首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Native connectin from porcine cardiac muscle   总被引:2,自引:0,他引:2  
Native connectin was isolated from porcine cardiac muscle using the method developed for the preparation of native connectin from chicken breast muscle (Kimura et al. (1984) J. Biochem. 96, 1947-1950). It was not necessary to keep cardiac muscle at 0 degrees C before preparation: the proteolysis of alpha-connectin to beta-connectin proceeded during the preparation of myofibrils. Cardiac connectin showed almost the same properties as those of skeletal muscle connectin: mobility in SDS gel electrophoresis, filamentous structure under an electron microscope, circular dichroism spectra, UV absorption spectra, and amino acid composition. Porcine cardiac connectin cross-reacted with antiserum against chicken breast muscle connectin as revealed by an immunoblot method. Immunoelectron microscopical observations revealed an abundance of connectin antigenic sites around the A-I junction area of cardiac myofibrils. Cardiac connectin also interacted with myosin and actin filaments at low ionic strengths to form aggregates. The extent of interaction was somewhat weaker in the case of cardiac connectin than skeletal muscle connectin, regardless of the origin of myosin and actin (porcine cardiac and rabbit skeletal muscles). In conclusion, cardiac connectin is very similar, but not identical to skeletal muscle connectin.  相似文献   

2.
Proteolytic fragments of 400 kD isolated from chymotrypsin-treated connectin, a muscle elastic protein, still retained the ability to cause aggregation of myosin filaments but lost the actin-bundling action. Tryptic digests of connectin showed similar effects. However, when connectin was hydrolyzed by pepsin to peptides smaller than approximately 40 kD, no such action was seen for both myosin and actin filaments. It is suggested that the actin bundling action of connectin filaments is due to topological restrictions. A modified reproducible procedure for the preparation of native connectin from chicken breast muscle is described in detail.  相似文献   

3.
Binding of connectin to myosin filaments   总被引:1,自引:0,他引:1  
Binding of native connectin (2,100 kDa fragment of alpha-connectin) to myosin filaments was investigated using a sedimentation technique and densitometric estimations of the separated proteins. In the presence of 60 mM KCl and 5 mM phosphate buffer, pH 7.0, as much as 1.5 mol of connectin was bound to 1 mol of myosin, suggesting that some 150 connectin filaments bound to a single myosin filament of approximately 0.5 micron in length. This value was much more than the ratio found in muscle (12:1). It appeared that C protein did not affect the binding of connectin to myosin filaments.  相似文献   

4.
In an earlier study connectin, an elastic protein of striated muscle, was found to be associated with "gap filaments" originating from the thick filaments in the myofibril, but it was not clear whether it extends to Z lines or not (Maruyama, K., H. Sawada, S. Kimura, K. Ohashi, H. Higuchi, and Y. Umazume, 1984, J. Cell Biol., 99:1391-1397). In the present immunoelectron microscopic study using polyclonal antibodies against native connectin, we have concluded that the connectin structures are directly linked to Z lines from the thick (myosin) filaments in myofibrils of skinned fibers of frog skeletal muscle. There were five distinct antibody-binding stripes in each half of the A band and two stripes in the A-I junction region. Deposits of antibodies were recognized in I bands and Z lines. We suggest that connectin filaments run alongside the thick filaments, starting from a region approximately 0.15 micron from the center of the A band.  相似文献   

5.
Connectin is a very long and flexible protein of striated muscle, linking myosin filaments to z discs in a sarcomere. Isolated native connectin in solution frequently forms elastic threads upon concentration of the solution, by side-by-side association of molecules. An X-ray diffraction study was performed to examine the presence of beta-sheet structure in artificially prepared threads. The elastic properties of such threads were measured at various temperatures. Negative temperature dependence of the elastic coefficient suggests that the elasticity of connectin threads is due to deformation of the three-dimensional structure and not to rubber-like behavior.  相似文献   

6.
The high molecular weight protein connectin (also called titin) in Japanese common squid (Todarodes pacificus) mantle muscle was identified by western blotting analysis with 3B9, the mouse anti-chicken skeletal muscle connectin monoclonal antibody. Similarly to vertebrate samples, there exists connectin in invertebrate squid mantle muscle, and the amino acid sequences are assumed to resemble those present in the A band of vertebrate connectin, judging by the specificity of 3B9. Moreover, the connectin in squid muscle migrated in this study as a closely spaced doublet of alpha and beta (titins 1 and 2). Between 5 and 7 h post-mortem, the SDS PAGE patterns of the squid sample indicated a change of the doublet bands into a single beta-connectin band. Simultaneously, the rheological properties of the squid muscle changed substantially. This degradation of alpha-connectin into beta-connectin in the muscle can explain the critical change that occurs during the post-mortem tenderization of squid muscle.  相似文献   

7.
We performed cDNA cloning of chicken breast muscle connectin. Together with previous results, our analysis elucidated a 24.2 kb sequence encoding the amino terminus of the protein. This corresponded to the I-band region of the skeletal muscle sarcomere, which is involved in extension and contraction between the Z-line and the A-I junction. There were fewer middle immunoglobulin domains and amino acid residues in the PEVK segment of chicken breast muscle connectin than in human skeletal muscle connectin, but more than in human cardiac muscle connectin. We measured passive tension generation by stretching mechanically skinned myofibril bundles. This revealed that appreciable tension development in chicken breast muscle began at longer sarcomere spacings than in rabbit cardiac muscle, but at shorter spacings than in rabbit psoas and soleus muscles. We suggest that the chicken breast muscle sarcomere remains in a relatively extended state even in unstrained sarcomeres. This would explain why chicken breast muscle does not extend under force to the same degree as rabbit psoas and soleus muscles.  相似文献   

8.
Changes in connectin and elasticity of skeletal muscle were determined during post-mortem ageing. The amount of connectin decreased with increasing time of post-mortem storage whereas the rate of the decrease depended on the source of muscles. The loss in elasticity of muscle coincided well with the decrease in connectin contents. Electron microscopically, a network structure between the Z discs vanished when the amount of connectin fell to zero. We have concluded that the continuous net structure of connectin is responsible for about 30% of the total elasticity of living skeletal muscle and its degradtaion is responsible for post-mortem tenderization of meat.  相似文献   

9.
To clarify the full picture of the connectin (titin) filament network in situ, we selectively removed actin and myosin filaments from cardiac muscle fibers by gelsolin and potassium acetate treatment, respectively, and observed the residual elastic filament network by deep-etch replica electron microscopy. In the A bands, elastic filaments of uniform diameter (6-7 nm) projecting from the M line ran parallel, and extended into the I bands. At the junction line in the I bands, which may correspond to the N2 line in skeletal muscle, individual elastic filaments branched into two or more thinner strands, which repeatedly joined and branched to reach the Z line. Considering that cardiac muscle lacks nebulin, it is very likely that these elastic filaments were composed predominantly of connectin molecules; indeed, anti-connectin monoclonal antibody specifically stained these elastic filaments. Further, striations of approximately 4 nm, characteristic of isolated connectin molecules, were also observed in the elastic filaments. Taking recent analyses of the structure of isolated connectin molecules into consideration, we concluded that individual connectin molecules stretched between the M and Z lines and that each elastic filament consisted of laterally-associated connectin molecules. Close comparison of these images with the replica images of intact and S1-decorated sarcomeres led us to conclude that, in intact sarcomeres, the elastic filaments were laterally associated with myosin and actin filaments in the A and I bands, respectively. Interestingly, it was shown that the elastic property of connectin filaments was not restricted by their lateral association with actin filaments in intact sarcomeres. Finally, we have proposed a new structural model of the cardiac muscle sarcomere that includes connectin filaments.  相似文献   

10.
µ-Calpain quickly split the α-connectin in myofibrils into β-connectin, and then produced a 1700-kDa component. Cathepsin D also split α-connectin into β-connectin, further degrading it to fragments smaller than the 1700-kDa component with increasing incubation time. The action of cathepsin D on the connectin molecule was distinctly different from that of, µ-calpain in terms of the splitting rate and manner. When freshly excised muscle was exposed to a temperature of 37°C, complete disappearance of connectin (α, β and 1700-kDa component) was observed within 36h. In contrast, at 2°C, about 75% of connectin was retained as β-form even after 3 weeks. The present data suggest that the degradation of connectin in muscle might be caused by, µ-calpain in the early stage of aging, and then with time, this action is replaced by m-calpain or cathepsin D. However, the possibility of other intrinsic proteases participating in the degradation of connectin still remains.  相似文献   

11.
《The Journal of cell biology》1984,99(4):1391-1397
Indirect immunofluorescence microscopy of highly stretched skinned frog semi-tendinous muscle fibers revealed that connectin, an elastic protein of muscle, is located in the gap between actin and myosin filaments and also in the region of myosin filaments except in their centers. Electron microscopic observations showed that there were easily recognizable filaments extending from the myosin filaments to the I band region and to Z lines in the myofibrils treated with antiserum against connectin. In thin sections prepared with tannic acid, very thin filaments connected myosin filaments to actin filaments. These filaments were also observed in myofibrils extracted with a modified Hasselbach-Schneider solution (0.6 M KCl, 0.1 M phosphate buffer, pH 6.5, 2 mM ATP, 2 mM MgCl2, and 1 mM EGTA) and with 0.6 M Kl. SDS PAGE revealed that connectin (also called titin) remained in extracted myofibrils. We suggest that connectin filaments play an important role in the generation of tension upon passive stretch. A scheme of the cytoskeletal structure of myofibrils of vertebrate skeletal muscle is presented on the basis of our present information of connectin and intermediate filaments.  相似文献   

12.
The interaction of the muscle elastic protein connectin with myosin and actin filaments was investigated by turbidimetry, viscosity, flow birefringence measurements, and electron microscopic observations. In KCl concentrations lower than 0.15 M at pH 7.0 at 25 degrees C, both myosin and actin filaments were aggregated by connectin. Myosin filaments were entangled with each other in the presence of connectin. Actin filaments were assembled into bundles under the influence of connectin just as under that of alpha-actinin. The physiological significance of the interactions of connectin with myosin and actin filaments is discussed in relation to the localization of connectin in myofibrils. The Mg2+-activated ATPase activity of actomyosin was appreciably enhanced by connectin in the presence of KCl concentrations lower than 0.1 M. The extent of activation by connectin was smaller than by alpha-actinin. The enhancement of the ATPase activity may be due to acceleration of the onset of superprecipitation of actomyosin.  相似文献   

13.
We examined the effects of a glucocorticoid, corticosterone, on calpain activity, connectin content and protein breakdown in rat muscle. The results indicated that calpain activity was increased by corticosterone and thus breakdown of connectin was stimulated followed by increased breakdown of skeletal muscle protein.  相似文献   

14.
Titin (also called connectin), a major but so far highly elusive myofibrillar component in striated muscle was purified from glycerinated chicken breast muscle in its native state by use of a similar purification procedure as recently introduced for purification of native titin from rabbit psoas muscle. Low-angle rotary shadowing reveals highly convoluted, long and slender strands, sometimes more extended and with nodules, but also an aggregation into filamentous bundles and reticular networks. Antisera were raised against the purified native molecule and monospecific titin antibodies prepared by a rapid nitrocellulose blot immunoaffinity-purification procedure. Titin antibodies bound to the nitrocellulose immobilized native antigen were directly conjugated with fluorescein isothiocyanate. Titin specifity of purified antibodies was checked by immunoblotting. Direct immunofluorescence of glycerinated myofibrils revealed a uniform doublet staining pattern within the sarcomeres by labelling the region of the A-I junctions and some diffuse staining in the region of the myosin filaments. The same myofibrils examined by indirect immunoelectron microscopy revealed the gold particles highly concentrated at the A-I junctions with considerable labelling within the A-bands, except in their centers. Residual I-bands and Z-lines are free of label. In overstretched myofibrils immunogold staining labelled the gap filaments in the space between I- and A-bands. Isolated native thick filaments showed gold labelling of coiled superthin filaments at the ends of the thick filaments (end-filaments) and at their sides, respectively. The colloidal gold technique in combination with an affinity-purified titin antibody raised against the native molecule adds further evidence for the existence and distribution of an endosarcomeric superthin cytoskeletal filament lattice with titin as a major component.  相似文献   

15.
Binding of actin filaments to connectin   总被引:3,自引:0,他引:3  
The binding of actin filaments to connectin, a muscle elastic protein, was investigated by means of turbidity and sedimentation measurements and electron microscopy. In the presence of less than 0.12 M KCl at pH 7.0, actin filaments bound to connectin. Long actin filaments formed bundles. Short actin filaments also aggregated into irregular bundles or a meshwork, and were frequently attached perpendicularly to long bundles. The binding of F-actin to connectin was saturated at an equal weight ratio (molar ratio, 50 : 1), as determined by a cosedimentation assay. Larger amounts of sonicated short actin filaments appeared to bind to connectin than intact F-actin. Myosin S1-decorated actin filaments did not bind to connectin. The addition of S1 to connectin-induced actin bundles resulted in partial disaggregation. Thus, connectin does not appear to interfere with actin-myosin interactions, since myosin S1 binds to actin more strongly than connectin.  相似文献   

16.
The fine structure of the myotendinous junction of the skeletal muscle of lathyritic rats caused by β-aminopropionitrile was investigated. In the junction there are finger-like processes of muscle fibers, in which thin filaments were extended from the last Z lines of myofibrils and attached to the sarcolemma of the processes. By the heavy meromyosin decoration technique, these thin filaments were identified as actin filaments. In the lathyritic muscle, the thin filaments were markedly fewer in number and distributed sparsely in the sarcoplasm.The content of connectin, an elastic protein, which is localized in myofibrils and also in sarcolemma was significantly decreased in the lathyritic muscle. A possible relationship between the changes in the fine structure of the myotendinous junction and in the connectin contents is discussed.  相似文献   

17.
Connectin is an elastic protein of vertebrate striated muscle, and consists of doublet components, alpha and beta (also called titins 1 and 2). In the present study, beta-connectin isolated in the native state was investigated in order to characterize its molecular size and shape. The molecular weight was approximately 2.1 X 10(6) (SDS gel electrophoresis) or 2.7 X 10(6) (sedimentation equilibrium). The sedimentation coefficient (SO20, w) was 17S in 0.1 M phosphate buffer, pH 7.0. The intrinsic viscosity measured in an Ostwald-type viscometer was 1.8 dl/g. However, the viscosity was greatly dependent on the velocity gradient, and at a very low velocity gradient of 0.0007 s-1, a solution of connectin (0.3 mg/ml) showed a viscosity value of 17,000 cp. Flow birefringence measurements suggested a length distribution ranging from 300 to 450 nm. Electron microscopic observations revealed that connectin is a long flexible filament and the peaks of frequency of length distribution were at 150, 300, 450, and 600 nm. It was tentatively assumed that the connectin molecule is 300-400 nm long and 34-38 nm wide. It is likely that beta-connectin is derived from alpha-connectin, which has an apparent molecular weight of 2.8 X 10(6).  相似文献   

18.
Connectin is an elastic protein found in vertebrate striated muscle and in some invertebrates as connectin-like proteins. In this study, we determined the structure of the amphioxus connectin gene and analyzed its sequence based on its genomic information. Amphioxus is not a vertebrate but, phylogenetically, the lowest chordate. Analysis of gene structure revealed that the amphioxus gene is approximately 430 kb in length and consists of regions with exons of repeatedly aligned immunoglobulin (Ig) domains and regions with exons of fibronectin type 3 and Ig domain repeats. With regard to this sequence, although the region corresponding to the I-band is homologous to that of invertebrate connectin-like proteins and has an Ig-PEVK region similar to that of the Neanthes sp. 4000K protein, the region corresponding to the A-band has a super-repeat structure of Ig and fibronectin type 3 domains and a kinase domain near the C-terminus, which is similar to the structure of vertebrate connectin. These findings revealed that amphioxus connectin has the domain structure of invertebrate connectin-like proteins at its N-terminus and that of vertebrate connectin at its C-terminus. Thus, amphioxus connectin has a novel structure among known connectin-like proteins. This finding suggests that the formation and maintenance of the sarcomeric structure of amphioxus striated muscle are similar to those of vertebrates; however, its elasticity is different from that of vertebrates, being more similar to that of invertebrates.  相似文献   

19.
In the course of isolating and identifying the reducible compounds of connectin fibrils from chicken breast muscle, we found the presence of the lysine-derived cross-link, aldimine form of lysinonorleucine. The failure to detect this compound by Robins and Rucklidge (1980) might be due to treatment of the samples with a crude collagenase preparation, which resulted in complete digestion of connectin. The results from the present study strongly indicate that connectin participates in the lysyl oxidase-mediated cross-linking system which occurs in collagen and elastin.  相似文献   

20.
We examined the effects of a glucocorticoid, corticosterone, on calpain activity, connectin content and protein breakdown in rat muscle. The results indicated that calpain activity was increased by corticosterone and thus breakdown of connectin was stimulated followed by increased breakdown of skeletal muscle protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号