxylase (EC 4.1.1.20) - AK I threonine-sensitive aspartokinase - HDHI threonine-sensitive homoserine dehydrogenase  相似文献   

8.
E Boy  F Reinisch  C Richaud  J C Patte 《Biochimie》1976,58(1-2):213-218
A mutant of lysyl-tRNA synthetase has been isolated in Escherichia coli K12. With this strain the Kmapp for lysine is 25 fold higher than with the parental strain. The percentage of charged tRNAlys in vivo is only 7 per cent (as against 65 per cent with HFR H). Under these conditions no derepression of synthesis is observed for three lysine biosynthetic enzymes (AK III, ASA-dehydrogenase, DAP-decarboxylase) ; a partial derepression is obtained in the case of the dhdp-reductase. Thus lysyl-tRNA does not act as the only corepressor molecule in the lysine regulon.  相似文献   

9.
Activity of DAP-decarboxylase in lysine overproducing strains of Micrococcus luteus, M. varians and Arthrobacter globiformisLb reached the highest level during the end of the exponetial phase of growth and remained at the same high level during the stationary phase of growth when major bulk of lysine was accumulated. In comparison in a lysine non-producing strain of Arthrobacter globiformis I 4 the activity of the same enzyme was low. DAP-decarboxylase of these three lysine overproducers has two specialities, persistence during the stationary phase and insensivity to repression by exogenous lysine.  相似文献   

10.
高赖氨酸蛋白基因导入水稻及可育转基因植株的获得   总被引:33,自引:0,他引:33  
构建了一个植物高效表达质粒,使来源于四棱豆(Psophocarpus tetragonolobus(L.)DC)的高赖氨酸蛋白基因(lys)受控于单子叶植物ubiqutin强启动子下表达。用基因枪法将其导入水稻(Oryza sativa L.)幼胚诱导的愈伤组织,经潮霉素抗性筛选,得到可育的再生植株。经PCR和Southem blotting检测,表明该基因已整合到水稻的基因组织。GUS组织化学染色表明转基因水稻植株的叶、茎和根中均有gus基因的表达。测定112株转基因水稻叶片中赖氨酸叶量,大部分植株有不同程度的提高,最高幅度为16.04%。  相似文献   

11.
In contrast to wild-type strains of the yeast Saccharomyces cerevisiae, lys2 and lys5 mutants are able to utilize alpha-aminoadipate as a primary source of nitrogen. Chattoo et al. (B. B. Chattoo, F. Sherman, D. A. Azubalis, T. A. Fjellstedt, D. Mehnert, and M. Ogur, Genetics 93:51-65, 1979) relied on this difference in the effective utilization of alpha-aminoadipate to develop a procedure for directly selecting lys2 and lys5 mutants. In this study we used a range of mutant strains and various media to determine why normal strains are unable to utilize alpha-aminoadipate as a nitrogen source. Our results demonstrate that the anabolism of high levels of alpha-aminoadipate through the biosynthetic pathway of lysine results in the accumulation of a toxic intermediate and, furthermore, that lys2 and lys5 mutants contain blocks leading to the formation of this intermediate.  相似文献   

12.
The LYS7 gene in Saccharomyces cerevisiae encodes a protein (yCCS) that delivers copper to the active site of copper-zinc superoxide dismutase (CuZn-SOD, a product of the SOD1 gene). In yeast lacking Lys7 (lys7Delta), the SOD1 polypeptide is present but inactive. Mutants lacking the SOD1 polypeptide (sod1Delta) and lys7Delta yeast show very similar phenotypes, namely poor growth in air and aerobic auxotrophies for lysine and methionine. Here, we demonstrate certain phenotypic differences between these strains: 1) lys7Delta cells are slightly less sensitive to paraquat than sod1Delta cells, 2) EPR-detectable or "free" iron is dramatically elevated in sod1Delta mutants but not in lys7Delta yeast, and 3) although sod1Delta mutants show increased sensitivity to extracellular zinc, the lys7Delta strain is as resistant as wild type. To restore the SOD catalytic activity but not the zinc-binding capability of the SOD1 polypeptide, we overexpressed Mn-SOD from Bacillus stearothermophilus in the cytoplasm of sod1Delta yeast. Paraquat resistance was restored to wild-type levels, but zinc was not. Conversely, expression of a mutant CuZn-SOD that binds zinc but has no SOD activity (H46C) restored zinc resistance but not paraquat resistance. Taken together, these results strongly suggest that CuZn-SOD, in addition to its antioxidant properties, plays a role in zinc homeostasis.  相似文献   

13.
14.
There are conflicting reports regarding the cellular localization in Saccharomyces cerevisiae and filamentous fungi of homocitrate synthase, the first enzyme in the lysine biosynthetic pathway. The homocitrate synthase (HS) gene (lys1) of Penicillium chrysogenum was disrupted in three transformants (HS(-)) of the Wis 54-1255 pyrG strain. The three mutants named HS1(-), HS2(-) and HS3(-) all lacked homocitrate synthase activity and showed lysine auxotrophy, indicating that there is a single gene for homocitrate synthase in P. chrysogenum. The lys1 ORF was fused in frame to the gene for the green fluorescent protein (GFP) gene of the jellyfish Aequorea victoria. Homocitrate synthase-deficient mutants transformed with a plasmid containing the lys1-GFP fusion recovered prototrophy and showed similar levels of homocitrate synthase activity to the parental strain Wis 54-1255, indicating that the hybrid protein retains the biological function of wild-type homocitrate synthase. Immunoblotting analysis revealed that the HS-GFP fusion protein is maintained intact and does not release the GFP moiety. Fluorescence microscopy analysis of the transformants showed that homocitrate synthase was mainly located in the cytoplasm in P. chrysogenum; in S. cerevisiae the enzyme is targeted to the nucleus. The control nuclear protein StuA was properly targeted to the nucleus when the StuA (targeting domain)-GFP hybrid protein was expressed in P. chrysogenum. The difference in localization of homocitrate synthase between P. chrysogenum and S. cerevisiae suggests that this protein may play a regulatory function, in addition to its catalytic function, in S. cerevisiae but not in P. chrysogenum.  相似文献   

15.
alpha-Aminoadipate-semialdehyde dehydrogenase catalyzes the conversion of alpha-aminoadipate to alpha-aminoadipate-semialdehyde in the biosynthetic pathway of lysine in yeasts and molds. Mutants belonging to lys2 and lys5 loci of Saccharomyces cerevisiae lacked the alpha-aminoadipate-semialdehyde dehydrogenase activity. Complementation in vitro was demonstrated by combining the extracts from different lys2 and lys5 mutants. Some of the revertants of lys2 and lys5 mutants exhibited lower specific activity and higher thermolability of alpha-aminoadipate-semialdehyde dehydrogenase than the enzyme from wild-type cells. The enzyme was partially purified from wild-type cells and the molecular weight of the enzyme was estimated on a Sephacryl S-300 column at 180,000. Results from the revertant analysis and in vitro complementation indicated LYS2 and LYS5 as structural genes, each encoding a subunit of this large enzyme.  相似文献   

16.
17.
18.
Abstract We isolated from Candida maltosa mutants lacking saccharopine reductase ( lys9 ) and saccharopine dehydrogenase ( lys1 ). They accumulated α-aminoadipate-δ-semialdehyde (AASA) in the cell and excreted it into the culture medium. In the presence of 15 g glucose/l, 1.25 g NH4H2PO4/l and 50 mg l -lysine/l in a minimal salt medium C. maltosa G285 ( lys1 ) produced about 80–90 mg AASA/l within 48 h. It is the first report of lysine-requiring yeast mutants that accumulate and excrete AASA. In contrast, Pichia guilliermondii lys9 mutants lacked this AASA overproduction. The AASA accumulation by C. maltosa mutants may be explained by the low feedback regulation of their homocitrate synthase and the equilibrium of the enzyme reactions involved in the lysine biosynthesis.  相似文献   

19.
Summary A Saccharomyces cerevisiae mutant which exhibits a considerably increased cellular lysine pool has been isolated and characterized. Assay of enzymes of the lysine and arginine pathways shows that the mutation harboured by this mutant alters the specific repression of lysine but does not influence the general control of amino acid biosynthesis. Because it is recessive to the wild-type allele and acts pleiotropically on the synthesis of several lysine pathway enzymes, this regulatory mutation has been denominated lys80-1 (or lysR –1). It is believed to affect the synthesis or the structure of a factor which plays a negative role in the control of LYS gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号