首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human saliva contains nitrate that is converted into nitrite by the activity of facultative, anaerobic bacteria of the oral cavity. Nitrite can be reduced to NO in the acidic gastric milieu; some NO may also form in the mouth at acidic pH values. In this paper, we show that bacteria ( S. salivarius, S. mitis and S. bovis ) isolated from saliva, may contribute to NO production in human saliva. NO formation by bacteria occurs at neutral pH values and may contribute to the antibacterial activity of saliva.  相似文献   

2.
Human saliva contains nitrate that is converted into nitrite by the activity of facultative, anaerobic bacteria of the oral cavity. Nitrite can be reduced to NO in the acidic gastric milieu; some NO may also form in the mouth at acidic pH values. In this paper, we show that bacteria ( S. salivarius , S. mitis and S. bovis ) isolated from saliva, may contribute to NO production in human saliva. NO formation by bacteria occurs at neutral pH values and may contribute to the antibacterial activity of saliva.  相似文献   

3.
Recent studies surprisingly show that dietary inorganic nitrate, abundant in vegetables, can be metabolized in vivo to form nitrite and then bioactive nitric oxide. A reduction in blood pressure was recently noted in healthy volunteers after dietary supplementation with nitrate; an effect consistent with formation of vasodilatory nitric oxide. Oral bacteria have been suggested to play a role in bioactivation of nitrate by first reducing it to the more reactive anion nitrite. In a cross-over designed study in seven healthy volunteers we examined the effects of a commercially available chlorhexidine-containing antibacterial mouthwash on salivary and plasma levels of nitrite measured after an oral intake of sodium nitrate (10 mg/kg dissolved in water). In the control situation the salivary and plasma levels of nitrate and nitrite increased greatly after the nitrate load. Rinsing the mouth with the antibacterial mouthwash prior to the nitrate load had no effect on nitrate accumulation in saliva or plasma but abolished its conversion to nitrite in saliva and markedly attenuated the rise in plasma nitrite. We conclude that the acute increase in plasma nitrite seen after a nitrate load is critically dependent on nitrate reduction in the oral cavity by commensal bacteria. The removal of these bacteria with an antibacterial mouthwash will very likely attenuate the NO-dependent biological effects of dietary nitrate.  相似文献   

4.
Dietary nitrate inhibits stress-induced gastric mucosal injury in the rat   总被引:5,自引:0,他引:5  
Dietary nitrate is reduced to nitrite by some oral bacteria and the resulting nitrite is converted to nitric oxide (NO) in acidic gastric juice. The aim of this study is to elucidate the pathophysiological role of dietary nitrate in the stomach. Intragastric administration of nitrate rapidly increased nitrate and NO in plasma and the gastric headspace, respectively. Water-immersion-restraint stress (WIRS) increased myeloperoxidase (MPO) activity in gastric mucosa and induced hemorrhagic erosions by a nitrate-inhibitable mechanism. In animals that had received either cardiac ligation or oral treatment with povidone-iodine, a potent bactericidal agent, administration of nitrate failed to increase gastric levels of NO and to inhibit WIRS-induced mucosal injury. WIRS decreased gastric mucosal blood flow by a mechanism which was inhibited by administration of nitrate. These data suggested that the enterosalivary cycle of nitrate and related metabolites consisted of gastrointestinal absorption and salivary secretion of nitrate, its conversion to nitrite by oral bacteria and then to NO in the stomach might play important roles in the protection of gastric mucosa from hazardous stress.  相似文献   

5.
The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome links diet and health.  相似文献   

6.
The nitrate–nitrite–NO pathway to nitric oxide (NO) production is a symbiotic pathway in mammals that is dependent on nitrate reducing oral commensal bacteria. Studies suggest that by contributing NO to the mammalian host, the oral microbiome helps maintain cardiovascular health. To begin to understand how changes in oral microbiota affect physiological functions such as blood pressure, we have characterized the Wistar rat nitrate reducing oral microbiome. Using 16S rRNA gene sequencing and analysis we compare the native Wistar rat tongue microbiome to that of healthy humans and to that of rats with sodium nitrate and chlorhexidine mouthwash treatments. We demonstrate that the rat tongue microbiome is less diverse than the human tongue microbiome, but that the physiological activity is comparable, as sodium nitrate supplementation significantly lowered diastolic blood pressure in Wistar rats and also lowers blood pressure (diastolic and systolic) in humans. We also show for the first time that sodium nitrate supplementation alters the abundance of specific bacterial species on the tongue. Our results suggest that the changes in oral nitrate reducing bacteria may affect nitric oxide availability and physiological functions such as blood pressure. Understanding individual changes in human oral microbiome may offer novel dietary approaches to restore NO availability and blood pressure.  相似文献   

7.
Bacterial contribution to oral disease has been studied in young children, but there is a lack of data addressing the developmental perspective in edentulous infants. Our primary objectives were to use pyrosequencing to phylogenetically characterize the salivary bacterial microbiome of edentulous infants and to make comparisons against their mothers. Saliva samples were collected from 5 edentulous infants (mean age?=?4.6±1.2 mo old) and their mothers or primary care givers (mean age?=?30.8±9.5 y old). Salivary DNA was extracted, used to generate DNA amplicons of the V4-V6 hypervariable region of the bacterial 16S rDNA gene, and subjected to 454-pyrosequencing. On average, over 80,000 sequences per sample were generated. High bacterial diversity was noted in the saliva of adults [1012 operational taxonomical units (OTU) at 3% divergence] and infants (578 OTU at 3% divergence). Firmicutes, Proteobacteria, Actinobacteria, and Fusobacteria were predominant bacterial phyla present in all samples. A total of 397 bacterial genera were present in our dataset. Of the 28 genera different (P<0.05) between infants and adults, 27 had a greater prevalence in adults. The exception was Streptococcus, which was the predominant genera in infant saliva (62.2% in infants vs. 20.4% in adults; P<0.05). Veillonella, Neisseria, Rothia, Haemophilus, Gemella, Granulicatella, Leptotrichia, and Fusobacterium were also predominant genera in infant samples, while Haemophilus, Neisseria, Veillonella, Fusobacterium, Oribacterium, Rothia, Treponema, and Actinomyces were predominant in adults. Our data demonstrate that although the adult saliva bacterial microbiome had a greater OTU count than infants, a rich bacterial community exists in the infant oral cavity prior to tooth eruption. Streptococcus, Veillonella, and Neisseria are the predominant bacterial genera present in infants. Further research is required to characterize the development of oral microbiota early in life and identify environmental factors that impact colonization and oral and gastrointestinal disease risk.  相似文献   

8.
Preparation of a nitrate reductase lysate of Escherichia coli MC1061 to measure nitrate and nitrite in biologic fluids is described. To obtain the crude bacterial lysate containing nitrate reductase activity, E. coli MC1061 was subjected to 16-20 freeze-thawing cycles, from -70 to 60 degrees C, until nitrite reductase activity was < or = 25%. Nitrate reductase activity was detected mainly in the crude preparation. To validate the nitrate reduction procedure, standard nitrate solutions (1.6-100 microM) were incubated with the nitrate reductase preparation for 3 h at 37 degrees C, and nitrite was estimated by the Griess reaction in a microassay. Nitrate solutions were reduced to nitrite in a range of 60-70%. Importantly, no cofactors were necessary to perform nitrate reduction. The biological samples were first reduced with the nitrate reductase preparation. After centrifugation, samples were deproteinized with either methanol/ether or zinc sulfate and nitrite was quantified. The utility of the nitrate reductase preparation was assessed by nitrate+nitrite determination in serum of animals infected with the protozoan Entamoeba histolytica or the bacteria E. coli and in the supernatant of cultured lipopolysaccharide-stimulated RAW 264.7 mouse macrophages. Our results indicate that the nitrate reductase-containing lysate provides a convenient tool for the reduction of nitrate to determine nitrate+nitrite in biological fluids by spectrophotometric methods.  相似文献   

9.
When excised embryos of Agrostemma githago were incubated with nitrate, the activities of both nitrate reductase and nitrite reductase were enhanced. By contrast, benzyladenine induced nitrate reductase only. Our data suggest that nitrate affected nitrite reductase activity directly, without first being reduced to nitrite. When the endogenous nitrite production was increased by raising the level of nitrate reductase through simultaneous treatment with nitrate and benzyladenine, the activity of nitrite reductase was not higher than in embryos treated with nitrate alone. On the other hand, tungstate given together with nitrate drastically inhibited the development of nitrate reductase activity without reducing the enhancement of nitrite reductase activity. Nitrite enhanced nitrite reductase activity, though less efficiently than nitrate.  相似文献   

10.
We have developed a rapid and sensitive fluorimetric method, based on the formation of a fluorescent product from nitrosation of 2,3-diaminonaphthalene, for measuring the ability of bacteria to catalyze nitrosation of amines. We have shown in Escherichia coli that nitrosation can be induced under anaerobic conditions by nitrite and nitrate, that formate is the most efficient electron donor for this reaction, and that nitrosation may be catalyzed by nitrate reductase (EC 1.7.99.4). The narG mutants defective in nitrate reductase do not catalyze nitrosation, and the fnr gene is essential for nitrosation. Induction by nitrite or nitrate of nitrosation, N2O production, and nitrate reductase activity all require the narL gene.  相似文献   

11.
The new pathway nitrate-nitrite-nitric oxide (NO) has emerged as a physiological alternative to the classical enzymatic pathway for NO formation from l-arginine. Nitrate is converted to nitrite by commensal bacteria in the oral cavity and the nitrite formed is then swallowed and reduced to NO under the acidic conditions of the stomach. In this study, we tested the hypothesis that increases in gastric pH caused by omeprazole could decrease the hypotensive effect of oral sodium nitrite. We assessed the effects of omeprazole treatment on the acute hypotensive effects produced by sodium nitrite in normotensive and L-NAME-hypertensive free-moving rats. In addition, we assessed the changes in gastric pH and plasma levels of nitrite, NO(x) (nitrate+nitrite), and S-nitrosothiols caused by treatments. We found that the increases in gastric pH induced by omeprazole significantly reduced the hypotensive effects of sodium nitrite in both normotensive and L-NAME-hypertensive rats. This effect of omeprazole was associated with no significant differences in plasma nitrite, NO(x), or S-nitrosothiol levels. Our results suggest that part of the hypotensive effects of oral sodium nitrite may be due to its conversion to NO in the acidified environment of the stomach. The increase in gastric pH induced by treatment with omeprazole blunts part of the beneficial cardiovascular effects of dietary nitrate and nitrite.  相似文献   

12.
AIMS: To examine the hypothesis of non-immune defence mechanisms based on nitrite. METHODS AND RESULTS: The acidified media (nutrient broth or citrate-phosphate buffer) under aerobic conditions with additions of physiological levels of nitrite, L-ascorbic acid, iodide and thiocyanate were used to simulate gastric juice. The bactericidal effects of acidified nitrite on Escherichia coli and lactobacilli were investigated using bacterial plate counts. Conversion of acidified nitrite to nitric oxide, nitrogen dioxide and nitrate was also studied. Nitrite significantly increased the bactericidal effects on E. coli and lactobacilli. The bactericidal effects were enhanced by thiocyanate but not by L-ascorbic acid and iodide. L-Ascorbic acid and thiocyanate, but not iodide, enhanced the decomposition of acidified nitrite in nutrient broth. Acidified nitrite was converted to both nitric oxide and nitrate, but a portion of the acidified nitrite in nutrient broth may have been converted to other unidentified nitrogen compounds. Nitrogen dioxide was not detected in any of the samples. CONCLUSION: The bactericidal effects of nitrite appeared to be primarily related to nitrous acid, and possibly to other unidentified nitrogenous metabolites, but not to nitric oxide and nitrogen dioxide. SIGNIFICANCE AND IMPACT OF THE STUDY: The potential role of nitrite as an antimicrobial substance in the stomach may be of some importance in the ecology of the gastrointestinal tract and in host physiology.  相似文献   

13.
Up to 25% of the circulating nitrate in blood is actively taken up, concentrated, and secreted into saliva by the salivary glands. Salivary nitrate can be reduced to nitrite by the commensal bacteria in the oral cavity or stomach and then further converted to nitric oxide (NO) in vivo, which may play a role in gastric protection. However, whether salivary nitrate is actively secreted in human beings has not yet been determined. This study was designed to determine whether salivary nitrate is actively secreted in human beings as an acute stress response and what role salivary nitrate plays in stress-induced gastric injury. To observe salivary nitrate function under stress conditions, alteration of salivary nitrate and nitrite was analyzed among 22 healthy volunteers before and after a strong stress activity, jumping down from a platform at the height of 68 m. A series of stress indexes was analyzed to monitor the stress situation. We found that both the concentration and the total amount of nitrate in mixed saliva were significantly increased in the human volunteers immediately after the jump, with an additional increase 1 h later (p<0.01). Saliva nitrite reached a maximum immediately after the jump and was maintained 1 h later. To study the biological functions of salivary nitrate and nitrite in stress protection, we further carried out a water-immersion-restraint stress (WIRS) assay in male adult rats with bilateral parotid and submandibular duct ligature (BPSDL). Intragastric nitrate, nitrite, and NO; gastric mucosal blood flow; and gastric ulcer index (UI) were monitored and nitrate was administrated in drinking water to compensate for nitrate secretion in BPSDL animals. Significantly decreased levels of intragastric nitrate, nitrite, and NO and gastric mucosal blood flow were measured in BPSDL rats during the WIRS assay compared to sham control rats (p<0.05). Recovery was observed in the BPSDL rats upon nitrate administration. The WIRS-induced UI was significantly higher in the BPSDL animals compared to controls, and nitrate administration rescued the WIRS-induced gastric injury in BPSDL rats. In conclusion, this study suggests that stress promotes salivary nitrate secretion and nitrite formation, which may play important roles in gastric protection against stress-induced injury via the nitrate-dependent NO pathway.  相似文献   

14.
Recently, it has been suggested that the supposedly inert nitrite anion is reduced in vivo to form bioactive nitric oxide with physiological and therapeutic implications in the gastrointestinal and cardiovascular systems. Intake of nitrate-rich food such as vegetables results in increased levels of circulating nitrite in a process suggested to involve nitrate-reducing bacteria in the oral cavity. Here we investigated the importance of the oral microflora and dietary nitrate in regulation of gastric mucosal defense and blood pressure. Rats were treated twice daily with a commercial antiseptic mouthwash while they were given nitrate-supplemented drinking water. The mouthwash greatly reduced the number of nitrate-reducing oral bacteria and as a consequence, nitrate-induced increases in gastric NO and circulating nitrite levels were markedly reduced. With the mouthwash the observed nitrate-induced increase in gastric mucus thickness was attenuated and the gastroprotective effect against an ulcerogenic compound was lost. Furthermore, the decrease in systemic blood pressure seen during nitrate supplementation was now absent. These results suggest that oral symbiotic bacteria modulate gastrointestinal and cardiovascular function via bioactivation of salivary nitrate. Excessive use of antiseptic mouthwashes may attenuate the bioactivity of dietary nitrate.  相似文献   

15.
Two polytopic membrane proteins, NarK and NarU, are assumed to transport nitrite out of the Escherichia coli cytoplasm, but how nitrate enters enteric bacteria is unknown. We report the construction and use of four isogenic strains that lack nitrate reductase Z and the periplasmic nitrate reductase, but express all combinations of narK and narU. The active site of the only functional nitrate reductase, nitrate reductase A, is located in the cytoplasm, so nitrate reduction by these four strains is totally dependent upon a mechanism for importing nitrate. These strains were exploited to determine the roles of NarK and NarU in both nitrate and nitrite transport. Single mutants that lack either NarK or NarU were competent for nitrate-dependent anaerobic growth on a non-fermentable carbon source, glycerol. They transported and reduced nitrate almost as rapidly as the parental strain. In contrast, the narK-narU double mutant was defective in nitrate-dependent growth unless nitrate transport was facilitated by the nitrate ionophore, reduced benzyl viologen (BV). It was also unable to catalyse nitrate reduction in the presence of physiological electron donors. Synthesis of active nitrate reductase A and the cytoplasmic, NADH-dependent nitrite reductase were unaffected by the narK and narU mutations. The rate of nitrite reduction catalysed by the cytoplasmic, NADH-dependent nitrite reductase by the double mutant was almost as rapid as that of the NarK+-NarU+ strain, indicating that there is a mechanism for nitrite uptake by E. coli that is in-dependent of either NarK or NarU. The nir operon encodes a soluble, cytoplasmic nitrite reductase that catalyses NADH-dependent reduction of nitrite to ammonia. One additional component that contributes to nitrite uptake was shown to be NirC, the hydrophobic product of the third gene of the nir operon, which is predicted to be a polytopic membrane protein with six membrane-spanning helices. Deletion of both NarK and NirC decreased nitrite uptake and reduction to a basal rate that was fully restored by a single chromosomal copy of either narK or nirC. A multicopy plasmid encoding NarU complemented a narK mutation for nitrite excretion, but not for nitrite uptake. We conclude that, in contrast to NirC, which transports only nitrite, NarK and NarU provide alternative mechanisms for both nitrate and nitrite transport. However, NarU might selectively promote nitrite ex-cretion, not nitrite uptake.  相似文献   

16.
BackgroundInorganic nitrate from exogenous and endogenous sources is accumulated in saliva, reduced to nitrite by oral bacteria and further converted to nitric oxide (NO) and other bioactive nitrogen oxides in the acidic gastric lumen. To further explore the role of oral microbiota in this process we examined the gastric mucus layer in germ free (GF) and conventional mice given different doses of nitrate and nitrite.MethodsMice were given either nitrate (100 mg/kg/d) or nitrite (0.55–11 mg/kg/d) in the drinking water for 7 days, with the lowest nitrite dose resembling the levels provided by swallowing of fasting saliva. The gastric mucus layer was measured in vivo.ResultsGF animals were almost devoid of the firmly adherent mucus layer compared to conventional mice. Dietary nitrate increased the mucus thickness in conventional animals but had no effect in GF mice. In contrast, nitrite at all doses, restored the mucus thickness in GF mice to the same levels as in conventional animals. The nitrite-mediated increase in gastric mucus thickness was not inhibited by the soluble guanylyl cyclase inhibitor ODQ. Mice treated with antibiotics had significantly thinner mucus than controls. Additional studies on mucin gene expression demonstrated down regulation of Muc5ac and Muc6 in germ free mice after nitrite treatment.ConclusionOral bacteria remotely modulate gastric mucus generation via bioactivation of salivary nitrate. In the absence of a dietary nitrate intake, salivary nitrate originates mainly from NO synthase. Thus, oxidized NO from the endothelium and elsewhere is recycled to regulate gastric mucus homeostasis.  相似文献   

17.
Phototrophic bacteria of the genus Rhodobacter possess several forms of nitrate reductase including assimilatory and dissimilatory enzymes. Assimilatory nitrate reductase from Rhodobacter capsulatus E1F1 is cytoplasmic, it uses NADH as the physiological electron donor and reduced viologens as artificial electron donors, and it is coupled to an ammonium-producing nitrite reductase. Nitrate reductase induction requires a high C/N balance and the presence of nitrate, nitrite, or nitroarenes. A periplasmic 47-kDa protein facilitates nitrate uptake, thus increasing nitrate reductase activity. Two types of dissimilatory nitrate reductases have been found in strains from Rhodobacter sphaeroides. One of them is coupled to a complete denitrifying pathway, and the other is a periplasmic protein whose physiological role seems to be the dissipation of excess reducing power, thus improving photoanaerobic growth. Periplasmic nitrate reductase does not use NADH as the physiological electron donor and is a 100-kDa heterodimeric hemoprotein that receives electrons through an electron transport chain spanning the plasma membrane. This nitrate reductase is regulated neither by the intracellular C/N balance nor by O2 pressure. The enzyme also exhibits chlorate reductase activity, and both reaction products, nitrite and chlorite, are released almost stoichiometrically into the medium; this accounts for the high resistance to chlorate or nitrite exhibited by this bacterium. Nitrate reductases from both strains seem to be coded by genes located on megaplasmids. Received: 17 April 1996 / Accepted: 28 May 1996  相似文献   

18.
1. In Aspergillus nidulans nitrate and nitrite induce nitrate reductase, nitrite reductase and hydroxylamine reductase, and ammonium represses the three enzymes. 2. Nitrate reductase can donate electrons to a wide variety of acceptors in addition to nitrate. These artificial acceptors include benzyl viologen, 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride, cytochrome c and potassium ferricyanide. Similarly nitrite reductase and hydroxylamine reductase (which are possibly a single enzyme in A. nidulans) can donate electrons to these same artificial acceptors in addition to the substrates nitrite and hydroxylamine. 3. Nitrate reductase can accept electrons from reduced benzyl viologen in place of the natural donor NADPH. The NADPH-nitrate-reductase activity is about twice that of reduced benzyl viologen-nitrate reductase under comparable conditions. 4. Mutants at six gene loci are known that cannot utilize nitrate and lack nitrate-reductase activity. Most mutants in these loci are constitutive for nitrite reductase, hydroxylamine reductase and all the nitrate-induced NADPH-diaphorase activities. It is argued that mutants that lack nitrate-reductase activity are constitutive for the enzymes of the nitrate-reduction pathway because the functional nitrate-reductase molecule is a component of the regulatory system of the pathway. 5. Mutants are known at two gene loci, niiA and niiB, that cannot utilize nitrite and lack nitrite-reductase and hydroxylamine-reductase activities. 6. Mutants at the niiA locus possess inducible nitrate reductase and lack nitrite-reductase and hydroxylamine-reductase activities. It is suggested that a single enzyme protein is responsible for the reduction of nitrite to ammonium in A. nidulans and that the niiA locus is the structural gene for this enzyme. 7. Mutants at the niiB locus lack nitrate-reductase, nitrite-reductase and hydroxylamine-reductase activities. It is argued that the niiB gene is a regulator gene whose product is necessary for the induction of the nitrate-utilization pathway. The niiB mutants either lack or produce an incorrect product and consequently cannot be induced. 8. Mutants at the niiribo locus cannot utilize nitrate or nitrite unless provided with a flavine supplement. When grown in the absence of a flavine supplement the activities of some of the nitrate-induced enzymes are subnormal. 9. The growth and enzyme characteristics of a total of 123 mutants involving nine different genes indicate that nitrate is reduced to ammonium. Only two possible structural genes for enzymes concerned with nitrate utilization are known. This suggests that only two enzymes, one for the reduction of nitrate to nitrite, the other for the reduction of nitrite to ammonium, are involved in this pathway.  相似文献   

19.
Degradation of N-Nitrosamines by Intestinal Bacteria   总被引:5,自引:1,他引:4       下载免费PDF全文
A major proportion of bacterial types, common in the gastrointestinal tract of many animals and man, were active in degrading diphenylnitrosamine and dimethylnitrosamine, the former being degraded more rapidly than the latter. At low nitrosamine concentrations (<0.05 μmol/ml), approximately 55% of added diphenylnitrosamine, 30% of N-nitrosopyrrolidine, and 4% of dimethylnitrosamine were degraded. The route of nitrosamine metabolism by bacteria appears to be different from that proposed for breakdown by mammalian enzyme systems in that carbon dioxide and formate were not produced. In bacteria, the nitrosamines were converted to the parent amine and nitrite ion and, in addition, certain unidentified volatile metabolites were produced from dimethylnitrosamine by bacteria. The importance of bacteria in reducing the potential hazard to man of nitrosamines is discussed.  相似文献   

20.
Many effects of nitrite and nitrate are attributed to increased circulating concentrations of nitrite, ultimately converted into nitric oxide (NO) in the circulation or in tissues by mechanisms associated with nitrite reductase activity. However, nitrite generates NO , nitrous anhydride, and other nitrosating species at low pH, and these reactions promote S-nitrosothiol formation when nitrites are in the stomach. We hypothesized that the antihypertensive effects of orally administered nitrite or nitrate involve the formation of S-nitrosothiols, and that those effects depend on gastric pH. The chronic effects of oral nitrite or nitrate were studied in two-kidney, one-clip (2K1C) hypertensive rats treated with omeprazole (or vehicle). Oral nitrite lowered blood pressure and increased plasma S-nitrosothiol concentrations independently of circulating nitrite levels. Increasing gastric pH with omeprazole did not affect the increases in plasma nitrite and nitrate levels found after treatment with nitrite. However, treatment with omeprazole severely attenuated the increases in plasma S-nitrosothiol concentrations and completely blunted the antihypertensive effects of nitrite. Confirming these findings, very similar results were found with oral nitrate. To further confirm the role of gastric S-nitrosothiol formation, we studied the effects of oral nitrite in hypertensive rats treated with the glutathione synthase inhibitor buthionine sulfoximine (BSO) to induce partial thiol depletion. BSO treatment attenuated the increases in S-nitrosothiol concentrations and antihypertensive effects of oral nitrite. These data show that gastric S-nitrosothiol formation drives the antihypertensive effects of oral nitrite or nitrate and has major implications, particularly to patients taking proton pump inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号