首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based upon 16S rRNA sequence and phenotypic similarities, a large, uncultured Beggiatoa sp. from the Bay of Concepción (Chile), is very closely related to the Chilean Thioploca species Thioploca araucae., whose filaments grow as sheathed bundles. The formation of sheathed filament bundles, the key character to distinguish the genus Thioploca from Beggiatoa, places closely related filamentous sulfur-oxidizing bacteria into two different genera, incongruent with 16S rRNA-defined clades.  相似文献   

2.
In this study, members of a specific group of thin (6-14 μm filament diameter), vacuolated Beggiatoa-like filaments from six different hypersaline microbial mats were morphologically and phylogenetically characterized. Therefore, enrichment cultures were established, filaments were stained with fluorochromes to show intracellular structures and 16S rRNA genes were sequenced. Morphological characteristics of Beggiatoa-like filaments, in particular the presence of intracellular vacuoles, and the distribution of nucleic acids were visualized. In the intracellular vacuole nitrate reached concentrations of up to 650 mM. Fifteen of the retrieved 16S rRNA gene sequences formed a monophyletic cluster and were phylogenetically closely related (≥ 94.4% sequence identity). Sequences of known filamentous sulfide-oxidizing genera Beggiatoa and Thioploca that comprise non-vacuolated and vacuolated filaments from diverse habitats clearly delineated from this cluster. The novel monophyletic cluster was furthermore divided into two sub-clusters: one contained sequences originating from Guerrero Negro (Mexico) microbial mats and the other comprised sequences from five distinct Spanish hypersaline microbial mats from Ibiza, Formentera and Lake Chiprana. Our data suggest that Beggiatoa-like filaments from hypersaline environments displaying a thin filament diameter contain nitrate-storing vacuoles and are phylogenetically separate from known Beggiatoa. Therefore, we propose a novel genus for these organisms, which we suggest to name 'Candidatus Allobeggiatoa'.  相似文献   

3.
Sulfidic muds of cold seeps on the Nile Deep Sea Fan (NDSF) are populated by different types of mat-forming sulfide-oxidizing bacteria. The predominant sulfide oxidizers of three different mats were identified by microscopic and phylogenetic analyses as (i) Arcobacter species producing cotton-ball-like sulfur precipitates, (ii) large filamentous sulfur bacteria including Beggiatoa species, and (iii) single, spherical Thiomargarita species. High resolution in situ microprofiles revealed different geochemical settings selecting for the different mat types. Arcobacter mats occurred where oxygen and sulfide overlapped above the seafloor in the bottom water interface. Filamentous sulfide oxidizers were associated with steep gradients of oxygen and sulfide in the sediment. A dense population of Thiomargarita was favored by temporarily changing supplies of oxygen and sulfide in the bottom water. These results indicate that the decisive factors in selecting for different mat-forming bacteria within one deep-sea province are spatial or temporal variations in energy supply. Furthermore, the occurrence of Arcobacter spp.-related 16S rRNA genes in the sediments below all three types of mats, as well as on top of brine lakes of the NDSF, indicates that this group of sulfide oxidizers can switch between different life modes depending on the geobiochemical habitat setting.  相似文献   

4.
Hydrogen sulfide-rich groundwater discharges from springs into Lower Kane Cave, Wyoming, where microbial mats dominated by filamentous morphotypes are found. The full-cycle rRNA approach, including 16S rRNA gene retrieval and fluorescence in situ hybridization (FISH), was used to identify these filaments. The majority of the obtained 16S rRNA gene clones from the mats were affiliated with the "Epsilonproteobacteria" and formed two distinct clusters, designated LKC group I and LKC group II, within this class. Group I was closely related to uncultured environmental clones from petroleum-contaminated groundwater, sulfidic springs, and sulfidic caves (97 to 99% sequence similarity), while group II formed a novel clade moderately related to deep-sea hydrothermal vent symbionts (90 to 94% sequence similarity). FISH with newly designed probes for both groups specifically stained filamentous bacteria within the mats. FISH-based quantification of the two filament groups in six different microbial mat samples from Lower Kane Cave showed that LKC group II dominated five of the six mat communities. This study further expands our perceptions of the diversity and geographic distribution of "Epsilonproteobacteria" in extreme environments and demonstrates their biogeochemical importance in subterranean ecosystems.  相似文献   

5.
6.
A phylogenetic in situ/ex situ analysis of a sulfur mat formed by colorless filamentous sulfur bacteria in a thermal sulfide stream (northern spur of the main Caucasian ridge) was carried out. Nine phylotypes were revealed in the mat. Thiothrix sp. and Sphaerotilus sp. were the dominant phylotypes (66.3% and 26.3%, respectively). The 16S rRNA gene nucleotide sequence of Spahaerotilus sp. phylotype from the clone library was identical to the sequences of the seven Sphaerotilus strains isolated from the same source. A very high degree of similarity of Sphaerotilus strains revealed by ERIC-PCR fingerprints indicated little or no population diversity of this species in the mat. Thiothrix phylotype from the clone library and two Thiothrix strains isolated from the same mat sample differed in one to three nucleotides of 16S rRNA genes; this is an indication of this organism's population variability in the mat. 16S rRNA genes of the strains and clones of Thiothrix sp. exhibited the highest similarity (ca. 99%) with Thiothrix unzii; the strains and clones of Sphaerotilus had 99% similarity with the type species Sphaerotilus natans (the only species of this genus) and therefore can be assigned to this species. The minor seven components belong to the phylotypes from the Proteobacteria (3%), as well as the Chlorobia, Cyanobacteria, Clostridia, and Bacteroidetes phylogenetic groups, each of them constituting not more than 1%. Intracellular accumulation of elemental sulfur by Sphaerotilus similar to other filamentous sulfur bacteria was demonstrated for the first time (both in the population of the sulfur spring and in cultures with sulfide). Although mass growth of Sphaerotilus and Thiothrix is typical of bacterial populations of anthropogenic ecosystems (the activated sludge of treatment facilities), stable communities of these bacteria have not been previously found in the sulfur mats or "threads" of natural sulfide springs.  相似文献   

7.
Seventeen strains of filamentous sulfur bacteria were isolated in axenic culture from activated sludge mixed liquor samples and sulfide-gradient enrichment cultures. Isolation procedures involved plating a concentrated inoculum of washed filaments onto media containing sulfide or thiosulfate. The isolates were identified as Thiothrix spp., Beggiatoa spp., and an organism of uncertain taxonomic status, designated type 021N. All bacteria were gram negative, reduced nitrate, and formed long, multicellular trichomes with internal reserves of sulfur, volutin, and sudanophilic material. Thiothrix spp. formed rosettes and gonidia, and four of six strains were ensheathed. Type 021N organisms utilized glucose, lacked a sheath, and differed from Thiothrix spp. in several aspects of cellular and cultural morphology. Beggiatoa spp. lacked catalase and oxidase, and filaments were motile. Biochemical and physiological characterization of the isolates revealed important distinguishing features between the three groups of bacteria. Strain differences were most evident among the Thiothrix cultures. A comparison of the filamentous sulfur bacteria with freshwater strains of Leucothrix was made also.  相似文献   

8.
Seventeen strains of filamentous sulfur bacteria were isolated in axenic culture from activated sludge mixed liquor samples and sulfide-gradient enrichment cultures. Isolation procedures involved plating a concentrated inoculum of washed filaments onto media containing sulfide or thiosulfate. The isolates were identified as Thiothrix spp., Beggiatoa spp., and an organism of uncertain taxonomic status, designated type 021N. All bacteria were gram negative, reduced nitrate, and formed long, multicellular trichomes with internal reserves of sulfur, volutin, and sudanophilic material. Thiothrix spp. formed rosettes and gonidia, and four of six strains were ensheathed. Type 021N organisms utilized glucose, lacked a sheath, and differed from Thiothrix spp. in several aspects of cellular and cultural morphology. Beggiatoa spp. lacked catalase and oxidase, and filaments were motile. Biochemical and physiological characterization of the isolates revealed important distinguishing features between the three groups of bacteria. Strain differences were most evident among the Thiothrix cultures. A comparison of the filamentous sulfur bacteria with freshwater strains of Leucothrix was made also.  相似文献   

9.
Novel, vacuolate sulfur bacteria occur at shallow hydrothermal vents near White Point, Calif. There, these filaments are attached densely to diverse biotic and abiotic substrates and extend one to several centimeters into the surrounding environment, where they are alternately exposed to sulfidic and oxygenated seawater. Characterizations of native filaments collected from this location indicate that these filaments possess novel morphological and physiological properties compared to all other vacuolate bacteria characterized to date. Attached filaments, ranging in diameter from 4 to 100 microm or more, were composed of cylindrical cells, each containing a thin annulus of sulfur globule-filled cytoplasm surrounding a large central vacuole. A near-complete 16S rRNA gene sequence was obtained and confirmed by fluorescent in situ hybridization to be associated only with filaments having a diameter of 10 microm or more. Phylogenetic analysis indicates that these wider, attached filaments form within the gamma proteobacteria a monophyletic group that includes all previously described vacuolate sulfur bacteria (the genera Beggiatoa, Thioploca, and Thiomargarita) and no nonvacuolate genera. However, unlike for all previously described vacuolate bacteria, repeated measurements of cell lysates from samples collected over 2 years indicate that the attached White Point filaments do not store internal nitrate. It is possible that these vacuoles are involved in transient storage of oxygen or contribute to the relative buoyancy of these filaments.  相似文献   

10.
Flavobacteria are abundant in the North Sea, an epeiric sea on the continental shelf of Europe. However, this abundance has so far not been reflected by the number of strains in culture collections. In this study, Flavobacteria were isolated from pelagic and benthic samples, such as seawater, phytoplankton, sediment and its porewater, and from surfaces of animals and seaweeds on agar plates with a variety of carbon sources. Dilution cultivation with a new medium, incubation at low temperatures and with long incubation times, and colony screening by a Flavobacteria-Cytophagia-specific PCR detecting 16S rRNA gene sequences led to a collection of phylogenetically diverse strains. Two strains affiliated with Flammeovirgaceae and seven strains affiliated with Cyclobacteriaceae, whereas within the Flavobacteriaceae 20 isolated strains presumably represented seven novel candidate genera and 355 strains affiliated with 26 of 80 validly described marine Flavobacteriaceae genera, based on a genus boundary of 95.0% 16S rRNA gene sequence identity. The majority of strains (276) affiliated with 37 known species in 16 genera (based on a boundary of 98.7% 16S rRNA gene sequence identity), whereas 79 strains likely represented 42 novel species in 22 established Flavobacteriaceae genera. Pigmentation, iridescence, gliding motility, agar lysis, and flexirubin as a chemical marker supported the taxonomy at the species level. This study demonstrated the culturability on solid medium of phylogenetically diverse Flavobacteria originating from the North Sea.  相似文献   

11.
Filamentous, gliding, sulfide-oxidizing bacteria of the genus Thioploca were found on sediments in profundal areas of Lake Biwa, a Japanese freshwater mesotrophic lake, and were characterized morphologically and phylogenetically. The Lake Biwa Thioploca resembled morphologically Thioploca ingrica, a brackish water species from a Danish fjord. The diameters of individual trichomes were 3 to 5.6 microm; the diameters of complete Thioploca filaments ranged from 18 to 75 micro m. The cell lengths ranged from 1.2 to 3.8 micro m. In transmission electron microscope specimens stained with uranyl acetate, dense intracellular particles were found, which did not show any positive signals for phosphorus and sulfur in an X-ray analysis. The 16S rRNA gene of the Thioploca from Lake Biwa was amplified by using newly designed Thioploca-specific primers (706-Thioploca, Biwa160F, and Biwa829R) in combination with general bacterial primers in order to avoid nonspecific amplification of contaminating bacterial DNA. Denaturing gradient gel electrophoresis (DGGE) analysis of the three overlapping PCR products resulted in single DGGE bands, indicating that a single 16S rRNA gene had been amplified. With the same method, the Thioploca from Lake Constance was examined. The 16S rRNA sequence was verified by performing fluorescence in situ hybridization targeted at specific motifs of the Lake Biwa THIOPLOCA: Positive signals were obtained with the bacterial probe EUB-338, the gamma-proteobacterial probe GAM42a, and probe Biwa829 targeting the Lake Biwa THIOPLOCA: Based on the nearly complete 16S rRNA sequence and on morphological similarities, the Thioploca from Lake Biwa and the Thioploca from Lake Constance are closely related to T. ingrica and to each other.  相似文献   

12.
In this study, microscopic and molecular microbial analyses were integrated to characterize rapidly developing white filamentous tufts in a fluidized bed reactor used for nitrate removal from a marine recirculating fish culture system. Formation and rapid elongation of the tufts (often exceeding 50 mm day (-1)) was strongly correlated to transient elevated sulfide concentrations (>50 microM) in the reactor. The dominant bacterial constituents of these tufts were filamentous gram-negative bacteria with densely packed intracellular sulfur granules. Using 16S rRNA gene analysis and fluorescence in situ hybridization it was found that these filamentous bacteria represented a novel Thiothrix phylotype closely related (97% sequence identity) to a previously identified Thiothrix strain endogenous to the marine crustacean Urothoe poseidonis. In addition to filamentous morphotypes, rosette-shaped morphotypes of Thiothrix were also detectable within the tufts.  相似文献   

13.
White and orange mats are ubiquitous on surface sediments associated with gas hydrates and cold seeps in the Gulf of Mexico. The goal of this study was to determine the predominant pathways for carbon cycling within an orange mat in Green Canyon (GC) block GC 234 in the Gulf of Mexico. Our approach incorporated laser-scanning confocal microscopy, lipid biomarkers, stable carbon isotopes, and 16S rRNA gene sequencing. Confocal microscopy showed the predominance of filamentous microorganisms (4 to 5 mum in diameter) in the mat sample, which are characteristic of Beggiatoa. The phospholipid fatty acids extracted from the mat sample were dominated by 16:1omega7c/t (67%), 18:1omega7c (17%), and 16:0 (8%), which are consistent with lipid profiles of known sulfur-oxidizing bacteria, including Beggiatoa. These results are supported by the 16S rRNA gene analysis of the mat material, which yielded sequences that are all related to the vacuolated sulfur-oxidizing bacteria, including Beggiatoa, Thioploca, and Thiomargarita. The delta13C value of total biomass was -28.6 per thousand; those of individual fatty acids were -29.4 to -33.7 per thousand. These values suggested heterotrophic growth of Beggiatoa on organic substrates that may have delta13C values characteristic of crude oil or on their by-products from microbial degradation. This study demonstrated that integrating lipid biomarkers, stable isotopes, and molecular DNA could enhance our understanding of the metabolic functions of Beggiatoa mats in sulfide-rich marine sediments associated with gas hydrates in the Gulf of Mexico and other locations.  相似文献   

14.
Three Gram-negative, rod-shaped bacteria that were found intracellularly in two environmental and one clinical Acanthamoeba sp. isolates were analysed. Two endocytobionts showing a parasitic behaviour were propagated successfully outside their amoebal host cells and were identified subsequently by comparative 16S rRNA sequence analysis as being most closely affiliated with Flavobacterium succinicans (99% 16S rRNA sequence similarity) or Flavobacterium johnsoniae (98% 16S rRNA sequence similarity). One endocytobiont could neither be cultivated outside its original Acanthamoeba host ( Acanthamoeba sp. TUMSJ-321) nor transferred into other amoebae. Electron microscopy revealed that the amoebal trophozoites and cysts were almost completely filled with cells of this endosymbiont which are surrounded by a host-derived membrane. According to 16S rRNA sequence analysis, this endosymbiont could also be assigned to the Cytophaga – Flavobacterium – Bacteroides (CFB) phylum, but was not closely affiliated to any recognized species within this phylogenetic group (less than 82% 16S rRNA sequence similarity). Identity and intracellular localization of this endosymbiont were confirmed by application of a specific fluorescently labelled 16S rRNA-targeted probe. Based on these findings, we propose classification of this obligate Acanthamoeba endosymbiont as ' Candidatus Amoebophilus asiaticus'. Comparative 18S rRNA sequence analysis of the host of ' Candidatus Amoebophilus asiaticus' revealed its membership with Acanthamoeba 18S rDNA sequence type T4 that comprises the majority of all Acanthamoeba isolates.  相似文献   

15.
The aim of this study was to investigate the supposed vertical diel migration and the accompanying physiology of Beggiatoa bacteria from hypersaline microbial mats. We combined microsensor, stable-isotope, and molecular techniques to clarify the phylogeny and physiology of the most dominant species inhabiting mats of the natural hypersaline Lake Chiprana, Spain. The most dominant morphotype had a filament diameter of 6 to 8 microm and a length varying from 1 to >10 mm. Phylogenetic analysis by 16S rRNA gene comparison revealed that this type appeared to be most closely related (91% sequence identity) to the narrow (4-microm diameter) nonvacuolated marine strain MS-81-6. Stable-isotope analysis showed that the Lake Chiprana species could store nitrate intracellularly to 40 mM. The presence of large intracellular vacuoles was confirmed by fluorescein isothiocyanate staining and subsequent confocal microscopy. In illuminated mats, their highest abundance was found at a depth of 8 mm, where oxygen and sulfide co-occurred. However, in the dark, the highest Beggiatoa densities occurred at 7 mm, and the whole population was present in the anoxic zone of the mat. Our findings suggest that hypersaline Beggiatoa bacteria oxidize sulfide with oxygen under light conditions and with internally stored nitrate under dark conditions. It was concluded that nitrate storage by Beggiatoa is an optimal strategy to both occupy the suboxic zones in sulfidic sediments and survive the dark periods in phototrophic mats.  相似文献   

16.
The colorless, large sulfur bacteria are well known because of their intriguing appearance, size and abundance in sulfidic settings. Since their discovery in 1803 these bacteria have been classified according to their conspicuous morphology. However, in microbiology the use of morphological criteria alone to predict phylogenetic relatedness has frequently proven to be misleading. Recent sequencing of a number of 16S rRNA genes of large sulfur bacteria revealed frequent inconsistencies between the morphologically determined taxonomy of genera and the genetically derived classification. Nevertheless, newly described bacteria were classified based on their morphological properties, leading to polyphyletic taxa. We performed sequencing of 16S rRNA genes and internal transcribed spacer (ITS) regions, together with detailed morphological analysis of hand-picked individuals of novel non-filamentous as well as known filamentous large sulfur bacteria, including the hitherto only partially sequenced species Thiomargarita namibiensis, Thioploca araucae and Thioploca chileae. Based on 128 nearly full-length 16S rRNA-ITS sequences, we propose the retention of the family Beggiatoaceae for the genera closely related to Beggiatoa, as opposed to the recently suggested fusion of all colorless sulfur bacteria into one family, the Thiotrichaceae. Furthermore, we propose the addition of nine Candidatus species along with seven new Candidatus genera to the family Beggiatoaceae. The extended family Beggiatoaceae thus remains monophyletic and is phylogenetically clearly separated from other related families.  相似文献   

17.
Microscopy of organic-rich, sulfidic sediment samples of marine and freshwater origin revealed filamentous, multicellular microorganisms with gliding motility. Many of these neither contained sulfur droplets such as the Beggiatoa species nor exhibited the autofluorescence of the chlorophyll-containing cyanobacteria. A frequently observed morphological type of filamentous microorganism was enriched under anoxic conditions in the dark with isobutyrate plus sulfate. Two strains of filamentous, gliding sulfate-reducing bacteria, Tokyo 01 and Jade 02, were isolated in pure cultures. Both isolates oxidized acetate and other aliphatic acids. Enzyme assays indicated that the terminal oxidation occurs via the anaerobic C1 pathway (carbon monoxide dehydrogenase pathway). The 16S rRNA genes of the new isolates and of the two formerly described filamentous species of sulfate-reducing bacteria, Desulfonema limicola and Desulfonema magnum, were analyzed. All four strains were closely related to each other and affiliated with the δ-subclass of Proteobacteria. Another close relative was the unicellular Desulfococcus multivorans. Based on phylogenetic relationships and physiological properties, Strains Tokyo 01 and Jade 02 are assigned to a new species, Desulfonema ishimotoi. A new, fluorescently labeled oligonucleotide probe targeted against 16S rRNA was designed so that that it hybridized specifically with whole cells of Desulfonema species. Filamentous bacteria that hybridized with the same probe were detected in sediment samples and in association with the filamentous sulfur-oxidizing bacterium Thioploca in its natural habitat. We conclude that Desulfonema species constitute an ecologically significant fraction of the sulfate-reducing bacteria in organic-rich sediments and microbial mats. Received: 30 December 1998 / Accepted: 19 July 1999  相似文献   

18.
Ephemeral blooms of filamentous bacteria are a common phenomenon in the water column of oligo- to mesotrophic lakes. It is assumed that the appearance of such morphotypes is favored by selective predation of bacterivorous protists and that filter-feeding zooplankton plays a major role in suppressing these bacteria. The phylogenetic affiliation of the important bloom-forming filamentous bacteria in freshwaters is presently unknown. Here we report the identification of dominant members of a filamentous bacterial assemblage during a bloom of such morphotypes in a mesotrophic lake. By molecular cloning and fluorescence in situ hybridization with specific oligonucleotide probes, up to 98% of filamentous cells in lake water could be assigned to a clade of almost identical (99% similarity) 16S rRNA gene sequence types, the cosmopolitan freshwater LD2 cluster. For a period of less than 1 week, members of the LD2 clade constituted >40% of the total bacterial biomass, potentially favored by high grazing of planktivorous protists. This is probably the most pronounced case of dominance by a single bacterioplankton species ever observed in natural freshwaters. In enclosures artificially stocked with the metazoan filter feeder Daphnia, bacteria related to the LD2 clade formed a significantly larger fraction of filaments than in enclosures where Daphnia had been removed. However, in the presence of higher numbers of Daphnia individuals, the LD2 bacteria, like other filaments, were eventually eliminated both in enclosures and in the lake. This points at the potential importance of filter-feeding zooplankton in controlling the occurrence and species composition of filamentous bacterial morphotypes in freshwater plankton.  相似文献   

19.
Ephemeral blooms of filamentous bacteria are a common phenomenon in the water column of oligo- to mesotrophic lakes. It is assumed that the appearance of such morphotypes is favored by selective predation of bacterivorous protists and that filter-feeding zooplankton plays a major role in suppressing these bacteria. The phylogenetic affiliation of the important bloom-forming filamentous bacteria in freshwaters is presently unknown. Here we report the identification of dominant members of a filamentous bacterial assemblage during a bloom of such morphotypes in a mesotrophic lake. By molecular cloning and fluorescence in situ hybridization with specific oligonucleotide probes, up to 98% of filamentous cells in lake water could be assigned to a clade of almost identical (99% similarity) 16S rRNA gene sequence types, the cosmopolitan freshwater LD2 cluster. For a period of less than 1 week, members of the LD2 clade constituted >40% of the total bacterial biomass, potentially favored by high grazing of planktivorous protists. This is probably the most pronounced case of dominance by a single bacterioplankton species ever observed in natural freshwaters. In enclosures artificially stocked with the metazoan filter feeder Daphnia, bacteria related to the LD2 clade formed a significantly larger fraction of filaments than in enclosures where Daphnia had been removed. However, in the presence of higher numbers of Daphnia individuals, the LD2 bacteria, like other filaments, were eventually eliminated both in enclosures and in the lake. This points at the potential importance of filter-feeding zooplankton in controlling the occurrence and species composition of filamentous bacterial morphotypes in freshwater plankton.  相似文献   

20.
Within the last 10 years, numerous SSU rRNA sequences have been collected from natural populations of conspicuous, vacuolate, colorless sulfur bacteria, which form a phylogenetically cohesive cluster (large-vacuolate sulfur bacteria clade) in the gamma-Proteobacteria. Currently, this clade is composed of four named or de facto genera: all known Thioploca and Thiomargarita strains, all vacuolate Beggiatoa strains, and several strains of vacuolate, attached filaments, which bear a superficial similarity to Thiothrix. Some of these vacuolate bacteria accumulate nitrate for respiratory purposes. This clade encompasses the largest known prokaryotic cells (Thiomargarita namibiensis) and several strains that are important in the global marine sulfur cycle. Here, we report additional sequences from five pure culture strains of Beggiatoa spp., including the only two cultured marine strains (nonvacuolate), which firmly establish the root of this vacuolate clade. Each of several diverse metabolic motifs, including obligate and facultative chemolithoautotrophy, probable mixotrophy, and seemingly strict organoheterotrophy, is represented in at least one of the nonvacuolate strains that root the vacuolate clade. Because the genus designation Beggiatoa is interspersed throughout the vacuolate clade along with other recognized or de facto genera, the need for taxonomic revision is clear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号