首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Gram-negative bacteria are enveloped by a system of two membranes, and they use specialized multicomponent, energy-driven pumps to transport molecules directly across this double-layered partition from the cell interior to the extra-cellular environment. One component of these pumps is embedded in the outer-membrane, and the paradigm for its structure and function is the TolC protein from Escherichia coli. A common component of a wide variety of efflux pumps, TolC and its homologues are involved in the export of chemically diverse molecules ranging from large protein toxins, such as alpha-hemolysin, to small toxic compounds, such as antibiotics. TolC family members thus play important roles in conferring pathogenic bacteria with both virulence and multidrug resistance. These pumps assemble reversibly in a transient process that brings together TolC or its homologue, an inner-membrane-associated periplasmic component, an integral inner-membrane translocase and the substrate itself. TolC can associate in this fashion with a variety of different partners to participate in the transport of diverse substrates. We review here the structure and function of TolC and the other components of the efflux/transport pump.  相似文献   

3.
Conformational flexibility in the multidrug efflux system protein AcrA   总被引:9,自引:0,他引:9  
Intrinsic resistance to multiple drugs in many gram-negative bacterial pathogens is conferred by resistance nodulation cell division efflux pumps, which are composed of three essential components as typified by the extensively characterized Escherichia coli AcrA-AcrB-TolC system. The inner membrane drug:proton antiporter AcrB and the outer membrane channel TolC export chemically diverse compounds out of the bacterial cell, and require the activity of the third component, the periplasmic protein AcrA. The crystal structures of AcrB and TolC have previously been determined, and we complete the molecular picture of the efflux system by presenting the structure of a stable fragment of AcrA. The AcrA fragment resembles the elongated sickle shape of its homolog Pseudomonas aeruginosa MexA, being composed of three domains: beta-barrel, lipoyl, and alpha-helical hairpin. Notably, unsuspected conformational flexibility in the alpha-helical hairpin domain of AcrA is observed, which has potential mechanistic significance in coupling between AcrA conformations and TolC channel opening.  相似文献   

4.
5.
The plasmid-encoded QacA multidrug transport protein confers high-level resistance to a range of commonly used antimicrobials and is carried by widespread clinical strains of the human pathogen Staphylococcus aureus making it a potential target for future drug therapies. In order to obtain a sufficient yield of QacA protein for structural and biophysical studies, an optimized strategy for QacA overexpression was developed. QacA expression, directed from several vector systems in Escherichia coli, was tested under various growth and induction conditions and a synthetic qacA gene, codon-optimized for expression in E. coli was developed. Despite the extreme hydrophobicity and potential toxicity of the QacA secondary transport protein, a strategy based on the pBAD expression system, yielding up to four milligrams of approximately 95% pure QacA protein per litre of liquid culture, was devised. Purified QacA protein was examined using circular dichroism spectroscopy and displayed a secondary structure akin to that predicted from in silico analyses. Additionally, detergent solubilized QacA protein was shown to bind its fluorescent substrate rhodamine 6G with micro-molar affinity using a fluorescence polarization-based binding assay, similar to other multidrug transport proteins. To check the applicability of the expression/purification system described for QacA to other staphylococcal secondary transporters, the gene encoding the TetA(K) tetracycline efflux protein, which was previously recalcitrant to overexpression, was incorporated into the pBAD-based system and shown to be readily produced at easily detectable levels. Therefore, this expression system could be of general use for the production of secondary transport proteins in E. coli.  相似文献   

6.
Proton-dependent multidrug efflux systems.   总被引:26,自引:0,他引:26       下载免费PDF全文
Multidrug efflux systems display the ability to transport a variety of structurally unrelated drugs from a cell and consequently are capable of conferring resistance to a diverse range of chemotherapeutic agents. This review examines multidrug efflux systems which use the proton motive force to drive drug transport. These proteins are likely to operate as multidrug/proton antiporters and have been identified in both prokaryotes and eukaryotes. Such proton-dependent multidrug efflux proteins belong to three distinct families or superfamilies of transport proteins: the major facilitator superfamily (MFS), the small multidrug resistance (SMR) family, and the resistance/ nodulation/cell division (RND) family. The MFS consists of symporters, antiporters, and uniporters with either 12 or 14 transmembrane-spanning segments (TMS), and we show that within the MFS, three separate families include various multidrug/proton antiport proteins. The SMR family consists of proteins with four TMS, and the multidrug efflux proteins within this family are the smallest known secondary transporters. The RND family consists of 12-TMS transport proteins and includes a number of multidrug efflux proteins with particularly broad substrate specificity. In gram-negative bacteria, some multidrug efflux systems require two auxiliary constituents, which might enable drug transport to occur across both membranes of the cell envelope. These auxiliary constituents belong to the membrane fusion protein and the outer membrane factor families, respectively. This review examines in detail each of the characterized proton-linked multidrug efflux systems. The molecular basis of the broad substrate specificity of these transporters is discussed. The surprisingly wide distribution of multidrug efflux systems and their multiplicity in single organisms, with Escherichia coli, for instance, possessing at least nine proton-dependent multidrug efflux systems with overlapping specificities, is examined. We also discuss whether the normal physiological role of the multidrug efflux systems is to protect the cell from toxic compounds or whether they fulfil primary functions unrelated to drug resistance and only efflux multiple drugs fortuitously or opportunistically.  相似文献   

7.
8.
Overexpression of NorA, an endogenous efflux transporter of Staphylococcus aureus, confers resistance to certain fluoroquinolone antimicrobials and diverse other substrates. The norA gene was amplified by PCR and cloned in the expression vector pTrcHis2. Histidine-tagged NorA (NorA-His) was overexpressed in Escherichia coli cells to prepare two experimental systems, everted membrane vesicles enriched with NorA-His and proteoliposomes reconstituted with purified NorA-His. In membrane vesicles, NorA-His actively transported Hoechst 33342, a dye that is strongly fluorescent in the membrane but has low fluorescence in an aqueous environment. Transport was activated by the addition of ATP or lactate and reversed by the addition of nigericin, with the addition of K(+)-valinomycin having little effect. Transport of Hoechst 33342 was inhibited competitively by verapamil, a known inhibitor of NorA, and by other NorA substrates, including tetraphenyl phosphonium and the fluoroquinolones norfloxacin and ciprofloxacin. In contrast, sparfloxacin, a fluoroquinolone whose antimicrobial activity is not affected by NorA expression, exhibited noncompetitive inhibition. NorA induction and overexpression yielded 0.5 to 1 mg of a largely homogeneous 40- to 43-kDa protein per liter of culture. NorA-His incorporated into proteoliposomes retained the ability to transport Hoechst 33342 in response to an artificial proton gradient, and transport was blocked by nigericin and verapamil. These data provide the first experimental evidence of NorA functioning as a self-sufficient multidrug transporter.  相似文献   

9.
It has been known that halophilic bacteria often show natural resistance to antibiotics, dyes, and toxic metal ions, but the mechanism and regulation of this resistance have remained unexplained. We have addressed this question by identifying the gene responsible for multidrug resistance. A spontaneous ofloxacin-resistant mutant derived from the moderately halophilic bacterium Chromohalobacter sp. strain 160 showed a two- to fourfold increased resistance to structurally diverse compounds, such as tetracycline, cefsulodin, chloramphenicol, and ethidium bromide (EtBr), and tolerance to organic solvents, e.g., hexane and heptane. The mutant produced an elevated level of the 58-kDa outer membrane protein. This mutant (160R) accumulated about one-third the level of EtBr that the parent cells did. An uncoupler, carbonyl cyanide m-chlorophenylhydrazone, caused a severalfold increase in the intracellular accumulation of EtBr, with the wild-type and mutant cells accumulating nearly equal amounts. The hrdC gene encoding the 58-kDa outer membrane protein has been cloned. Disruption of this gene rendered the cells hypersusceptible to antibiotics and EtBr and led to a high level of accumulation of intracellular EtBr. The primary structure of HrdC has a weak similarity to that of Escherichia coli TolC. Interestingly, both drug resistance and the expression of HrdC were markedly increased in the presence of a high salt concentration in the growth medium, but this was not observed in hrdC-disrupted cells. These results indicate that HrdC is the outer membrane component of the putative efflux pump assembly and that it plays a major role in the observed induction of drug resistance by salt in this bacterium.  相似文献   

10.
The trimeric TolC protein of Escherichia coli comprises an outer membrane beta-barrel and a contiguous alpha-helical barrel projecting across the periplasm. This provides a single 140 A long pore for multidrug efflux and protein export. We have previously reported that trivalent cations such as hexammine cobalt can severely inhibit the conductivity of the TolC pore reconstituted in planar lipid bilayers. Here, isothermal calorimetry shows that Co(NH(3))(6)(3+) binds to TolC with an affinity of 20 nM. The crystal structure of the TolC-Co(NH(3))(6)(3+) complex was determined to 2.75 A resolution, and showed no significant difference in the protein when compared with unliganded TolC. An electron density difference map revealed that a single ligand molecule binds at the centre of the periplasmic entrance, the sole constriction of TolC. The octahedral symmetry of the ligand and the three-fold rotational symmetry of the TolC entrance determine a binding site in which the ligand forms hydrogen bonds with the Asp(374) residue of each monomer. When Asp(374) was substituted by alanine, high affinity ligand binding was abolished and inhibition of TolC pore conductivity in lipid bilayers was alleviated. Comparable effects followed independent substitution of the neighbouring Asp(371), indicating that this aspartate ring also contributes to the high affinity ligand binding site. As the electronegative entrance is widely conserved in the TolC family, it may be a useful target for the development of inhibitors against multidrug resistant pathogenic bacteria.  相似文献   

11.
MdfA is a prototypic secondary multidrug transporter from Escherichia coli, which recognizes and exports a broad spectrum of structurally and electrically dissimilar toxic compounds. Here we review recent studies of MdfA, which, on the one hand, provide advanced understanding of certain aspects of secondary multidrug transport, and, on the other, address major mechanistic questions, some of which remain to be elucidated. Using biochemical, genetic, and physiological approaches, we have revealed several surprisingly promiscuous properties of MdfA including its multidrug recognition capacity, proton recognition determinants, aspects of energy utilization, and physiological role.  相似文献   

12.
13.
Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal.  相似文献   

14.
J Liu  H E Takiff    H Nikaido 《Journal of bacteriology》1996,178(13):3791-3795
The lfrA gene cloned from chromosomal DNA of quinolone-resistant Mycobacterium smegmatis mc2-552 conferred low-level resistance to fluoroquinolones when present on multicopy plasmids. Sequence analysis suggested that lfrA encodes a membrane efflux pump of the major facilitator family (H. E. Takiff, M. Cimino, M. C. Musso, T. Weisbrod, R. Martinez, M. B. Delgado, L Salazar, B. R. Bloom, and W. R. Jacbos, Jr., Proc. Natl. Acad. Sci. USA 93:362-366, 1996). In this work, we studied the role of LfrA in the accumulation of fluoroquinolones by M. smegmatis. The steady-state accumulation level of a hydrophilic quinolone, norfloxacin, by M. smegmatis harboring a plasmid carrying the lfrA gene was about 50% of that by the parent strain but was increased to the same level as that of the parent strain by addition of a proton conductor, carbonyl cyanide m-chorophenylhydrazone. Norfloxacin efflux mediated by LfrA was competed for strongly by ciprofloxacin but not by nalidixic acid. Furthermore, we showed that portions of norfloxacin accumulated by starved cells were pumped out upon reenergization of the cells, and the rates of this efflux showed evidence of saturation at higher intracellular concentrations of the drug. These results suggest that the LfrA polypeptide catalyzes the active efflux of several quinolones.  相似文献   

15.
The Burkholderia pseudomallei KHW quorum-sensing systems produced N-octanoyl-homoserine lactone, N-decanoyl-homoserine lactone, N-(3-hydroxy)-octanoyl-homoserine lactone, N-(3-hydroxy)-decanoyl-homoserine lactone, N-(3-oxo)-decanoyl-homoserine lactone, and N-(3-oxo)-tetradecanoyl-homoserine lactone. The extracellular secretion of these acyl-homoserine lactones is dependent absolutely on the function of the B. pseudomallei BpeAB-OprB efflux pump.  相似文献   

16.
Multidrug efflux is a major contributor to antibiotic resistance in Gram-negative bacterial pathogens. Inhibition of multidrug efflux pumps is a promising approach for reviving the efficacy of existing antibiotics. Previously, inhibitors targeting both the efflux transporter AcrB and the membrane fusion protein AcrA in the Escherichia coli AcrAB-TolC efflux pump were identified. Here we use existing physicochemical property guidelines to generate a filtered library of compounds for computational docking. We then experimentally test the top candidate coumpounds using in vitro binding assays and in vivo potentiation assays in bacterial strains with controllable permeability barriers. We thus identify a new class of inhibitors of E. coli AcrAB-TolC. Six molecules with a shared scaffold were found to potentiate the antimicrobial activity of erythromycin and novobiocin in hyperporinated E. coli cells. Importantly, these six molecules were also active in wild-type strains of both Acinetobacter baumannii and Klebsiella pneumoniae, potentiating the activity of erythromycin and novobiocin up to 8-fold.  相似文献   

17.
A multidrug efflux transporter in Listeria monocytogenes   总被引:2,自引:0,他引:2  
A chromosomal gene (mdrL) was found in Listeria monocytogenes L028, showing a high degree of similarity with multidrug efflux transporters of the major facilitator superfamily (family 2). An allele-substituted mutant of this gene failed to pump out ethidium bromide and presented lower minimal inhibitory concentrations of macrolides, cefotaxime and heavy metals. This is the first multidrug efflux pump described in Listeria.  相似文献   

18.
19.
20.
Characterization of rhodamine 123 as functional assay for MDR has been primarily focused on P-glycoprotein-mediated MDR. Several studies have suggested that Rh123 is also a substrate for MRP1. However, no quantitative studies of the MRP1-mediated efflux of rhodamines have, up to now, been performed. Measurement of the kinetic characteristics of substrate transport is a powerful approach to enhancing our understanding of their function and mechanism. In the present study, we have used a continuous fluorescence assay with four rhodamine dyes (rhodamine 6G, tetramethylrosamine, tetramethylrhodamine ethyl ester, and tetramethylrhodamine methyl ester) to quantify drug transport by MRP1 in living GLC4/ADR cells. The formation of a substrate concentration gradient was observed. MRP1-mediated transport of rhodamine was glutathione-dependent. The kinetics parameter, k(a) = V(M)/k(m), was very similar for the four rhodamine analogs but approximately 10-fold less than the values of the same parameter determined previously for the MRP1-mediated efflux of anthracycline. The findings presented here are the first to show quantitative information about the kinetics parameters for MRP1-mediated efflux of rhodamine dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号