首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
To survive winters, woody perennials of temperate zones must enter into endodormancy. Resumption of spring growth requires sufficient exposure to low temperature (chill units, CUs) in winter (chilling requirement), which also plays a role in the development of cold hardiness (cold acclimation). Physiological studies on dormancy breaking have focused on identifying markers, such as appearance or disappearance of proteins in response to varying degrees of chill unit accumulation. However, whether these changes are associated with dormancy transitions or cold acclimation is not clear. In the present study, greenhouse-grown blueberry (Vaccinium section Cyanococcus) plants were used to address this question. Three blueberry cultivars, Bluecrop, Tifblue, and Gulfcoast having chilling requirement of approximately 1 200, 900 and 600 CUs, respectively, were first exposed to 4°C for long enough to provide chill units equivalent to one-half of their respective chilling requirement. This treatment was expected to result in cold acclimation. A fraction of plants was then subjected to a 15/12°C (light/dark) regime for 2 weeks, a treatment expected to be “dormancy-neutral” but cause deacclimation. Before and after each treatment, cold hardiness and dormancy status of floral buds were determined; proteins were extracted from the buds collected on the same sampling date, and separated by one-dimensional SDS-PAGE. Dehydrin-like proteins were identified by immunoblotting, using anti-dehydrin antiserum. Results indicate that the chilling treatment resulted in cold acclimation as indicated by increased bud hardiness in all three cultivars. Data also indicate a distinct accumulation of three dehydrin-like proteins of 65, 60, and 14 kDa during cold acclimation. The cold hardiness and levels of dehydrin proteins decreased during the exposure to 15/12°C for 2 weeks. Results also confirmed that this treatment had no negative effect on chill unit accumulation. Densitometric scans of protein gels indicated a close association between the abundance of dehydrins and degree of cold hardiness in these cultivars. In addition, levels of the dehydrin proteins and cold hardiness remained about the same between 100% and >100% satisfaction of chilling requirement. These results suggest that changes in dehydrin expression are more closely associated with cold hardiness than with dormancy transitions.  相似文献   

3.
An unusual Group 2 LEA gene family in citrus responsive to low temperature   总被引:8,自引:0,他引:8  
Six cDNAs representing unique cold-induced sequences have been cloned from the hardy citrus relative Poncirus trifoliata. Among these, pBCORc115 and pBCORc119 were found to belong to the same gene family. Sequencing data indicated that pBCORc115 and pBCORc119 each contained an open reading frame, coding for a 19.8 kDa protein (COR19) and a smaller 11.4 kDa protein (COR11) respectively. Inspection of the deduced amino acid sequences revealed three large repeats in COR19, but only one was present in the COR11. Two elements: a Q-clustered tract and a K-rich motif were identified in each repeat. The K-rich motifs were similar to those of cotton D-11 and Group 2 LEA proteins. A Serine-cluster, a common feature in many Group 2 LEA-like proteins, was also found in these proteins, but it was in an unusual position at the carboxy-terminus. A bipartite motif of basic residues, similar to known nuclear targeting sequences, was also present in COR19 and COR11, suggesting that members of this protein family may have a nuclear targeting function. The expression of COR19 mRNA in response to cold acclimation, drought, flooding, and salinization was examined. COR19 expression in leaf tissue was induced in response to cold acclimation, but repressed during drought and flooding stress.  相似文献   

4.
The consistent correlation between desiccation tolerance in orthodox seed tissue and an accumulation of certain "late embryogenesis abundant" (LEA) proteins suggests that these proteins reduce desiccation-induced cellular damage. The aim of the present work was to test this hypothesis. Exogenous abscisic acid (ABA) was used to elevate the level of heal-soluble LEA-like proteins in axes from immature (30 days after flowering: mid-development) seeds of soybean ( Glycine max [L.] Merrill cv. Chippewa 64). As the LEA-like proteins accumulated in response to ABA, the leakage of all elements after desiccation and subsequent rehydration markedly declined. Both LEA-like protein accumulation and the decline in desiccation-induced electrolyte leakage were apparently dependent on the presence of ABA. Both effects of ABA were inhibited by cycloheximide. Light microscopy revealed a marked effect of the ABA on cellular integrity following desiccation. Osmotic stress also caused a decrease in desiccation-induced electrolyte leakage and stimulated the accumulation of LEA-like proteins. Our data are consistent with the hypothesis that the LEA-like proteins contribute to the increase in desiccation tolerance in response to ABA, and are consistent with a general protective role for these proteins in desiccation tolerance.  相似文献   

5.
The freezing tolerance of Arabidopsis thaliana is enhanced by cold acclimation, resulting in changes in the compositions and function of the plasma membrane. Here, we show that a dynamin‐related protein 1E (DRP1E), which is thought to function in the vesicle trafficking pathway in cells, is related to an increase in freezing tolerance during cold acclimation. DRP1E accumulated in sphingolipid and sterol‐enriched plasma membrane domains after cold acclimation. Analysis of drp1e mutants clearly showed that DRP1E is required for full development of freezing tolerance after cold acclimation. DRP1E fused with green fluorescent protein was visible as small foci that overlapped with fluorescent dye‐labelled plasma membrane, providing evidence that DRP1E localizes non‐uniformly in specific areas of the plasma membrane. These results suggest that DRP1E accumulates in sphingolipid and sterol‐enriched plasma membrane domains and plays a role in freezing tolerance development during cold acclimation.  相似文献   

6.
As observed for most stresses, tree frost resistance can be split into two main processes: avoidance and tolerance. Avoidance of freezing is achieved by introducing species only in the climatic context in which the probability of freezing events is very low for the sensitive stages of buds or stems; i.e., when good synchronism exists between the annual cycle and the critical climatic periods. Buds become able to grow only after chilling requirements have been satisfied (endodormancy released) during winter; they subsequently break after heat requirements have been completed (end of ecodormancy) in early spring. Actually, this period is often subject to more or less severe freezing events. Trees are also able to adjust their freezing tolerance by increasing their capacity of extracellular freezing and decreasing the possibility of intracellular freezing through the process of frost acclimation. Both freezing resistance processes (avoidance and tolerance) are environmentally driven (by photoperiod and temperature), but there are also genotypic effects among species or cultivars. Here, we evaluated the degree to which differences in dormancy release and frost acclimation were related to environmental and genetic influences by comparing trees growing in common garden conditions. This investigation was carried out for two winters in lowland and mountain locations on different walnut genotypes differing significantly for budburst dates. Chilling requirement for endodormancy release and heat requirement during ecodormancy were evaluated in all situations. In addition, frost acclimation was assessed by the electrolyte leakage method on stems from the same trees before leaf fall through budburst. No significant differences were observed in chilling requirements among genotypes. Moreover, frost acclimation dynamics were similar between genotypes or locations when expressed depending on chilling units accumulated since 15 September as a time basis instead of Julian day. The only exception was for maximal frost hardiness observed during winter with the timber-oriented being significantly more resistant than fruit-oriented genotypes. Heat requirement was significantly different among genotypes. Thus, growth was significantly faster in fruit-oriented than in wood-oriented genotypes. Furthermore, among wood-oriented genotypes, differences in growth rate were observed only at cold temperatures. Frost acclimation changes differed significantly between fruit- and wood- walnuts from January through budburst. In conclusion, from September through January, the acclimation dynamic was driven mainly by environmental factors whereas from January through budburst a significant genotype effect was identified in both frost tolerance and avoidance processes.  相似文献   

7.
Antifreeze protein accumulation in freezing-tolerant cereals   总被引:15,自引:0,他引:15  
Freezing-tolerant plants withstand extracellular ice formation at subzero temperatures. Previous studies have shown that winter rye ( Secale cereale L.) accumulates proteins in the leaf apoplast during cold acclimation that have antifreeze properties and are similar to pathogenesis-related proteins. To determine whether the accumulation of these antifreeze proteins is common among herbaceous plants, we assayed antifreeze activity and total protein content in leaf apoplastic extracts from a number of species grown at low temperature, including both monocotyledons (winter and spring rye, winter and spring wheat, winter barley, spring oats, maize) and dicotyledons (spinach, winter and spring oilseed rape [canola], kale, tobacco). Apoplastic polypeptides were also separated by SDS-PAGE and immunoblotted to determine whether plants generally respond to low temperature by accumulating pathogenesis-related proteins. Our results showed that significant levels of antifreeze activity were present only in the apoplast of freezing-tolerant monocotyledons after cold acclimation at 5/20C. Moreover, only a closely related group of plants, rye, wheat and barley, accumulated antifreeze proteins similar to pathogenesis-related proteins during cold acclimation. The results indicate that the accumulation of antifreeze proteins is a specific response that may be important in the freezing tolerance of some plants, rather than a general response of all plants to low temperature stress.  相似文献   

8.
陈玉珍  卢存福 《植物学报》2002,19(2):219-223
水母雪莲(Saussurea meduasaMaxim)是典型的高山雪线植物。本文研究了其愈伤组织及悬浮细胞的培养过程,并对其抗寒性做了初步研究。 研究结果表明,水母雪莲愈伤组织和悬浮培养细胞分别可抵抗-6.5 ℃、-7.5 ℃的冰冻低温胁迫。水母雪莲愈伤组织细胞内丰富的蛋白质和淀粉粒多糖构成其较强抗冻能力的物质基础。低温锻炼后,悬浮细胞分泌蛋白中有新的多肽(76,48,27.5,19.5 kD)合成,而33,51 kD两条多肽合成增强。悬浮细胞抗冻能力的提高同蛋白质合成的增强是一致的。  相似文献   

9.
Possible role of catalase in post-dormancy bud break in grapevines   总被引:1,自引:0,他引:1  
Changes in the activity of catalase (Cat) and in the levels of H2O2 were followed throughout dormancy in buds of grapevines (Vitis vinifera L.). In grapevines grown in the Elqui valley in Chile, a region with warm-winters, the activity of Cat increased during the recess period of buds, reaching a maximum and thereafter decreased to less than one third of its maximal activity. Three isoforms of Cat were detected in extracts of buds by native PAGE analysis, and the extracted activity was inhibited competitively by hydrogen cyanamide (HC), a potent bud-break agent. Furthermore, HC applications to field-grown grapevines in addition to the expected effect on advancing bud break, reduced the Cat activity during bud dormancy. Similar reductions were observed during dormancy in buds of grapevines grown in the Central valley in Chile, a region with temperate winters, suggesting that HC and winter chilling inhibits the activity of the main H2O2 degrading enzyme in grape buds. A transient rise in H2O2 levels preceded the release of buds from endodormancy, moreover, the peak of H2O2 and the onset of bud break occurred earlier in HC treated than in control grapevines, suggesting the participation of H2O2 as a signal molecule in the release of endodormancy in grape buds. The relationship between Cat inhibition, rise in H2O2 levels and initiation of bud break are discussed.  相似文献   

10.
The present study investigated the expressional regulation of PpDAM5 and PpDAM6, two of the six peach (Prunus persica) dormancy-associated MADS-box genes, in relation to lateral bud endodormancy. PpDAM5 and PpDAM6 were originally identified as homologues of Arabidopsis SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 identified in the EVERGROWING locus of peach. Furthermore, PpDAM5 and PpDAM6 have recently been suggested to be involved in terminal bud dormancy. In this study, seasonal expression analyses using leaves, stems, and lateral buds of high-chill and low-chill peaches in field conditions indicated that both genes were up-regulated during the endodormancy period and down-regulated with endodormancy release. Controlled environment experiments showed that the expression of both PpDAM5 and PpDAM6 were up-regulated by ambient cool temperatures in autumn, while they were down-regulated by the prolonged period of cold temperatures in winter. A negative correlation between expression levels of PpDAM5 and PpDAM6 and bud burst percentage was found in the prolonged cold temperature treatment. Application of the dormancy-breaking reagent cyanamide to endo/ecodormant lateral buds induced early bud break and down-regulation of PpDAM5 and PpDAM6 expression at the same time. These results collectively suggest that PpDAM5 and PpDAM6 may function in the chilling requirement of peach lateral buds through growth-inhibiting functions for bud break.  相似文献   

11.
In vitro-grown saskatoon berry (Amelanchier alnifolia Nutt.) plantlets were exposed to various hormonal treatments, dormancy-inducing and cold acclimation conditions to determine if this in vitro system would be viable for dormancy/hardiness studies in woody plants. Low temperature induced significant hardiness levels in plantlets to ?27°C after 6 weeks at 4°C but did not approach liquid nitrogen levels of fully hardened, field-grown buds. Control plantlets were consistently killed at ?5°C throughout this period. Significant hardiness was attained under both short and long day/low temperature conditions; however, hardiness was reduced under continuous light or dark treatments. A pre-exposure to the typical short photoperiod regime of woody plants did not significantly increase the rate of acclimation in these plantlets. The presence/absence of phytohormones in the media have a pronounced influence on the ability of plantlets to cold acclimate. Hormone-free media increased hardiness to ?10.5°C after 2 weeks in treatment. Addition of abscisic acid (ABA) increased cold hardiness levels (?12°C) while addition of benzylaminopurine (BAP) to this hormone-free media decreased hardiness to ?5.3°C. A combination of BAP and ABA treatments produced LT50 values intermediate between individual applications of either hormone. Conversely, α-naphthaleneacetic acid (NAA) could not counteract the ABA-induced hardiness. ABA treatments alone were not able to harden plantlets to the extent attained under low temperature acclimation conditions. Further, ABA could not maintain the hardiness levels of cold-acclimating treatments and plantlets de-acclimated to ?9°C in BAP + ABA media. Subculturing in itself significantly elevated cold hardiness in plantlets to ?9°C on BAP + NAA media within 3 days after subculture and thereafter plantlets dehardened to ?5°C. While tissue culture has value in specific cases, caution should be taken when using tissue-cultured plantlets as a system to evaluate environmental regulation of cold acclimation in woody plants, in part, due to the influence of phytohormones in the media.  相似文献   

12.
To identify and characterize small GTP-binding proteins in plant cells, GTP-binding studies were performed with electroblotted plant proteins following SDS-polyacrylamide gel electrophoresis using [α-32P]GTP. Three species of small GTP-binding protein (21, 23, and 27 kD) which have a specific GTP-binding property were identified in the membrane and cytosolic fractions of both monocotyledons (Zea mays) and dicotyledons (Glycine max). Moreover, these three species of small GTP-binding protein were gradually decreased when membranes were treated with hydroxylamine. This result indicates that these small GTP-binding proteins in plant cells are fatty acylated to the membrane lipids. The 27 kDa component was partially purified from hypocotyl membranes of Glycinemax, following S-300 gel filtration, phenylsepharose CL-4B, hydroxyapatite, and Q-sepharose column chromatography. This 27 kD protein was found to have both GTP-binding and GTPase activities.  相似文献   

13.
The expression of a gene, encoding a dehydrin protein designated as DHN24 was analyzed at the protein level in two groups of Solanum species differing in cold acclimation ability. The DHN24 protein displays consensus amino acid sequences of dehydrins, termed K- and S-segments. The S-segment precedes three K-segments, classifying the protein into SK3-type dehydrins. A group of Solanum species able to cold acclimation constituted by S. sogarandinum and S. tuberosum, cv. Aster, and a second one composed of a S. sogarandinum line, that lost ability to cold acclimation, and of S. tuberosum, cv. Irga, displaying low ability to cold acclimation were studied. Under control conditions, noticeable levels of the DHN24 protein was observed in stems, tubers, and roots of Solanum species. No protein was detected in leaves. During low temperature treatment the DHN24 protein level substantially increased in tubers, in transporting organs and in apical parts, and only a small increase was observed in leaves. The increase in protein abundance was only observed in the plants able to cold acclimate and was found to parallel the acclimation capacity. Upon drought stress, the DHN24 level decreased in stems and in leaves, but increased in apical parts. These results suggest that Dhn24 expression is regulated by organ specific factors in the absence of stress and by factors related to cold acclimation processes during low temperature treatment in collaboration with organ-specific factors. A putative function of the SK3-type dehydrin proteins during plant growth and in the tolerance to low temperature is discussed.  相似文献   

14.
Antifreeze proteins (AFPs) were obtained from intercellular spaces of spruce needles Picea abies (L.) Karst. and Picea pungens Engelm. by vacuum infiltration with ascorbic acid, followed by centrifugation to recover the infiltrate. As shown by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE), apoplastic proteins are accumulated in these spruce species as a group of 5–9 polypeptide bands. These proteins have a molecular mass of 7–80 kDa. The spruce AFPs have the ability to modify the growth of ice and thermal hysteresis, TH, caused by these AFPs was close to 2.0 °C at a concentration of 400 μg/ml. The antifreeze activity of proteins from these winter-hardy coniferous species showed a positive correlation with the concentration of proteins after cold acclimation of needle tissues. Apoplastic proteins from winter spruce needles exhibited antifreeze activity, whereas no such activity was observed in extracts from summer needles. When we examined the possible role of spruce AFPs in cryoprotection, we found that lactate dehydrogenase, LDH, activity was higher after freezing in the presence of AFPs compared with bovine serum albumin. Amino-terminal sequence comparisons indicated that a 27-kDa protein from both P. abies and P. pungens was similar to some pathogenesis-related proteins namely chitinases, also from conifer species. These results show that spruces produce AFPs that are secreted into the apoplast of needles. The accumulation of AFPs in extracellular spaces caused by seasonal cold acclimation during winter indicates that these proteins may play a role in the acquisition of freezing tolerance of needle cells in coniferous species.  相似文献   

15.
Escherichia coli BL21 (DE3) is commonly used for the overproduction of fusion proteins. Using this system, we recently reported the overproduction of histidine-tagged mouse estrogen receptor (ER) α-ligand binding domain as an intact 30 kD protein and its inhibitory effect on the growth of bacteria. However, when GST-tagged mouse ERα transactivation domain (TAD) was overproduced using this system, it showed no effect on the growth of bacteria but was specifically degraded during its expression and purification. Here we report the expression of 47 kD GST-tagged mouse ERα-TAD protein, which was degraded partially and specifically into 46 and 43 kD fragments. This fusion protein was further degraded into 37, 31, 29 and 26 kD fragments during its purification by affinity chromatography. Such specific degradation of GST-tagged mouse ERα-TAD during its overproduction in E. coli and purification indicates the induction of specific protease and suggests the modification of expression system.  相似文献   

16.
Inflorescence bud proteins of Pistacia vera   总被引:1,自引:0,他引:1  
 The Pistacia vera L. (common name pistachio) is a unique dioecious and deciduous tree species, which is productive under harsh desert climates. We have identified and purified an Inflorescence Bud Protein of 32 kDa (IBP32) from male pistachio trees. There is a close correlation between its accumulation and inflorescence bud development and its disappearance and flowering. Using antibodies raised against this protein, we have identified in female trees the IBP32 and in addition a 27 kDa protein (IBP27), which appears to be specific to female inflorescence buds. The accumulation and disappearance of IBP27 follows the same pattern as that of IBP32. These proteins are glycoproteins rich in glycine and alanine and are highly hydrophilic. Based on the analytical results and immunological cross-reactivity between dehydrin antibodies and the IBPs, it is assumed that the latter are dehydrin-like and may protect inflorescence bud meristems against cold injury during dormancy. The IBPs are the major proteins of the pistachio bud, therefore they may also serve as nitrogen storage during winter for inflorescence bud growth in spring. Received: 17 October 1997 / Accepted: 6 March 1998  相似文献   

17.
Because they are immotile organisms, higher plants have developed efficient strategies for adaptation to temperature changes. During cold acclimation, plants accumulate specific types of solutes to enhance freezing tolerance. The vacuole is a major solute storage organelle, but until now the role of tonoplast proteins in cold acclimation has not been investigated. In a comparative tonoplast proteome analysis, we identified several membrane proteins with altered abundance upon cold acclimation. We found an increased protein abundance of the tonoplast pyrophosphatase and subunits of the vacuolar V-ATPase and a significantly increased V-ATPase activity. This was accompanied by increased vacuolar concentrations of dicarbonic acids and soluble sugars. Consistently, the abundance of the tonoplast dicarbonic acid transporter was also higher in cold-acclimatized plants. However, no change in the protein abundance of tonoplast monosaccharide transporters was detectable. However, a generally higher cold-induced phosphorylation of members of this sugar transporter sub-group was observed. Our results indicate that cold-induced solute accumulation in the vacuole is mediated by increased acidification of this organelle. Thus solute transport activity is either modulated by increased protein amounts or by modification of proteins via phosphorylation.  相似文献   

18.
19.
DORMANCY ASSOCIATED MADS-BOX (DAM) genes are related to AGAMOUS-LIKE 24 and SHORT VEGETATIVE PHASE genes of arabidopsis and are differentially regulated coordinately with endodormancy induction and release in buds of several perennial plant species. DAM genes were first shown to directly impact endodormancy in peach where a deletion of a series of DAM resulted in loss of endodormancy induction. We have cloned and characterized several MADS box genes from the model perennial weed leafy spurge. Leafy spurge DAM genes are preferentially expressed in shoot tips and buds in response to cold temperatures and day length in a manner that is relative to the level of endodormancy induced by various environmental conditions. Over-expression of one DAM gene in arabidopsis delays flowering. Additionally, we show that at least one DAM gene is differentially regulated by chromatin remodeling. Comparisons of the DAM gene promoters between poplar and leafy spurge have identified several conserved sequences that may be important for their expression patterns in response to dormancy-inducing stimuli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号