首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Li Q  Lawrence CB  Xing HY  Babbitt RA  Bass WT  Maiti IB  Everett NP 《Planta》2001,212(4):635-639
Magainins are a group of short peptides originally isolated from frog skin and thought to function as a natural defense mechanism against infection due to their antimicrobial properties. The engineered magainin analog peptide Myp30 was found to inhibit spore germination of the oomycete, Peronospora tabacina (Adam) in vitro, and the growth of a bacterial pathogen Erwinia carotovora subsp. carotovora (Jones). Transgenic tobacco (Nicotiana tabacum L.) plants expressing Myp30 were evaluated for resistance to these pathogens. The expression of the peptide only to an extracellular location resulted in significant reduction in sporulation and lesion size due to P. tabacina infection. A significant increase in resistance to the bacterial pathogen was also observed regardless of the targeting location of the peptide. Received: 7 August 2000 / Accepted: 27 September 2000  相似文献   

2.
In this work, we present the first characterization of the cell lysing mechanism of MSI-78, an antimicrobial peptide. MSI-78 is an amphipathic alpha-helical peptide designed by Genaera Corporation as a synthetic analog to peptides from the magainin family. (31)P-NMR of mechanically aligned samples and differential scanning calorimetry (DSC) were used to study peptide-containing lipid bilayers. DSC showed that MSI-78 increased the fluid lamellar to inverted hexagonal phase transition temperature of 1,2-dipalmitoleoyl-phosphatidylethanolamine indicating the peptide induces positive curvature strain in lipid bilayers. (31)P-NMR of lipid bilayers composed of MSI-78 and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine demonstrated that the peptide inhibited the fluid lamellar to inverted hexagonal phase transition of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine, supporting the DSC results, and the peptide did not induce the formation of nonlamellar phases, even at very high peptide concentrations (15 mol %). (31)P-NMR of samples containing 1-palmitoyl-2-oleoyl-phosphatidylcholine and MSI-78 revealed that MSI-78 induces significant changes in the bilayer structure, particularly at high peptide concentrations. At lower concentrations (1-5%), the peptide altered the morphology of the bilayer in a way consistent with the formation of a toroidal pore. Higher concentrations of peptide (10-15%) led to the formation of a mixture of normal hexagonal phase and lamellar phase lipids. This work shows that MSI-78 induces significant changes in lipid bilayers via positive curvature strain and presents a model consistent with both the observed spectral changes and previously published work.  相似文献   

3.
In vitro and leaf disk assays of bacterial and fungal plant pathogens were conducted using three cationic lytic peptides, MSI-99, magainin II (MII), and cecropin B (CB). Growth of bacterial organisms was retarded or completely inhibited by low concentrations of these lytic peptides. The peptides also significantly reduced germination of fungal spores and growth of mycelia; however, higher concentrations of peptides were needed to inhibit fungal growth compared with those needed to inhibit bacteria. The relative efficacy of the peptides depended on the microorganism tested, but CB was the most inhibitory to the majority of the bacteria and fungi assayed. MSI-99, a synthetic derivative of MII with increased positive charge, showed equal or two- to fivefold higher antibacterial activity compared to MII in the in vitro assays. MSI-99 was also superior to MII against the oomycete, Phytophthora infestans but was slightly inferior to MII in assays with the true fungi, Penicillium digitatum and Alternaria solani. In the leaf disk assays, pretreating spores of Alternaria solani and Phytophthora infestans with the peptides at concentrations as low as 10 microg per ml led to significant reductions in the size of early blight lesions and prevented development of any late blight lesions on tomato leaf disks. Our results from in vitro and leaf disk assays suggest that MSI-99 can be used as a transgene to generate tomato lines with enhanced resistance to bacterial and fungal diseases of this crop.  相似文献   

4.
MSI-99 is a synthetic analog of magainin II (MII), a small cationic peptide highly inhibitory to a wide spectrum of microbial organisms. Tomato plants were transformed to express a gene encoding the MSI-99 peptide and tested for possible enhancement of resistance to important pathogens of this crop. Thirty-six tomato transformants carrying an MSI-99 expression vector designed to target the peptide into extracellular spaces were obtained by Agrobacterium tumefaciens-mediated transformation. Expression of MSI-99 caused no obvious cytotoxic effects in these plants. In the tests with Pseudomonas syringae pv. tomato (bacterial speck pathogen) at 105 CFU/ml, several MSI-99-expressing lines developed significantly fewer disease symptoms than controls. However, MSI-99-expressing lines were not significantly different from controls in their responses to the fungal pathogen Alternaria solani (early blight) and the oomycete pathogen Phytophthora infestans (late blight). These findings are in accordance with our previous in vitro inhibition tests, which showed that the MSI-99 peptide is more inhibitory against bacteria than against fungi and oomycetes. Additional in vitro inhibition assays showed that MSI-99 loses its antimicrobial activity in the total or extracellular fluids from leaflets of non-transformed tomato plants; however, P. syringae pv. tomato could not multiply in the extracellular fluid from an MSI-99-expressing line. Our results suggest that expression strategies providing continuous high expression of MSI-99 will be necessary to achieve significant enhancement of plant disease resistance.Abbreviations AMP Antimicrobial peptide - CFU Colony forming unit - ECF Extracellular fluid - gus -glucuronidase gene - nptII Neomycin phosphotransferase II - SP Signal peptide - TF Total fluidCommunicated by S. Gleddie  相似文献   

5.
We have constructed a chimaeric gene consisting of the promoter of the soybean heat shock (hs) gene Gmhsp17,6-L, the coding region of a hygromycin phosphotransferase (hpt) gene, and the termination sequence of the nopaline synthase (nos) gene. This gene fusion was introduced into tobacco by Agrobacterium-mediated gene transfer. Heat-inducible synthesis of mRNA was shown by northern hybridization, and translation of this RNA into a functional protein was indicated by plant growth on hygromycin-containing media in a temperature-dependent fashion. One hour incubation at 40 °C per day, applied for several weeks, was sufficient to express the resistant phenotype in transgenic plants containing the chimaeric hs-hpt gene. These data suggest that the hygromycin resistance gene is functional and faithfully controlled by the soybean hs promoter. The suitability of these transgenic plants for selection of mutations that alter the hs response is discussed.  相似文献   

6.
The rapid and effective activation of disease resistance responses is essential for plant defense against pathogen attack. These responses are initiated when pathogen-derived molecules (elicitors) are recognized by the host. We have developed a strategy for creating novel disease resistance traits whereby transgenic plants respond to infection by a virulent pathogen with the production of an elicitor. To this end, we generated transgenic tobacco plants harboring a fusion between the pathogen-inducible tobacco hsr 203J gene promoter and a Phytophthora cryptogea gene encoding the highly active elicitor cryptogein. Under noninduced conditions, the transgene was silent, and no cryptogein could be detected in the transgenic plants. In contrast, infection by the virulent fungus P. parasitica var nicotianae stimulated cryptogein production that coincided with the fast induction of several defense genes at and around the infection sites. Induced elicitor production resulted in a localized necrosis that resembled a P. cryptogea-induced hypersensitive response and that restricted further growth of the pathogen. The transgenic plants displayed enhanced resistance to fungal pathogens that were unrelated to Phytophthora species, such as Thielaviopsis basicola, Erysiphe cichoracearum, and Botrytis cinerea. Thus, broad-spectrum disease resistance of a plant can be generated without the constitutive synthesis of a transgene product.  相似文献   

7.
Banana Xanthomonas wilt (BXW), caused by Xanthomonas campestris pv. musacearum, is one of the most important diseases of banana (Musa sp.) and currently considered as the biggest threat to banana production in Great Lakes region of East and Central Africa. The pathogen is highly contagious and its spread has endangered the livelihood of millions of farmers who rely on banana for food and income. The development of disease resistant banana cultivars remains a high priority since farmers are reluctant to employ labor-intensive disease control measures and there is no host plant resistance among banana cultivars. In this study, we demonstrate that BXW can be efficiently controlled using transgenic technology. Transgenic bananas expressing the plant ferredoxin-like protein (Pflp) gene under the regulation of the constitutive CaMV35S promoter were generated using embryogenic cell suspensions of banana. These transgenic lines were characterized by molecular analysis. After challenge with X. campestris pv. musacearum transgenic lines showed high resistance. About 67% of transgenic lines evaluated were completely resistant to BXW. These transgenic lines did not show any disease symptoms after artificial inoculation of in vitro plants under laboratory conditions as well as potted plants in the screen-house, whereas non-transgenic control plants showed severe symptoms resulting in complete wilting. This study confirms that expression of the Pflp gene in banana results in enhanced resistance to BXW. This transgenic technology can provide a timely solution to the BXW pandemic.  相似文献   

8.
Magainins are antimicrobial peptides that selectively disrupt bacterial cell membranes. In an effort to determine the propensity for oligomerization of specific highly active magainin analogues in membrane mimetic systems, we studied the structures and lipid interactions of two synthetic variants of magainins (MSI-78 and MSI-594) originally designed by Genaera Corp. Using NMR experiments on these peptides solubilized in dodecylphosphocholine (DPC) micelles, we found that the first analogue, MSI-78, forms an antiparallel dimer with a "phenylalanine zipper" holding together two highly helical protomers, whereas the second analogue, MSI-594, whose phenylalanines 12 and 16 were changed into glycine and valine, respectively, does not dimerize under our experimental conditions. In addition, magic angle spinning solid-state NMR experiments carried out on multilamellar vesicles were used to corroborate the helical conformation of the peptides found in detergent micelles and support the existence of a more compact structure for MSI-78 and a pronounced conformational heterogeneity for MSI-594. Since magainin activity is modulated by oligomerization within the membrane bilayers, this study represents a step forward in understanding the role of self-association in determining magainin function.  相似文献   

9.
10.
11.
A rice diacylglycerol kinase (DGK) gene, OsBIDK1, which encodes a 499-amino acid protein, was cloned and characterized. OsBIDK1 contains a conserved DGK domain, consisting of a diacylglycerol kinase catalytic subdomain and a diacylglycerol kinase accessory subdomain. Expression of OsBIDK1 in rice seedlings was induced by treatment with benzothiadiazole (BTH), a chemical activator of the plant defense response, and by infection with Magnaporthe grisea, causal agent of blast disease. In BTH-treated rice seedlings, expression of OsBIDK1 was induced earlier and at a higher level than in water-treated control seedlings after inoculation with M. grisea. Transgenic tobacco plants that constitutively express the OsBIDK1 gene were generated and disease resistance assays showed that overexpression of OsBIDK1 in transgenic tobacco plants resulted in enhanced resistance against infection by tobacco mosaic virus and Phytophthora parasitica var. nicotianae. These results suggest that OsBIDK1 may play a role in disease resistance responses.  相似文献   

12.
Dempsey CE  Ueno S  Avison MB 《Biochemistry》2003,42(2):402-409
A cysteine substitution analogue of magainin-2 amide (magainin-F12W, N22C; denoted here as mag-N22C), and a disulfide-linked dimer prepared by air oxidation [(mag-N22C)(2)], were compared in their ability to release carboxyfluorescein (CF) from 100-nm large unilamellar vesicles (LUV) and to kill the Gram negative bacteria Stenotrophomonas maltophilia and Escherichia coli. The disulfide-dimerized peptide showed enhanced permeabilization and antimicrobial activity, when compared with the monomeric peptide, that was particularly marked at very low peptide concentrations. The enhanced CF-releasing activity of the dimer at low concentrations in vesicles results from (i) enhanced binding to negatively charged membrane surfaces and (ii) a low concentration dependence for permeabilization in the dimer compared to the monomer. The unique properties of the dimeric peptide suggest a role for structural diversity of antimicrobial peptides in frog skin, including the recent identification of a heterodimer composed of disulfide-linked amphipathic helical peptides [Batista et al. (2001) FEBS Lett. 494, 85-89]. Disulfide-dimerization of pore-forming, positively charged, amphipathic helical peptides may be a useful general approach to the generation of peptide antimicrobials having activity at very low concentrations.  相似文献   

13.
A full-length cDNA of a rice protein phosphatase 2C gene, OsBIPP2C1 , was cloned and identified. OsBIPP2C1 is predicted to encode a 569 amino acid protein that contains phosphatase domain at its C-terminal and a relatively long N-terminal extension. Expression profiles of OsBIPP2C1 in rice seedlings upon treatments with disease resistance inducers, pathogen infection, and mechanical wounding as well as various environmental stress conditions were analyzed. Expression of OsBIPP2C1 was activated upon treatments with benzothiadiazole (BTH), salicylic acid, and hydrogen peroxide, which are signal molecules in plant disease resistance responses, and was induced during the first 48 h after inoculation with Magnaporthe grisea in BTH-treated rice seedlings. OsBIPP2C1 was also upregulated upon mechanical wounding and treatments with abscisic acid, high salt, low temperature, and drought stress. Transgenic tobacco plants overexpressing OsBIPP2C1 gene showed enhanced disease resistance against tobacco mosaic virus and Phytophthora paratisca and increased tolerance against salt and osmotic stresses. These results suggest that OsBIPP2C1 may play important roles in responses to biotic and abiotic stresses.  相似文献   

14.
Tobacco plants over-expressing L-phenylalanine ammonia-lyase (PAL(+)) produce high levels of chlorogenic acid (CGA) and exhibit markedly reduced susceptibility to infection with the fungal pathogen Cercospora nicotianae, although their resistance to tobacco mosaic virus (TMV) is unchanged. Levels of the signal molecule salicylic acid (SA) were similar in uninfected PAL(+) and control plants and also following TMV infection. In crosses of PAL(+) tobacco with tobacco harboring the bacterial NahG salicylate hydroxylase gene, progeny harboring both transgenes lost resistance to TMV, indicating that SA is critical for resistance to TMV and that increased production of phenylpropanoid compounds such as CGA cannot substitute for the reduction in SA levels. In contrast, PAL(+)/NahG plants showed strongly reduced susceptibility to Cercospora nicotianae compared to the NahG parent line. These results are consistent with a recent report questioning the role of PAL in SA biosynthesis in Arabidopsis, and highlight the importance of phenylpropanoid compounds such as CGA in plant disease resistance.  相似文献   

15.
We demonstrate here that induced expression of sarcotoxin IA, a bactericidal peptide from Sarcophaga peregrina, enhanced the resistance of transgenic tobacco plants to both bacterial and fungal pathogens. The peptide was produced with a modified PR1a promoter, which is further activated by salicylic acid treatment and necrotic lesion formation by pathogen infection. Host resistance to infection of bacteria Erwinia carotovora subsp. carotovora and Pseudomonas syringae pv. tabaci was shown to be dependent on the amounts of sarcotoxin IA expressed. Since we found antifungal activity of the peptide in vitro, transgenic seedlings were also inoculated with fungal pathogens Rhizoctonia solani and Pythium aphanidermatum. Transgenic plants expressing higher levels of sarcotoxin were able to withstand fungal infection and remained healthy even after 4 weeks, while control plants were dead by fungal infection after 2 weeks.  相似文献   

16.
17.
Avrahami D  Shai Y 《Biochemistry》2002,41(7):2254-2263
Our basic understanding of how to combat fungal infections has not kept pace with the recent sharp rise in life-threatening cases found particularly among immuno-compromised individuals. Current investigations for new potential antifungal agents have focused on antimicrobial peptides, which are used as a cell-free defense mechanism in all organisms. Unfortunately, despite their high antibacterial activity, most of them are not active toward fungi, the reason of which is not clear. Here, we present a new approach to modify an antibacterial peptide, a magainin analogue, to display antifungal activity by its conjugation with lipophilic acids. This approach has the advantage of producing well-defined changes in hydrophobicity, secondary structure, and self-association. These modifications were characterized in solution at physiological concentrations using CD spectroscopy, tryptophan fluorescence, and analytical ultracentrifugation. In order of increasing hydrophobicity, the attachment to the magainin-2 analogue of (i) heptanoic acid results in a monomeric, unordered structure, (ii) undecanoic acid yields concentration-dependent oligomers of alpha helices, and (iii) palmitic acid yields concentration-independent alpha-helical monomers, a novel lipopeptide structure, which is resistant to proteolytic digestion. Membrane-lipopeptide interactions and the membrane-bound structures were studied using fluorescence and ATR-FTIR in PC/PE/PI/ergosterol (5/2.5/2.5/1, w/w) SUV, which constitute the major components of Candida albicans bilayers. A direct correlation was found between oligomerization of the lipopeptides in solution and potent antifungal activity. These results provide insight to a new approach of modulating hydrophobicity and self-assembly of antimicrobial peptides in solution, without altering the sequence of the peptidic chain. These studies also provide a general means of developing a new group of lipopeptide candidates as therapeutic agents against fungal infections.  相似文献   

18.
Heavy metal pollution such as Cd, Hg, Pb, As and Se is an increasing environment problem worldwide. These metals and metalloids have toxic effect on both plants and animals, which are strongly poisonous to metal-sensitive enzymes, resulting in growth inhibition and death of the organism[1]. Contamination of soils with heavy metals, either by natural causes or due to pollution, often has pronounced effects on the vegetation, resulting in the appearance of metallophytes, and heavy-metal tolera…  相似文献   

19.
Taro bacilliform virus (TaBV) is a pararetrovirus of the genus Badnavirus which infects the monocotyledonous plant, taro ( Colocasia esculenta). A region of the TaBV genome spanning nucleotides 6,281 to 12 (T1200), including the 3' end of open reading frame 3 (ORF 3) and the intergenic region to the end of the tRNA(met)-binding site, was tested for promoter activity along with four different 5' deletion fragments (T600, T500, T250 and T100). In transient assays, only the T1200, T600, T500 fragments were shown to have promoter activity in taro leaf, banana suspension cells and tobacco callus. When these three promoters were evaluated in stably transformed, in vitro-grown transgenic banana and tobacco plants, all were found to drive near-constitutive expression of either the green fluorescent protein or beta-glucuronidase (GUS) reporter gene in the stem (or pseudostem), leaves and roots, with strongest expression observed in the vascular tissue. In transgenic banana leaves, the T600 promoter directed four-fold greater GUS activity than that of the T1200, T500 and the maize polyubiquitin-1 promoters. In transgenic tobacco leaves, the levels of GUS expression directed by the three promoters was between four- and ten-fold lower than that of the double Cauliflower mosaic virus 35S promoter. These results indicate that the TaBV-derived promoters may be useful for the high-level constitutive expression of transgenes in either monocotyledonous or dicotyledonous species.  相似文献   

20.
Numerous studies argue that salicylic acid (SA) is an important component of the plant signal transduction pathway(s) leading to disease resistance. The discovery that the SA-binding protein is a catalase, whose activity is blocked by SA, led to the proposal that one of SA's modes of action is to inhibit this H2O2-degrading enzyme and thus elevate H2O2 levels. To test this model, an attempt was made to mimic the action of SA by reducing the synthesis of catalase using antisense RNA technology. Analyses of transgenic tobacco plants that expressed the tobacco catalase 1 ( cat1 ) or catalase 2 ( cat2 ) gene in an antisense orientation indicate that there is no correlation between modest to high levels of reduction in catalase activity and activation of plant defenses such as pathogenesis-related (PR)-1 protein synthesis. However, three independent antisense catalase transgenic plants (ASCAT1 Nos 16, 17, and 28), which exhibited the most severe reduction in catalase activity (∼90% or more), developed chlorosis or necrosis on some of their lower leaves. These same leaves accumulated very high levels of PR-1 proteins and showed enhanced resistance to tobacco mosaic virus. Necrosis and elevated SA, which appear to result from severe depression of catalase levels, may be responsible for the induction of these defense responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号