首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the preparation of drug-loaded fibers using a modified coaxial electrospinning process, in which only unspinnable solvent was used as sheath fluid. With zein/ibuprofen (IBU) co-dissolving solution and N, N-dimethylformamide as core and sheath fluids, respectively, the drug-loaded zein fibers could be generated continuously and smoothly without any clogging of the spinneret. Field emission scanning electron microscopy and transmission electron microscopy observations demonstrated that the fibers had ribbon morphology with a smooth surface. Their average diameters were 0.94 ± 0.34 and 0.67 ± 0.21 μm when the sheath-to-core flow rate ratios were taken as 0.11 and 0.25, respectively. X-ray diffraction and differential scanning calorimetry verified that IBU was in an amorphous state in all fiber composites. Fourier transform infrared spectra showed that zein had good compatibility with IBU owing to hydrogen bonding. In vitro dissolution tests showed that all the fibers could provide sustained drug release files via a typical Fickian diffusion mechanism. The modified coaxial electrospinning process reported here can expand the capability of electrospinning in generating fibers and provides a new manner for developing novel drug delivery systems.KEYWORDS: coaxial electrospinning, drug-loaded fibers, sheath solvent, sustained release, zein  相似文献   

2.
The broader application of liposomes in regenerative medicine is hampered by their short half-life and inefficient retention at the site of application. These disadvantages could be significantly reduced by their combination with nanofibers. We produced 2 different nanofiber-liposome systems in the present study, that is, liposomes blended within nanofibers and core/shell nanofibers with embedded liposomes. Herein, we demonstrate that blend electrospinning does not conserve intact liposomes. In contrast, coaxial electrospinning enables the incorporation of liposomes into nanofibers. We report polyvinyl alcohol-core/poly-ε-caprolactone-shell nanofibers with embedded liposomes and show that they preserve the enzymatic activity of encapsulated horseradish peroxidase. The potential of this system was also demonstrated by the enhancement of mesenchymal stem cell proliferation. In conclusion, intact liposomes incorporated into nanofibers by coaxial electrospinning are very promising as a drug delivery system.  相似文献   

3.
Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning   总被引:1,自引:0,他引:1  
Core-shell structured PEO-chitosan nanofibers have been produced using a coaxial electrospinning setup. PEO and chitosan solutions, both in an aqueous acetic acid solvent, were used as the inner (core) and outer (shell) layer, respectively. Uniform-sized defect-free nanofibers of 150-190 nm diameter were produced. In addition, hollow nanofibers could be obtained subsequent to PEO washing of the membranes. The core-shell nanostructure and existence of chitosan on the shell layer were confirmed by TEM images obtained before and after washing the PEO content with water. The presence of chitosan on the surface of the composite nanofibers was further supported by XPS studies. The chitosan and PEO compositions in the nanofibrous mats were determined by TGA analysis, which were similar to their ratio in the feed solutions. The local compositional homogeneity of the membranes and the efficiency of the washing step to remove PEO were also verified by FTIR. In addition, DSC and XRD were used to characterize the crystalline structure and morphology of the co-electrospun nonwoven mats. The prepared coaxial nanofibers (hollow and solid) have several potential applications due to the presence of chitosan on their outer surfaces.  相似文献   

4.
Chitosan is an abundantly common, naturally occurring, polysaccharide biopolymer. Its biocompatible, biodegradable, and antimicrobial properties have led to significant research toward biological applications such as drug delivery, artificial tissue scaffolds for functional tissue engineering, and wound-healing dressings. For applications such as tissue scaffolding, formation of highly porous mats of nanometer-sized fibers, such as those fabricated via electrospinning, may be quite important. Previously, strong acidic solvents and blending with synthetic polymers have been used to achieve electrospun nanofibers containing chitosan. As an alternative approach, in this work, polyethylene oxide (PEO) has been used as a template to fabricate chitosan nanofibers by electrospinning in a core-sheath geometry, with the PEO sheath serving as a template for the chitosan core. Solutions of 3 wt % chitosan (in acetic acid) and 4 wt % PEO (in water) were found to have matching rheological properties that enabled efficient core-sheath fiber formation. After removing the PEO sheath by washing with deionized water, chitosan nanofibers were obtained. Electron microscopy confirmed nanofibers of approximately 250 nm diameter with a clear core-sheath geometry before sheath removal, and chitosan nanofibers of approximately 100 nm diameter after washing. The resultant fibers were characterized with IR spectroscopy and X-ray diffraction, and the mechanical and electrical properties were evaluated.  相似文献   

5.
Coaxial electrospinning is used to fabricate nanofibers with gelatin in the shell and polyvinyl alcohol (PVA) in the core in order to derive mechanical strength from PVA and bioactivity from gelatin. At a 1:1 PVA/gelatin mass ratio, the core‐shell nanofiber scaffolds display a Young's modulus of 168.6 ± 36.5 MPa and a tensile strength of 5.42 ± 1.95 MPa, which are significantly higher than those of the scaffolds composed solely of gelatin or PVA. The Young's modulus and tensile strength of the core‐shell nanofibers are further improved by reducing the PVA/gelatin mass ratio from 1:1 to 1:3. The mechanical analysis of the core‐shell nanofibers suggests that the presence of the gelatin shell may improve the molecular alignment of the PVA core, transforming the semi‐crystalline, plastic PVA into a more crystallized, elastic PVA, and enhancing the mechanical properties of the core. Lastly, the PVA/gelatin core‐shell nanofibers possess cellular viability, proliferation, and adhesion similar to these of the gelatin nanofibers, and show significantly higher proliferation and adhesion than the PVA nanofibers. Taken together, the coaxial electrospinning of nanofibers with a core‐shell structure permits integration of the bioactivity of gelatin and the mechanical strength of PVA in single fibers. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 336–346, 2014.  相似文献   

6.
Electrospun nanofiber scaffolds have been shown to accelerate the maturation, improve the growth, and direct the migration of cells in vitro. Electrospinning is a process in which a charged polymer jet is collected on a grounded collector; a rapidly rotating collector results in aligned nanofibers while stationary collectors result in randomly oriented fiber mats. The polymer jet is formed when an applied electrostatic charge overcomes the surface tension of the solution. There is a minimum concentration for a given polymer, termed the critical entanglement concentration, below which a stable jet cannot be achieved and no nanofibers will form - although nanoparticles may be achieved (electrospray). A stable jet has two domains, a streaming segment and a whipping segment. While the whipping jet is usually invisible to the naked eye, the streaming segment is often visible under appropriate lighting conditions. Observing the length, thickness, consistency and movement of the stream is useful to predict the alignment and morphology of the nanofibers being formed. A short, non-uniform, inconsistent, and/or oscillating stream is indicative of a variety of problems, including poor fiber alignment, beading, splattering, and curlicue or wavy patterns. The stream can be optimized by adjusting the composition of the solution and the configuration of the electrospinning apparatus, thus optimizing the alignment and morphology of the fibers being produced. In this protocol, we present a procedure for setting up a basic electrospinning apparatus, empirically approximating the critical entanglement concentration of a polymer solution and optimizing the electrospinning process. In addition, we discuss some common problems and troubleshooting techniques.  相似文献   

7.
We report on the preparation and characterization of core-shell structure of bovine serum albumin (BSA) blended poly(vinyl alcohol) (PVA) composite nanofibers by using electrospinning process. The core-shell structure nanofibers have been electrospun from the homogeneous solution of BSA (as shell) and PVA (as core). The morphology, chemical compositions, structure and thermal properties of the resultant products were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDX), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry, thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) techniques. The blending ratio of PVA and BSA, molecular weight of BSA and the applied voltage of electrospinning process were observed to be the key influence factors on the formation of core-shell nanofibers structure. Based on the experimental findings, we proposed a possible physical mechanism for the formation of core-shell nanofibers structure of PVA blended BSA composite.  相似文献   

8.
Significant enhancement of P3HT (poly(3‐hexylthiophene)):PC61BM ([6,6]‐phenyl C61‐butyric acid methyl ester) photovoltaic devices using different patterns of electrospun Ag/PVP composite nanofibers, including nonwoven, aligned, and crossed patterns, is reported. The composite electrospun nanofibers are prepared using in situ reduction of silver (Ag) nanoparticles in Ag/poly(vinyl pyrrolidone) (PVP) via a two‐fluid coaxial electrospinning technique. The composition, crystalline orientation, and particle size of Ag are manipulated by controlling the core/shell solution concentration. The smallest diameter of the composite nanofibers leads to the highest orientation of the Ag nanoparticles and results in the largest conductivity due to geometric confinement. Such composite nanofibers exhibit the surface plasmon resonance (SPR) effect, which provides near field enhancement of electromagnetic field around active layer. Additionally, composite nanofibers with the crossed or nonwoven patterns further enhance high carrier mobility, compared to that of the aligned pattern. It leads to the 18.7% enhancement of the power conversion efficiency of photovoltaic cell compared to the parent device. The results indicate that the high conductivity and SPR effect of the Ag/PVP electrospun nanofibers can significantly improve the photocurrent and PCE, leading to promising organic solar cell applications.  相似文献   

9.
Nanofibers consisting of the bulk heterojunction organic photovoltaic (BHJ–OPV) electron donor–electron acceptor pair poly(3‐hexylthiophene):phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) are produced through a coaxial electrospinning process. While P3HT:PCBM blends are not directly electrospinnable, P3HT:PCBM‐containing fibers are produced in a coaxial fashion by utilizing polycaprolactone (PCL) as an electrospinnable sheath material. Pure P3HT:PCBM fibers are easily obtained after electrospinning by selectively removing the PCL sheath with cyclopentanone (average diameter 120 ± 30 nm). These fibers are then incorporated into the active layer of a BHJ–OPV device, which results in improved short‐circuit current densities, fill factors, and power‐conversion efficiencies (PCE) as compared to thin‐film devices of identical chemical composition. The best‐performing fiber‐based devices exhibit a PCE of 4.0%, while the best thin‐film devices have a PCE of 3.2%. This increase in device performance is attributed to the increased in‐plane alignment of P3HT polymer chains on the nanoscale, caused by the electrospun fibers, which leads to increased optical absorption and subsequent exciton generation. This methodology for improving device performance of BHJ–OPVs could also be implemented for other electron donor–electron acceptor systems, as nanofiber formation is largely independent of the PV material.  相似文献   

10.
Sodium‐ion batteries (SIBs) are considered to be promising energy storage devices for large‐scale grid storage application due to the vast earth‐abundance and low cost of sodium‐containing precursors. Designing and fabricating a highly efficient anode is one of the keys to improve the electrochemical performance of SIBs. Recently, fluoride‐based materials are found to show an exceptional anode function with high theoretical specific capacity, based on open‐framework structure enabling Na insertion and also exhibiting improved safety. However, fluoride‐based materials suffer from sluggish kinetics and poor capacity retention essentially due to low electric conductivity. Here, an efficient mixed‐conducting network offering fast pathways is proposed to address these issues. This network relies on titanium fluoride?carbon (TiF3?C) core/sheath nanofibers that are prepared via electrospinning. Such highly interconnected electrodes exhibit an enhanced and faster sodium storage performance. Carbon sheath nanofibers are key to an efficient ion‐ and electron‐conducting network that enable Na+/e? transfer to reach the nanosized TiF3. In addition, in‐situ‐converted Ti and NaF particles embedded in the carbon matrix allow high reversible interfacial storage. As a result, the TiF3?C core/sheath electrode exhibits a high capacity of 161 mAh g?1 at a high current density of 1000 mA g?1 over 2000 cycles.  相似文献   

11.
Jet-based technologies are increasingly being explored as potential high-throughput and high-resolution methods for the manipulation of biological materials. Previously shown to be of use in generating scaffolds from biocompatible materials, we were interested to explore the possibility of using electrospinning technology for the generation of scaffolds comprised of living cells. For this, it was necessary to identify appropriate parameters under which viable threads containing living cells could be produced. Here, we describe a method of electrospinning that can be used to deposit active biological threads and scaffolds. This has been achieved by use of a coaxial needle arrangement where a concentrated living biosuspension flows through the inner needle and a medical-grade poly(dimethylsiloxane) (PDMS) medium with high viscosity (12,500 mPa s) and low electrical conductivity (10-15 S m-1) flows through the outer needle. Using this technique, we have identified the operational conditions under which the finest cell-bearing composite microthreads are formed. Collected cells that have been cultured, postelectrospinning, have been viable and show no evidence of having incurred any cellular damage during the bionanofabrication process. This study demonstrates the feasibility of using coaxial electrospinning technology for biological and biomedical applications requiring the deposition of living cells as composite microthreads for forming active biological scaffolds.  相似文献   

12.
In this study, biodegradable poly(ε-caprolactone) (PCL) nanofibers (PCL-NF), collagen-coated PCL nanofibers (Col-c-PCL), and titanium dioxide-incorporated PCL (TiO2-i-PCL) nanofibers were prepared by electrospinning technique to study the surface and structural compatibility of these scaffolds for skin tisuue engineering. Collagen coating over the PCL nanofibers was done by electrospinning process. Morphology of PCL nanofibers in electrospinning was investigated at different voltages and at different concentrations of PCL. The morphology, interaction between different materials, surface property, and presence of TiO2 were studied by scanning electron microscopy (SEM), Fourier transform IR spectroscopy (FTIR), contact angle measurement, energy dispersion X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). MTT assay and cell adhesion study were done to check biocompatibilty of these scaffolds. SEM study confirmed the formation of nanofibers without beads. FTIR proved presence of collagen on PCL scaffold, and contact angle study showed increment of hydrophilicity of Col-c-PCL and TiO2-i-PCL due to collagen coating and incorporation of TiO2, respectively. EDX and XPS studies revealed distribution of entrapped TiO2 at molecular level. MTT assay and cell adhesion study using L929 fibroblast cell line proved viability of cells with attachment of fibroblasts over the scaffold. Thus, in a nutshell, we can conclude from the outcomes of our investigational works that such composite can be considered as a tissue engineered construct for skin wound healing.  相似文献   

13.
The effect of nanofiber surface coatings on the cell's proliferation behavior was studied. Individually collagen-coated poly(epsilon-caprolactone) (PCL) nanofibers (i.e., Collagen-r-PCL in the form of a core-shell structure) were prepared by a coaxial electrospinning technique. A roughly collagen-coated PCL nanofibrous matrix was also prepared by soaking the PCL matrix in a 10 mg/mL collagen solution overnight. These two types of coated nanofibers were then used to investigate differences in biological responses in terms of proliferation and cell morphology of human dermal fibroblasts (HDF). It was found that coatings of collagen on PCL nanofibrous matrix definitely favored cells proliferation, and the efficiency is coating means dependent. As compared to PCL, the HDF density on the Collagen-r-PCL nanofiber membrane almost increased linearly by 19.5% (2 days), 22.9% (4 days), and 31.8% (6 days). In contrast, the roughly collagen-coated PCL increased only by 5.5% (2 days), 11.0% (4 days), and 21.0% (6 days). SEM observation indicated that the Collagen-r-PCL nanofibers encouraged cell migration inside the scaffolds. These findings suggest that the Collagen-r-PCL nanofibers can be used as novel functional biomimetic nanofibers toward achieving excellent integration between cells and scaffolds for tissue engineering applications.  相似文献   

14.
Nanofibrous scaffolds have been recently used in the field of tissue engineering because of their nano-size structure which promotes cell attachment, function, proliferation and infiltration. In this study, nanofibrous polyethersulfone (PES) scaffolds was prepared via electrospinning. The scaffolds were surface modified by plasma treatment and collagen grafting. The surface changes then investigated by contact angle measurements and FTIR-ATR. The results proved grafting of the collagen on nanofibers surface and increased hydrophilicity after plasma treatment and collagen grafting. The cell interaction study was done using stem cells because of their ability to differentiate to different kinds of cell lines. The cells had normal morphology on nanofibers and showed very high infiltration through collagen grafted PES nanofibers. This infiltration capability is very useful and needed to make 3D scaffolds in tissue engineering.  相似文献   

15.
Protein-loaded (bovine serum albumin (BSA) or luciferase) poly(vinyl alcohol) (PVA) nanofibers were obtained by electrospinning. Poly(p-xylylene) (PPX, also coined as parylene) coated PVA/BSA nanofibers were prepared by chemical vapor deposition (CVD). The release of BSA from PVA nanofibers under physiological conditions was monitored by absorption spectroscopy. Burst release of BSA was noted with uncoated PVA nanofibers. In contrast, PPX-coated nanofibers exhibited a significantly retarded release of BSA depending on the coating thickness of PPX (ranging from 40 to 300 nm). Luciferase was used here as model enzyme, which after electrospinning retained its enzyme activity. This preservation of enzyme activity and the continuous release of the intact enzyme from the immersed fibers meets a fundamental prerequisite for the application of enzymes or other sensitive agents released from electrospun nanofibers under physiological conditions.  相似文献   

16.
The concept of biocompatible,osteoconductive and noninflammatory material mimicking the structure of natural bone has generated a considerable interest in recent decades.Hydroxyapatite (HA) is an important bionic material that is used for bone grafting in osseous defects and drug carriers.HA with various morphologies and surface properties have been widely investigated.In this paper,HA nanofibers are produced through a combination of electrospinning and sol-gel technique.The morphologies,composition and structure are investigated by Scanning Electron Microscopy (SEM),Thermogravimetic Analysis (TGA),Fourier Transform Infrared (FTIR),X-ray Diffraction (XRD) patterns,Transmission Electron Microscopy (TEM).The results show that HA nanofibers are even and well-crystallized,and pH is crucial for producing HA nanofibers.With the change ofpH from 4 to 9,nanofibers grow densely along (210) plane and become compact while surface area,pore volume and pore size decrease correspondingly.The synthesized HA nanofibers are nontoxic and safe.Zn can be also incorporated into HA nanofibers,which will endow them with more perfect function.  相似文献   

17.
Electrospinning has been used to prepare nanofibers from diverse biopolymers. Here we report on preparation of fibers by electrospinning of levan (a polysaccharide) from distilled water. A high concentration of levan was required for fiber formation. This suggests that higher concentrations enable the formation of chain entanglements required to maintain the jet strength. In general, fiber diameter decreased with increased voltage, distance between collector plate and needle and decreased pump flow rate. X-ray diffraction of the fibers showed a highly amorphous character in levan formed from solution compared to the levan powder.  相似文献   

18.
Nie H  He A  Zheng J  Xu S  Li J  Han CC 《Biomacromolecules》2008,9(5):1362-1365
As a natural biopolymer, sodium alginate (SA) has been widely used in the biomedical field in the form of powder, liquid, gel, and compact solid, but not in the form of nanofiber. Electrospinning is an effective method to fabricate nanofibers. However, electrospinning of SA from its aqueous solution is still a challenge. In this study, an effort has been made to solve this problem and find the key reasons that hinder the electrospinning of alginate aqueous solution. Through this research, it was found that pure SA nanofibers could be fabricated successfully by introducing a strong polar cosolvent, glycerol, into the SA aqueous solutions. The study on the properties of the modified SA solution showed that increasing glycerol content increased the viscosity of the SA solution greatly and, meanwhile, decreased the surface tension and the conductivity of the SA solution. The rheological results indicated that the increase in glycerol content could result in the enhanced entanglements of SA chains. Two schematic molecular models were proposed to depict the change of SA chain conformation in aqueous solution with and without glycerol. The main contribution of glycerol to the electrospinning process is to improve the flexibility and entanglement of SA chains by disrupting the strong inter- and intramolecular hydrogen bondings among SA chains, then forming new hydrogen bondings with SA chains.  相似文献   

19.
As an aim toward developing biologically mimetic and functional nanofiber-based tissue engineering scaffolds, we demonstrated the encapsulation of a model protein, fluorescein isothiocyanate-conjugated bovine serum albumin (fitcBSA), along with a water-soluble polymer, poly(ethylene glycol) (PEG), within the biodegradable poly(epsilon-caprolactone) (PCL) nanofibers using a coaxial electrospinning technique. By variation of the inner flow rates from 0.2 to 0.6 mL/h with a constant outer flow rate of 1.8 mL/h, fitcBSA loadings of 0.85-2.17 mg/g of nanofibrous membranes were prepared. Variation of flow rates also resulted in increases of fiber sizes from ca. 270 nm to 380 nm. The encapsulation of fitcBSA/PEG within PCL was subsequently characterized by laser confocal scanning microscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. In vitro release studies were conducted to evaluate sustained release potential of the core-sheath-structured composite nanofiber PCL-r-fitcBSA/PEG. As a negative control, composite nanofiber PCL/fitcBSA/PEG blend was prepared from a normal electrospinning method. It was found that core-sheath nanofibers PCL-r-fitcBSA/PEG pronouncedly alleviated the initial burst release for higher protein loading and gave better sustainability compared to that of PCL/fitcBSA/PEG nanofibers. The present study would provide a basis for further design and optimization of processing conditions to control the nanostructure of core-sheath composite nanofibers and ultimately achieve desired release kinetics of bioactive proteins (e.g., growth factors) for practical tissue engineering applications.  相似文献   

20.
The present paper reports, for the first time, the successful fabrication of layered double hydroxide (Mg-Al LDH)-reinforced polycaprolactone (PCL) nanofibers by electrospinning. Either the LDH in carbonate form or an LDH organically modified with 12-hydroxydodecanoic acid (LDH-HA) were incorporated into PCL and electrospun using a voltage of 20 KV. The LDH-HA was prepared by an ionic exchange reaction from pristine LDH and encapsulated into PCL from acetone solutions at 15 wt %. The morphological analysis showed pure PCL fibers with an average diameter of 600 +/- 50 nm, and this dimension was maintained in the fibers with LDH, with the inorganic component residing outside the fibers and not exfoliated. At variance, the fibers with the LDH-HA showed a significantly lower average diameter in the range of 350 +/- 50 nm, indicating the improved electrospinnability of PCL. Moreover, the inorganic lamellae were exfoliated, as shown by X-rays and residing inside the nanofibers as demonstrated by energy dispersive X-ray spectroscopy analysis. The structural parameters, such as degradation temperature and crystallinity, were investigated for all the samples and correlated with the electrospinning process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号