首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
初步观察了中华蚊母树(Distylium chinense(Fr.)Diels)不同类型虫瘿的发生过程及致瘿昆虫生活史。结果表明,中华蚊母树的虫瘿有3种类型,分别为叶/枝上大型虫瘿、叶上泡状虫瘿和叶柄/果上球型虫瘿。三者均为单室封闭型,次生开口。经鉴定致瘿昆虫均为半翅目蚜科昆虫,其中叶上泡状虫瘿致瘿昆虫为蚊母新胸蚜Neothoracaphis yanonis Matsumura。该虫3月初在虫瘿内营孤雌生殖,繁殖2代,5月底前飞离出瘿。  相似文献   

2.
Understanding factors that modulate plant development is still a challenging task in plant biology. Although research has highlighted the role of abiotic and biotic factors in determining final plant structure, we know little of how these factors combine to produce specific developmental patterns. Here, we studied patterns of cell and tissue organisation in galled and non‐galled organs of Baccharis reticularia, a Neotropical shrub that hosts over ten species of galling insects. We employed qualitative and quantitative approaches to understand patterns of growth and differentiation in its four most abundant gall morphotypes. We compared two leaf galls induced by sap‐sucking Hemiptera and stem galls induced by a Lepidopteran and a Dipteran, Cecidomyiidae. The hypotheses tested were: (i) the more complex the galls, the more distinct they are from their non‐galled host; (ii) galls induced on less plastic host organs, e.g. stems, develop under more morphogenetic constraints and, therefore, should be more similar among themselves than galls induced on more plastic organs. We also evaluated the plant sex preference of gall‐inducing insects for oviposition. Simple galls were qualitative and quantitatively more similar to non‐galled organs than complex galls, thereby supporting the first hypothesis. Unexpectedly, stem galls had more similarities between them than to their host organ, hence only partially supporting the second hypothesis. Similarity among stem galls may be caused by the restrictive pattern of host stems. The opposite trend was observed for host leaves, which generate either similar or distinct gall morphotypes due to their higher phenotypic plasticity. The Relative Distance of Plasticity Index for non‐galled stems and stem galls ranged from 0.02 to 0.42. Our results strongly suggest that both tissue plasticity and gall inducer identity interact to determine plant developmental patterns, and therefore, final gall structure.  相似文献   

3.
虫瘿与其生物群落及寄主植物间的关系   总被引:1,自引:0,他引:1       下载免费PDF全文
虫瘿是自然界极其常见的生物现象,是植物与昆虫互作的奇特产物。本文对虫瘿生物群落多样性、虫瘿与其生物群落的关系以及虫瘿与寄主植物的关系进行概述,探讨了致瘿昆虫在虫瘿形成中的作用、植物化学对致瘿昆虫产卵交配行为的影响以及植物激素在虫瘿形成中的作用,最后对虫瘿今后的研究方向进行了讨论,为虫瘿的致瘿生物学及其瘿内生物相互关系的进一步研究奠定基础。  相似文献   

4.
Parasites commonly manipulate host behaviour, and among the most dramatic examples are diverse fungi that cause insects to die attached to leaves. This death-grip behaviour functions to place insects in an ideal location for spore dispersal from a dead body following host death. Fossil leaves record many aspects of insect behaviour (feeding, galls, leaf mining) but to date there are no known examples of behavioural manipulation. Here, we document, to our knowledge, the first example of the stereotypical death grip from 48 Ma leaves of Messel, Germany, indicating the antiquity of this behaviour. As well as probably being the first example of behavioural manipulation in the fossil record, these data support a biogeographical parallelism between mid Eocene northern Europe and recent southeast Asia.  相似文献   

5.
The nutrition hypothesis for the adaptive significance of insect gall formation postulates that galls accumulate higher concentrations of nutritive compounds than uninfested plant tissue, resulting in a high performance of the gall former. This hypothesis has been supported by some taxa of gall insects, but not by taxa such as cynipid wasps. Aphid galls are expected to require higher levels of nitrogen than other insects’ galls with a single inhabitant, because aphid galls are required to sustain a number of aphids reproducing parthenogenetically over two generations. The present study tested this hypothesis by evaluating aphid performance and amino acid concentration in phloem sap, using the aphid Rhopalosiphum insertum (Walker) (Homoptera: Aphididae), which establishes colonies on leaves of Sorbus commixta Hedlund or in galls of the aphid Sorbaphis chaetosiphon Shaposhnikov (Homoptera: Aphididae). We prepared the gall and non‐gall treatments on trees of S. commixta, in which R. insertum fundatrices were reared and allowed to reproduce. In S. chaetosiphon galls, R. insertum colonies propagated more rapidly, and the second generation grew larger and more fecund than on ungalled leaves. The amount of amino acids exuding from cut galled leaves was fivefold that in ungalled leaves; however, there was no significant difference in the amino acid composition between galled and ungalled leaves. In the intact leaves, total amino acid concentration in the phloem sap declined rapidly from late April to late May; however, the galls retained this high amino acid concentration in developing leaves for 1 month. These results indicate that the improved performance in R. insertum is ascribed to the increased concentration of amino acids in galled leaves. We suggest that S. chaetosiphon galls function to promote the breakdown of leaf protein, leading to an increased performance of gall‐inhabiting aphids.  相似文献   

6.
B. B. Schultz 《Oecologia》1992,90(2):297-299
Summary Recent studies have suggested that plant galls benefit only the insects living in them and not the host plants, and that galls are induced by insects primarily to improve the plant as a microenvironment or a food source. The potential advantage to insects of protection from their predators and parasitoids has been considered unclear and perhaps minor in importance. However, the potential threat to gallforming insects from other insect herbivores has usually been relatively neglected. This paper notes literature and observations which suggest that herbivores may either consume or be deterred by galls. Even soft leaf galls produced by Hormaphis and Phylloxera aphids appeared to deter some herbivores in the field. The threat of herbivory to galls might help explain general patterns of gall ecology and morphology, and deserves closer attention.  相似文献   

7.
虫瘿与致瘿昆虫   总被引:6,自引:1,他引:5  
王光钺  王义平  吴鸿 《昆虫知识》2010,47(2):419-424
虫瘿是由昆虫等致瘿生物诱导寄主植物而产生的一种特异组织。虫瘿对致瘿生物具有提供营养和保护等作用,虫瘿不仅有一定的经济利用和科学研究价值,而且多数致瘿昆虫是农林害虫。本文对致瘿昆虫在植物上的致瘿部位、致瘿的主要昆虫类群、虫瘿形态结构、虫瘿化学组成、虫瘿对寄主植物的影响以及虫瘿的利用等进行综述。  相似文献   

8.
Abstract: To study the abundance and occurrence of herbivore insects on plants it is important to consider plant characteristics that may control the insects. In this study the following hypotheses were tested: (i) an increase of plant architecture increases species richness and abundance of gall‐inducing insects and (ii) plant architecture increases gall survival and decreases parasitism. Two hundred and forty plants of Baccharis pseudomyriocephala Teodoro (Asteraceae) were sampled, estimating the number of shoots, branches and their biomass. Species richness and abundance of galling insects were estimated per module, and mortality of the galls was assessed. Plant architecture influenced positively species richness, abundance and survival of galls. However, mortality of galling insects by parasitoids was low (13.26%) and was not affected by plant architecture, thus suggesting that other plant characteristics (a bottom‐up pressure) might influence gall‐inducing insect communities more than parasitism (a top‐down pressure). The opposite effect of herbivore insects on plant characteristics must also be considered, and such effects may only be assessed through manipulative experiments.  相似文献   

9.
The two largest lineages of holometabolous gall-forming insects, cynipid wasps and cecidomyiid flies, have given rise to numerous obligate inquilines, species which are unable to form galls themselves and survive by inhabiting galls formed by other species. In contrast, only a single obligate inquiline, an aphid, is known in the sternorrhynchous Hemiptera, the hemimetabolan lineage in which gall-forming is best developed. We describe the first known gall inquiline in psyllids (Sternorrhyncha, Psylloidea), Pachypsylla cohabitans Yang & Riemann sp. n. All other members of this genus produce closed galls on hackberries, Celtis spp. (Ulmaceae). Newly hatched nymphs of P. cohabitans feed next to nymphs of several species of leaf gall-makers, becoming incorporated into the gall as the stationary nymphs are gradually enveloped by leaf tissue. In the mature gall, the inquilines occupy separate, lateral cells surrounding a central cell containing a single gall-maker. Pachypsylla cohabitans is similar in morphology to leaf-gallers, but differs in nymphal and adult colour, allozyme frequency, especially in the malic enzyme, and in adult phenology. Laboratory-reared progeny of side-cell females, when caged alone, never form galls, while progeny of centre-cell individuals alone only form galls comprising single individuals. Multiple-cell galls are formed only when adults of side-cell and centre-cell individuals are caged together. Experimental removal of centre-cell nymphs in early stages of gall initiation leads to smaller galls or death of side-cell individuals. We conclude that the side-cell individual is an obligate inquiline that is incapable of forming a gall on its own but is derived from a leaf-galling ancestor. We speculate on selective forces that might favour this evolutionary transition.  相似文献   

10.
Galls formed by the interaction of insects on plant tissues are an example of the unusual transformation and use of plants by insects. The aim of this study was to characterize the structure of galls formed by Cynips quercusfolii L. on sessile oak leaves. In the structure of galls, we distinguished the following: (1) the protective ‘first contact zone’ created by epidermal and sub-epidermal sclerenchyma rings, (2) the wide parenchymatous ring, (3) the internal protective zone created by the sclerenchyma ring, and (4) the nutritional zone consisting of cells filled with amyloplasts containing starch. A characteristic for galls in the development stage is the centripetal starch gradient in which starch accumulates in a ‘ring of amyloplasts’ in the larval chamber.  相似文献   

11.
Lorne M. Wolfe 《Biotropica》1997,29(2):169-174
The goal of this study was to determine whether there exists intersexual differences in the degree of herbivore attack on a tropical, dioecious tree. Neea pychotrioides is a Costa Rican tree that experiences at least two types of attack on its reproductive structures: flower herbivory and gall formation on inflorescences. Although female trees were more common than males in the two study populations (overall sex ratio = 1.5 females/male), male flowers were more likely to be eaten by lepidopteran larvae. Similarly, inflorescence-borne, fly-induced galls were more frequent on males. Ten families of insects from three orders (Diptera, Hymenoptera, Lepidoptera) occupied the galls with varying levels of parasitism and hyperparasitism occurring within. Although the sexes were not significantly different in vegetative size, males had larger floral displays (more inflorescences and larger flowers) that may have acted as attractants to herbivores and gallmakers. The results are consistent with the hypothesis that flower damage and the energetic costs of producing galls exert a greater expense to males, ultimately resulting in death, and over time, a skewing of the sex ratio.  相似文献   

12.
Hypersensitivity is known as a localized resistance of plants against pathogens. It also can be detected in response to galling insects, i.e., in the area immediately adjacent to the site of oviposition and attempted penetration by the galling larva. This host response includes morphological and histological changes that cause the death of the attacked tissue. It is observed as a rounded dark brown halo around the gall induction site. We provide the first observation on the occurrence and possible relevance of this induced mechanism by which one of the most common tree species in Germany, Fagus sylvatica L., resists attack by two of its most common galling insects, Mikiola fagi and Hartigiola annulipes (Diptera: Cecidomyiidae). Galls induced by these cecidomyiids were extremely common in the studied area in beech forests around Darmstadt, Germany. The availability of resources (leaves on a stem) was a poor predictor of attack by the galling insects as well as for gall abundance (galls successfully formed). Hypersensitive reaction was the most important factor acting against the galling population studied. More than 77% of the attempts of the insects to induce galls on F. sylvatica resulted in failure and consequently the death of the galling larvae. Therefore, few live galls remained to be found and destroyed by natural enemies. This corroborates the view that in galling insect–host plant system interactions plant-driven factors may play a major role in determining herbivore failure and success, and perhaps the resulting community structure.  相似文献   

13.
Galls are neoformed plant structures created by cell hyperplasia and hypertrophy induced by a number of organisms, especially insects. After adult insects hatch, senescent galls may remain on the host plant and be occupied by a succession of fauna, the most important and dominant being ants. This study aimed at characterizing the ant fauna successor of stem galls induced by microlepidoptera in Microgramma squamulosa (Kaulf.) de la Sota (Polypodiaceae). Four collections were carried out in the municipality of Nova Friburgo, Rio de Janeiro state, Brazil. The galls were packed in plastic bags and taken to the laboratory. Ants were euthanized and conserved in 70° GL alcohol and later identified. A total of 49 stem galls were collected and analyzed, 15 containing microlepidoptera galler larvae, one a parasitoid wasp and 33 without the microlepidoptera or parasitoid (67%). Twelve of these galls (39%) contained ants. Six ant species were recorded (Camponotus crassus, Crematogaster curvispinosa, Crematogaster sericea, Procryptocerus sampaioi, Tapinoma atriceps, and Wasmannia auropunctata), all native to Brazil. Ant occupation in M. squamulosa seems to be associated with senescent galls due to hatching of the galler insect, which leaves a hole that allows ants to colonize it, in other words, an opportunistic domatia. Senescent galls resulting from the death of galler insects do not seem to facilitate ant occupation.  相似文献   

14.
The alien moth Epiblema sugii (Lepidoptera: Tortricidae) induces stem galls on an invasive alien weed, Ambrosia trifida. During summer, along riverbanks in central Japan, the native insects Protaetia brevitarsis, P. orientalis submarumorea (Coleoptera: Scarabaeidae: Cetoniinae), and Camponotus vitiosus (Hymenoptera: Formicidae) feed on the sap exuded from the galls. The cetoniine beetles are highly aggregated among the galls and make wounds on the galls to facilitate sap exudation. Feeding on gall sap may be beneficial to the beetles due to the efficient intake of water and sugar, and the beetles’ inflicting wounds and feeding on the sap seem to have little effect on the gallers. This is a unique finding, where alien plant–galler interaction provides a feeding site for native insects.  相似文献   

15.
Many phytophagous insects have an ability to manipulate plant tissue and induce galls, but the mechanism is not yet fully understood. Some insects have multivoltine life cycles, and each generation induces galls on different plant species or different organs in the same host. Such host-use patterns are interesting study subjects to clarify the gall-inducing mechanisms of insects. We focused on a multivoltine and gall-inducing psyllid Stenopsylla nigricornis Kuwayama (Hemiptera: Psylloidea: Triozidae), which is associated with Symplocos lucida Sieb. (Symplocaceae). Based on periodic field surveys in Kyushu, Japan, S. nigricornis is revealed to have a bivoltine life history. Then, we revealed that the spring generation induces galls on leaves, while the autumn generation does so on flower buds and overwintering leaf buds. We also analyzed phytohormones in normal plant tissue, S. nigricornis nymphs, and their galls. As a result, nymphs were discovered to contain much higher concentrations of isopentenyladenosine and its possible precursor, isopentenyladenosine riboside than plant tissues, strongly suggesting that the phytohormone is involved in gall induction by S. nigricornis. Because flower bud galls contained significantly lower concentrations of abscisic acid (ABA) than normal flower bud, the autumn generation nymphs are considered to regulate the ABA level and to promote the earlier opening of host flower buds.  相似文献   

16.
致瘿昆虫对寄主植物生理和代谢的影响   总被引:1,自引:0,他引:1  
虫瘿是致瘿昆虫刺激植物后诱导形成的畸形结构,是研究植物与昆虫协同进化的理想材料,同时致瘿昆虫通常还是重要的农林害虫.因此,研究致瘿昆虫对寄主植物的影响,一方面可进一步揭示致瘿昆虫与植物的关系,有助于揭示成瘿植物生长的一般过程;另一方面,了解成瘿植物对致瘿昆虫的响应有助于筛选植物抗性指标、抗性基因、敏感基因等,为抗性育种...  相似文献   

17.
Abstract

In order to identify phytohormones involved in the initiation and maintenance of galls on the hackberry tree, Celtis occidentalis (Ulmaceae), in the presence of the insect Pachypsylla celtidis (Psyllidae); endogenous levels of cytokinins (CKs) and abscisic acid (ABA) were measured in the tissues of leaves, galls, and larval insects using liquid-chromatography-tandem-mass-spectrometry. The CKs isopentenyl adenine, isopentenyl adenosine, trans-zeatin and cis-zeatin, were extremely concentrated in insect larvae compared to surrounding tissue of leaves and galls. ABA concentrations in the insects were also relatively high at about 3268 pmol?g-1 fresh mass – approximately 25 times higher than in leaves, and 17 times higher than in galls. This represents a novel case of high concentrations of ABA being found in a larval insect. These findings indicate that manipulation of CK and ABA are involved in the initiation and maintenance of hackberry galls in the presence of larval P. celtidis.  相似文献   

18.
Abstract  1. This study examined the synchronisation and roles of host and insect phenology for fundatrices of the gall-forming aphid Hormaphis hamamelidis , which forms galls on the leaves of the understorey tree Hamamelis virginiana .
2. Host and insect phenologies varied widely among years and individual host trees.
3. Most winter eggs (≈ 85%) hatched before budbreak and galls could be initiated but in 2 years there was no inherent risk for earlier hatching fundatrices in terms of greater mortality. Egg hatch was not synchronised tightly with host trees but instead seemed to occur well in advance of budbreak as a conservative, bet-hedging strategy to ensure the opportunity to form galls.
4. Fundatrices that formed galls later had higher fecundity, contrary to typical patterns for insects that feed on the first flush of leaves in temperate forests, where later herbivores have lower fecundity. Also, unlike many other systems, trees that had later budbreak had greater densities of galls.  相似文献   

19.
Biologists who study insect-induced plant galls are faced with the overwhelming diversity of plant forms and insect species. A challenge is to find common themes amidst this diversity. We discuss common themes that have emerged from our cytological and histochemical studies of diverse neotropical insect-induced galls. Gall initiation begins with recognition of reactive plant tissues by gall inducers, with subsequent feeding and/or oviposition triggering a cascade of events. Besides, to induce the gall structure insects have to synchronize their life cycle with plant host phenology. We predict that reactive oxygen species (ROS) play a role in gall induction, development and histochemical gradient formation. Controlled levels of ROS mediate the accumulation of (poly)phenols, and phytohormones (such as auxin) at gall sites, which contributes to the new cell developmental pathways and biochemical alterations that lead to gall formation. The classical idea of an insect-induced gall is a chamber lined with a nutritive tissue that is occupied by an insect that directly harvests nutrients from nutritive cells via its mouthparts, which function mechanically and/or as a delivery system for salivary secretions. By studying diverse gall-inducing insects we have discovered that insects with needle-like sucking mouthparts may also induce a nutritive tissue, whose nutrients are indirectly harvested as the gall-inducing insects feeds on adjacent vascular tissues. Activity of carbohydrate-related enzymes across diverse galls corroborates this hypothesis. Our research points to the importance of cytological and histochemical studies for elucidating mechanisms of induced susceptibility and induced resistance.  相似文献   

20.
We tested two hypotheses to explain changes in species richness ofgall-forming insects. The first hypothesis proposes that gall-forming insectspecies richness increases as more potential host–plant species areavailable. The second hypothesis implies that soil fertility affects plantcolonization by gall-forming insects. Seven sites, representing strongdifferences in vegetation and soil were chosen at the Lacandona tropical rainforest region, Chiapas, Mexico. Overall, we found 1522 individual plantsbelonging to 340 different plant species. From this, we found gall-forminginsects on 737 (43.9%) plants and on 74 (22%) of total plant species. We found asignificant negative correlation between gall-forming insect species richnessand species richness of plants, which does not support the hypothesis that plantspecies richness is an important factor in generating the radiation ofgall-forming insects. Using phosphorus as an indicator of soil fertility, wefound the lowest number of plants with gall-forming insects and the smallestgall-forming insect load per individual plant in the more fertile soil(alluvial). In contrast, the highest number of plants with galls and the highestgall-forming insect load per plant were found at a savanna-like vegetationsite, where the poorest soil was recorded. These results did not support thesoil fertility hypothesis in terms of species richness, but did with respect toabundance of plants with galls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号