首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CNS midline cells, specified by the single-minded (sim) gene, are required for the proper patterning of the ventral CNS and epidermis, which are derived from the Drosophila ventral neuroectoderm. Defects in the sim mutant are characterized by the loss of the gene expression, which is required for the proper formation of the ventral neurons and epidermis, and by a decrease in the spacing of longitudinal and commissural axon tracks. Molecular and cellular mechanisms for these defects were analyzed to elucidate the precise role of the CNS midline cells in proper patterning of the ventral neuroectoderm during embryonic neurogenesis. These analyses showed that the ventral neuroectoderm in the sim mutant fails to carry out its proper formation and characteristic cell division cycle. This resulted in the loss of the dividing neuroectodermal cells that are located ventral to the CNS midline. The CNS midline cells are also required for the cell cycle-independent expression of the neural and epidermal markers. This indicates that the CNS midline cells are essential for the establishment and maintenance of the ventral epidermal and neuronal cell lineage by cell-cell interaction. On the other hand, the CNS midline cells do not cause extensive cell death in the ventral neuroectoderm. This study indicates that the CNS midline cells play important roles in the coordination of the proper cell cycle progression and the correct identity determination of the adjacent ventral neuroectoderm along the dorsoventral axis.  相似文献   

2.
There is emerging evidence that stem cells can rejuvenate damaged cells by mitochondrial transfer. Earlier studies show that epithelial mitochondrial dysfunction is critical in asthma pathogenesis. Here we show for the first time that Miro1, a mitochondrial Rho‐GTPase, regulates intercellular mitochondrial movement from mesenchymal stem cells (MSC) to epithelial cells (EC). We demonstrate that overexpression of Miro1 in MSC (MSCmiroHi) leads to enhanced mitochondrial transfer and rescue of epithelial injury, while Miro1 knockdown (MSCmiroLo) leads to loss of efficacy. Treatment with MSCmiroHi was associated with greater therapeutic efficacy, when compared to control MSC, in mouse models of rotenone (Rot) induced airway injury and allergic airway inflammation (AAI). Notably, airway hyperresponsiveness and remodeling were reversed by MSCmiroHi in three separate allergen‐induced asthma models. In a human in vitro system, MSCmiroHi reversed mitochondrial dysfunction in bronchial epithelial cells treated with pro‐inflammatory supernatant of IL‐13‐induced macrophages. Anti‐inflammatory MSC products like NO, TGF‐β, IL‐10 and PGE2, were unchanged by Miro1 overexpression, excluding non‐specific paracrine effects. In summary, Miro1 overexpression leads to increased stem cell repair.  相似文献   

3.
4.
Cell therapy plays an important role in multidisciplinary management of the two major forms of central nervous system (CNS) injury, traumatic brain injury and spinal cord injury, which are caused by external physical trauma. Cell therapy for CNS disorders involves the use of cells of neural or non-neural origin to replace, repair, or enhance the function of the damaged nervous system and is usually achieved by transplantation of the cells, which are isolated and may be modified, e.g., by genetic engineering, when it may be referred to as gene therapy. Because the adult brain cells have a limited capacity to migrate to and regenerate at sites of injury, the use of embryonic stem cells that can be differentiated into various cell types as well as the use of neural stem cells has been explored. Preclinical studies and clinical trials are reviewed. Advantages as well as limitations are discussed. Cell therapy is promising for the treatment of CNS injury because it targets multiple mechanisms in a sustained manner. It can provide repair and regeneration of damaged tissues as well as prolonged release of neuroprotective and other therapeutic substances.  相似文献   

5.
In plant cells, cytokinesis depends on a cytoskeletal structure called a phragmoplast, which directs the formation of a new cell wall between daughter nuclei after mitosis. The orientation of cell division depends on guidance of the phragmoplast during cytokinesis to a cortical site marked throughout prophase by another cytoskeletal structure called a preprophase band. Asymmetrically dividing cells become polarized and form asymmetric preprophase bands prior to mitosis; phragmoplasts are subsequently guided to these asymmetric cortical sites to form daughter cells of different shapes and/or sizes. Here we describe two new recessive mutations, discordia1 (dcd1) and discordia2 (dcd2), which disrupt the spatial regulation of cytokinesis during asymmetric cell divisions. Both mutations disrupt four classes of asymmetric cell divisions during the development of the maize leaf epidermis, without affecting the symmetric divisions through which most epidermal cells arise. The effects of dcd mutations on asymmetric cell division can be mimicked by cytochalasin D treatment, and divisions affected by dcd1 are hypersensitive to the effects of cytochalasin D. Analysis of actin and microtubule organization in these mutants showed no effect of either mutation on cell polarity, or on formation and localization of preprophase bands and spindles. In mutant cells, phragmoplasts in asymmetrically dividing cells are structurally normal and are initiated in the correct location, but often fail to move to the position formerly occupied by the preprophase band. We propose that dcd mutations disrupt an actin-dependent process necessary for the guidance of phragmoplasts during cytokinesis in asymmetrically dividing cells.  相似文献   

6.
7.
J R Nambu  R G Franks  S Hu  S T Crews 《Cell》1990,63(1):63-75
The single-minded (sim) gene of Drosophila encodes a nuclear protein that plays a critical role in the development of the neurons, glia, and other nonneuronal cells that lie along the midline of the embryonic CNS. Using distinct cell fate markers, we observe that in sim mutant embryos the midline cells fail to differentiate properly into their mature CNS cell types and do not take their appropriate positions within the developing CNS. We further present evidence that sim is required for midline expression of a group of genes including slit, Toll, rhomboid, engrailed, and a gene at 91F; that the sim mutant CNS defect may be largely due to loss of midline slit expression; and that the snail gene is required to repress sim and other midline genes in the presumptive mesoderm.  相似文献   

8.
Central nervous system (CNS) midline cells are essential for identity determination and differentiation of neurons in the Drosophila nervous system. It is not clear, however, whether CNS midline cells are also involved in the development of lateral glial cells. The roles of CNS midline cells in lateral glia development were elucidated using general markers for lateral glia, such as glial cell missing and reverse polarity, and specific enhancer trap lines labeling the longitudinal, A, B, medial cell body, peripheral, and exit glia. We found that CNS midline cells were necessary for the proper expression of glial cell missing, reverse polarity, and other lateral glia markers only during the later stages of development, suggesting that they are not required for initial identity determination. Instead, CNS midline cells appear to be necessary for proper division and survival of lateral glia. CNS midline cells were also required for proper positioning of three exit glia at the junction of segmental and intersegmental nerves, as well as some peripheral glia along motor and sensory axon pathways. This study demonstrated that CNS midline cells are extrinsically required for the proper division, migration, and survival of various classes of lateral glia from the ventral neuroectoderm.  相似文献   

9.
In the current model of mitochondrial trafficking, Miro1 and Miro2 Rho‐GTPases regulate mitochondrial transport along microtubules by linking mitochondria to kinesin and dynein motors. By generating Miro1/2 double‐knockout mouse embryos and single‐ and double‐knockout embryonic fibroblasts, we demonstrate the essential and non‐redundant roles of Miro proteins for embryonic development and subcellular mitochondrial distribution. Unexpectedly, the TRAK1 and TRAK2 motor protein adaptors can still localise to the outer mitochondrial membrane to drive anterograde mitochondrial motility in Miro1/2 double‐knockout cells. In contrast, we show that TRAK2‐mediated retrograde mitochondrial transport is Miro1‐dependent. Interestingly, we find that Miro is critical for recruiting and stabilising the mitochondrial myosin Myo19 on the mitochondria for coupling mitochondria to the actin cytoskeleton. Moreover, Miro depletion during PINK1/Parkin‐dependent mitophagy can also drive a loss of mitochondrial Myo19 upon mitochondrial damage. Finally, aberrant positioning of mitochondria in Miro1/2 double‐knockout cells leads to disruption of correct mitochondrial segregation during mitosis. Thus, Miro proteins can fine‐tune actin‐ and tubulin‐dependent mitochondrial motility and positioning, to regulate key cellular functions such as cell proliferation.  相似文献   

10.
11.
Stem cells and neuroblasts derived from mouse embryos undergo repeated asymmetric cell divisions, generating neural lineage trees similar to those of invertebrates. In Drosophila, unequal distribution of Numb protein during mitosis produces asymmetric cell divisions and consequently diverse neural cell fates. We investigated whether a mouse homologue m-numb had a similar role during mouse cortical development. Progenitor cells isolated from the embryonic mouse cortex were followed as they underwent their next cell division in vitro. Numb distribution was predominantly asymmetric during asymmetric cell divisions yielding a beta-tubulin III(-) progenitor and a beta-tubulin III(+) neuronal cell (P/N divisions) and predominantly symmetric during divisions producing two neurons (N/N divisions). Cells from the numb knockout mouse underwent significantly fewer asymmetric P/N divisions compared to wild type, indicating a causal role for Numb. When progenitor cells derived from early (E10) cortex undergo P/N divisions, both daughters express the progenitor marker Nestin, indicating their immature state, and Numb segregates into the P or N daughter with similar frequency. In contrast, when progenitor cells derived from later E13 cortex (during active neurogenesis in vivo) undergo P/N divisions they produce a Nestin(+) progenitor and a Nestin(-) neuronal daughter, and Numb segregates preferentially into the neuronal daughter. Thus during mouse cortical neurogenesis, as in Drosophila neurogenesis, asymmetric segregation of Numb could inhibit Notch activity in one daughter to induce neuronal differentiation. At terminal divisions generating two neurons, Numb was symmetrically distributed in approximately 80% of pairs and asymmetrically in 20%. We found a significant association between Numb distribution and morphology: most sisters of neuron pairs with symmetric Numb were similar and most with asymmetric Numb were different. Developing cortical neurons with Numb had longer processes than those without. Numb is expressed by neuroblasts and stem cells and can be asymmetrically segregated by both. These data indicate Numb has an important role in generating asymmetric cell divisions and diverse cell fates during mouse cortical development.  相似文献   

12.
Lysophosphatidic acid (LPA) is released from platelets following injury and also plays a role in neural development but little is known about its effects in the adult central nervous system (CNS). We have examined the expression of LPA receptors 1-3 (LPA1–3) in intact mouse spinal cord and cortical tissues and following injury. In intact and injured tissues, LPA1 was expressed by ependymal cells in the central canal of the spinal cord and was upregulated in reactive astrocytes following spinal cord injury. LPA2 showed low expression in intact CNS tissue, on grey matter astrocytes in spinal cord and in ependymal cells lining the lateral ventricle. Following injury, its expression was upregulated on astrocytes in both cortex and spinal cord. LPA3 showed low expression in intact CNS tissue, viz. on cortical neurons and motor neurons in the spinal cord, and was upregulated on neurons in both regions after injury. Therefore, LPA1–3 are differentially expressed in the CNS and their expression is upregulated in response to injury. LPA release following CNS injury may have different consequences for each cell type because of this differential expression in the adult nervous system.  相似文献   

13.
Our goal is to understand the molecular mechanisms that govern the formation of the central nervous system. In particular, we have focused on the development of a small group of neurons and glia that lie along the midline of the Drosophila CNS. These midline cells possess a number of unique attributes which make them particularly amenable to molecular, cellular, and genetic examinations of nervous system formation and function. In addition, the midline cells exhibit distinctive ontogeny, morphology, anatomical position, and patterns of gene expression which suggest that they may provide unique functions to the developing CNS. The single-minded gene encodes a nuclear protein which is specifically expressed in the midline cells and has been shown to play a crucial role in midline cell development and CNS formation. Genetic experiments reveal that sim is required for the expression of many CNS midline genes which are thought to be involved in the proper differentiation of these cells. In order to identify additional genes which are expressed in some or all of the midline cells at different developmental stages, a technique known as enhancer trap screening was employed. This screen led to the identification of a large number of potential genes which exhibit various midline expression patterns and may be involved in discrete aspects of midline cell development. Further molecular, genetic, and biochemical analyses of sim and several of the enhancer trap lines are being pursued. This should permit elucidation of the genetic hierarchy which acts in the specification, differentiation, and function of these CNS midline cells.  相似文献   

14.
Mutations in adenomatous polyposis coli (APC) disrupt regulation of Wnt signaling, mitosis, and the cytoskeleton. We describe a new role for APC in the transport of mitochondria. Silencing of wild-type APC by small interfering RNA caused mitochondria to redistribute from the cell periphery to the perinuclear region. We identified novel APC interactions with the mitochondrial kinesin-motor complex Miro/Milton that were mediated by the APC C-terminus. Truncating mutations in APC abolished its ability to bind Miro/Milton and reduced formation of the Miro/Milton complex, correlating with disrupted mitochondrial distribution in colorectal cancer cells that could be recovered by reconstitution of wild-type APC. Using proximity ligation assays, we identified endogenous APC-Miro/Milton complexes at mitochondria, and live-cell imaging showed that loss of APC slowed the frequency of anterograde mitochondrial transport to the membrane. We propose that APC helps drive mitochondria to the membrane to supply energy for cellular processes such as directed cell migration, a process disrupted by cancer mutations.  相似文献   

15.
Sun Y  Goderie SK  Temple S 《Neuron》2005,45(6):873-886
It has been debated whether asymmetric distribution of cell surface receptors during mitosis could generate asymmetric cell divisions by yielding daughters with different environmental responsiveness and, thus, different fates. We have found that in mouse embryonic forebrain ventricular and subventricular zones, the EGFR can distribute asymmetrically during mitosis in vivo and in vitro. This occurs during divisions yielding two Nestin+ progenitor cells, via an actin-dependent mechanism. The resulting sibling progenitor cells respond differently to EGFR ligand in terms of migration and proliferation. Moreover, they express different phenotypic markers: the EGFRhigh daughter usually has radial glial/astrocytic markers, while its EGFRlow sister lacks them, indicating fate divergence. Lineage trees of cultured cortical glioblasts reveal repeated EGFR asymmetric distribution, and asymmetric divisions underlie formation of oligodendrocytes and astrocytes in clones. These data suggest that asymmetric EGFR distribution contributes to forebrain development by creating progenitors with different proliferative, migratory, and differentiation responses to ligand.  相似文献   

16.
Compelling evidence exists that neural stem cell-based therapies protect the central nervous system (CNS) from chronic inflammatory degeneration, such as that occurring in experimental autoimmune encephalomyelitis and stroke. It was first assumed that stem cells directly replace lost cells but it is now becoming clearer that they might be able to protect the nervous system through mechanisms other than cell replacement. In immune-mediated experimental demyelination and stroke, transplanted neural stem/precursor cells (NPCs) are able to mediate efficient bystander myelin repair and axonal rescue. This is dependent on multiple capacities that transplanted NPCs exhibit within specific microenvironments after transplantation. However, a comprehensive understanding of the mechanisms by which NPCs exert their therapeutic impact is lacking. Here we will review some of the most recent evidence--and discuss some of the likely mechanisms--that support the remarkable capacity of NPCs to cross-talk with endogenous cells and to remodel the injured nervous system when applied as novel therapeutic regimes. We foresee that the exploitation of the innate mechanisms regulating these modalities of cell-to-cell communication has realistic chances of revolutionizing most of the actual understanding of stem cell biology and its application to regenerative medicine and CNS repair.  相似文献   

17.
Traumatic injury to the central nervous system (CNS) is highly debilitating, with the clinical need for regenerative therapies apparent. Neural stem/progenitor cells (NSPCs) are promising because they can repopulate lost or damaged cells and tissues. However, the adult CNS does not provide an optimal milieu for exogenous NSPCs to survive, engraft, differentiate, and integrate with host tissues. This review provides an overview of tissue engineering strategies to improve stem cell therapies by providing a defined microenvironment during transplantation. The use of biomaterials for physical support, growth factor delivery, and cellular co-transplantation are discussed. Providing the proper environment for stem cell survival and host tissue integration is crucial in realizing the full potential of these cells in CNS repair strategies.  相似文献   

18.
Turbic A  Leong SY  Turnley AM 《PloS one》2011,6(9):e25406
Adult neural precursor cells (NPCs) respond to injury or disease of the CNS by migrating to the site of damage or differentiating locally to replace lost cells. Factors that mediate this injury induced NPC response include chemokines and pro-inflammatory cytokines, such as tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ), which we have shown previously promotes neuronal differentiation. RT-PCR was used to compare expression of chemokines and their receptors in normal adult mouse brain and in cultured NPCs in response to IFNγ and TNFα. Basal expression of many chemokines and their receptors was found in adult brain, predominantly in neurogenic regions, with OB?SVZ>hippocampus and little or no expression in non-neurogenic regions, such as cortex. Treatment of SVZ-derived NPCs with IFNγ and TNFα (alone and in combination) resulted in significant upregulation of expression of specific chemokines, with CXCL1, CXCL9 and CCL2 most highly upregulated and CCL19 downregulated. Unlike IFNγ, chemokine treatment of NPCs in vitro had little or no effect on survival, proliferation or migration. Neuronal differentiation was promoted by CXCL9, CCL2 and CCL21, while astrocyte and total oligodendrocyte differentiation was not affected. However, IFNγ, CXCL1, CXCL9 and CCL2 promoted oligodendrocyte maturation. Therefore, not only do NPCs express chemokine receptors, they also produce several chemokines, particularly in response to inflammatory mediators. This suggests that autocrine or paracrine production of specific chemokines by NPCs in response to inflammatory mediators may regulate differentiation into mature neural cell types and may alter NPC responsiveness to CNS injury or disease.  相似文献   

19.
The spitz class genes, pointed (pnt), rhomboid frho), single-minded (sim), spitz (spi)and Star (S), as well as the Drosophila epidermal growth factor receptor (Egfr) signaling genes, argos (aos), Egfr, orthodenticle (otd) and vein (vn), are required for the proper establishment of ventral neuroectodermal cell fate. The roles of the CNS midline cells, spitz class and Egfr signaling genes in cell fate determination of the ventral neuroectoderm were determined by analyzing the spatial and temporal expression patterns of each individual gene in spitz class and Egfr signaling mutants. This analysis showed that the expression of all the spitz class and Egfrsignaling genes is affected by the sim gene, which indicates that sim acts upstream of all the spitz class and Egfr signaling genes. It was shown that overexpression of sim in midline cells fails to induce the ectodermal fate in the spi and Egfr mutants. On the other hand, overexpression of spi and Draf causes ectopic expression of the neuroectodermal markers in the sim mutant. Ectopic expression of sim in the en-positive cells induces the expression of downstream genes such as otd, pnt, rho, and vn, which clearly demonstrates that the sim gene activates the EGFR signaling pathway and that CNS midline cells, specified by sim, provide sufficient positional information for the establishment of ventral neuroectodermal fate. These results reveal that the CNS midline cells are one of the key regulators for the proper patterning of the ventral neuroectoderm by controlling EGFR activity through the regulation of the expression of spitz class genes and Egfr signaling genes.  相似文献   

20.
The Drosophila jing gene encodes a zinc finger protein required for the differentiation and survival of embryonic CNS midline and tracheal cells. We show that there is a functional relationship between jing and the Egfr pathway in the developing CNS midline and trachea. jing function is required for Egfr pathway gene expression and MAPK activity in both the CNS midline and trachea. jing over-expression effects phenocopy those of the Egfr pathway and require Egfr pathway function. Activation of the Egfr pathway in loss-of-function jing mutants partially rescues midline cell loss. Egfr pathway genes and jing show dominant genetic interactions in the trachea and CNS midline. Together, these results show that jing regulates signal transduction in developing midline and tracheal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号