首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lewinson O  Bibi E 《Biochemistry》2001,40(42):12612-12618
The mechanism by which multidrug transporters interact with structurally unrelated substrates remains enigmatic. Based on transport competition experiments, photoaffinity labeling, and effects on enzymatic activities, it was proposed in the past that multidrug transporters can interact simultaneously with a number of dissimilar substrate molecules. To study this phenomenon, we applied a direct binding approach and transport assays using the Escherichia coli multidrug transporter MdfA, which exports both positively charged (e.g., tetraphenylphosphonium, TPP(+)), zwitterionic (e.g., ciprofloxacin), and neutral (e.g., chloramphenicol) drugs. The interaction of MdfA with various substrates was examined by direct binding assays with the purified transporter. The immobilized MdfA binds TPP(+) in a specific manner, and all the tested positively charged substrates inhibit TPP(+) binding. Surprisingly, although TPP(+) binding is not affected by zwitterionic substrates, the neutral substrate chloramphenicol stimulates TPP(+) binding by enhancing its affinity to MdfA. In contrast, transport competition assays show inhibition of TPP(+) transport by chloramphenicol. We suggest that MdfA binds TPP(+) and chloramphenicol simultaneously to distinct but interacting binding sites, and the interaction between these two substrates during transport is discussed.  相似文献   

2.
Adler J  Lewinson O  Bibi E 《Biochemistry》2004,43(2):518-525
According to the current topology model of the Escherichia coli multidrug transporter MdfA, it contains a membrane-embedded negatively charged residue, Glu26, which was shown to play an important role in substrate recognition. To further elucidate the role of this substrate recognition determinant, various Glu26 replacements were characterized. Surprisingly, studies with neutral MdfA substrates showed that, unlike many enzymatic systems where the size and chemical properties of binding site residues are relatively defined, MdfA tolerates a variety of changes at position 26, including size, hydrophobicity, and charge. Moreover, although efficient transport of positively charged substrates requires a negative charge at position 26 (Glu or Asp), neutralization of this charge does not always abrogate the interaction of MdfA with cationic drugs, thus demonstrating that the negative charge does not play an essential role in the multidrug transport mechanism. Collectively, these results suggest a link between the broad substrate specificity profile of multidrug transporters and the structural and chemical promiscuity at their substrate recognition pockets.  相似文献   

3.
MdfA is a prototypic secondary multidrug transporter from Escherichia coli, which recognizes and exports a broad spectrum of structurally and electrically dissimilar toxic compounds. Here we review recent studies of MdfA, which, on the one hand, provide advanced understanding of certain aspects of secondary multidrug transport, and, on the other, address major mechanistic questions, some of which remain to be elucidated. Using biochemical, genetic, and physiological approaches, we have revealed several surprisingly promiscuous properties of MdfA including its multidrug recognition capacity, proton recognition determinants, aspects of energy utilization, and physiological role.  相似文献   

4.
MdfA is an Escherichia coli multidrug transporter of the major facilitator superfamily (MFS) of secondary transporters. Although several aspects of multidrug recognition by MdfA have been characterized, better understanding the detailed mechanism of its function requires structural information. Previous studies have modeled the 3D structures of MFS proteins, based on the X-ray structure of LacY and GlpT. However, because of poor sequence homology, between LacY, GlpT, and MdfA additional constraints were required for a reliable homology modeling. Using an algorithm that predicts the angular orientation of each transmembrane helix (TM) (kPROT), we obtained a remarkably similar pattern for the 12 TMs of MdfA and those of GlpT and LacY, suggesting that they all have similar helix packing. Consequently, a 3D model was constructed for MdfA by structural alignment with LacY and GlpT, using the kPROT results as an additional constraint. Further refinement and a preliminary evaluation of the model were achieved by correlated mutation analysis and the available experimental data. Surprisingly, in addition to the previously characterized membrane-embedded glutamate at position 26, the model suggests that Asp34 and Arg112 are located within the membrane, on the same face of the cavity as Glu26. Importantly, Arg112 is evolutionarily conserved in secondary drug transporters, and here we show that a positive charge at this position is absolutely essential for multidrug transport by MdfA.  相似文献   

5.
The largest family of solute transporters (major facilitator superfamily [MFS]) includes proton-motive-force-driven secondary transporters. Several characterized MFS transporters utilize essential acidic residues that play a critical role in the energy-coupling mechanism during transport. Surprisingly, we show here that no single acidic residue plays an irreplaceable role in the Escherichia coli secondary multidrug transporter MdfA.  相似文献   

6.
Edgar R  Bibi E 《The EMBO journal》1999,18(4):822-832
The nature of the broad substrate specificity phenomenon, as manifested by multidrug resistance proteins, is not yet understood. In the Escherichia coli multidrug transporter, MdfA, the hydrophobicity profile and PhoA fusion analysis have so far identified only one membrane-embedded charged amino acid residue (E26). In order to determine whether this negatively charged residue may play a role in multidrug recognition, we evaluated the expression and function of MdfA constructs mutated at this position. Replacing E26 with the positively charged residue lysine abolished the multidrug resistance activity against positively charged drugs, but retained chloramphenicol efflux and resistance. In contrast, when the negative charge was preserved in a mutant with aspartate instead of E26, chloramphenicol recognition and transport were drastically inhibited; however, the mutant exhibited almost wild-type multidrug resistance activity against lipophilic cations. These results suggest that although the negative charge at position 26 is not essential for active transport, it dictates the multidrug resistance character of MdfA. We show that such a negative charge is also found in other drug resistance transporters, and its possible significance regarding multidrug resistance is discussed.  相似文献   

7.
Adler J  Bibi E 《Journal of bacteriology》2002,184(12):3313-3320
The hydrophobicity profile and sequence alignment of the Escherichia coli multidrug transporter MdfA indicate that it belongs to the 12-transmembrane-domain family of transporters. According to this prediction, MdfA contains a single membrane-embedded charged residue (Glu26), which was shown to play an important role in substrate recognition. To test the predicted secondary structure of MdfA, we analyzed complementary pairs of hybrids of MdfA-PhoA (alkaline phosphatase, functional in the periplasm) and MdfA-Cat (chloramphenicol acetyltransferase, functional in the cytoplasm), generated in all the putative cytoplasmic and periplasmic loops of MdfA. Our results support the 12-transmembrane topology model and the suggestion that except for Glu26, no other charged residues are present in the membrane domain of MdfA. Surprisingly, by testing the ability of the truncated MdfA-Cat and MdfA-PhoA hybrids to confer multidrug resistance, we demonstrate that the entire C-terminal transmembrane domain and the cytoplasmic C terminus are not essential for MdfA-mediated drug resistance and transport.  相似文献   

8.
Secondary multidrug (Mdr) transporters utilize ion concentration gradients to actively remove antibiotics and other toxic compounds from cells. The model Mdr transporter MdfA from Escherichia coli exchanges dissimilar drugs for protons. The transporter should open at the cytoplasmic side to enable access of drugs into the Mdr recognition pocket. Here we show that the cytoplasmic rim around the Mdr recognition pocket represents a previously overlooked important regulatory determinant in MdfA. We demonstrate that increasing the positive charge of the electrically asymmetric rim dramatically inhibits MdfA activity and sometimes even leads to influx of planar, positively charged compounds, resulting in drug sensitivity. Our results suggest that unlike the mutants with the electrically modified rim, the membrane-embedded wild-type MdfA exhibits a significant probability of an inward-closed conformation, which is further increased by drug binding. Since MdfA binds drugs from its inward-facing environment, these results are intriguing and raise the possibility that the transporter has a sensitive, drug-induced conformational switch, which favors an inward-closed state.  相似文献   

9.
Yerushalmi H  Schuldiner S 《Biochemistry》2000,39(48):14711-14719
Both prokaryotic and eukaryotic cells contain an array of membrane transport systems maintaining the cellular homeostasis. Some of them (primary pumps) derive energy from redox reactions, ATP hydrolysis, or light absorption, whereas others (ion-coupled transporters) utilize ion electrochemical gradients for active transport. Remarkable progress has been made in understanding the molecular mechanism of coupling in some of these systems. In many cases carboxylic residues are essential for either binding or coupling. Here we suggest a model for the molecular mechanism of coupling in EmrE, an Escherichia coli 12-kDa multidrug transporter. EmrE confers resistance to a variety of toxic cations by removing them from the cell interior in exchange for two protons. EmrE has only one membrane-embedded charged residue, Glu-14, which is conserved in more than 50 homologous proteins. We have used mutagenesis and chemical modification to show that Glu-14 is part of the substrate-binding site. Its role in proton binding and translocation was shown by a study of the effect of pH on ligand binding, uptake, efflux, and exchange reactions. The studies suggest that Glu-14 is an essential part of a binding site, which is common to substrates and protons. The occupancy of this site by H(+) and substrate is mutually exclusive and provides the basis of the simplest coupling for two fluxes.  相似文献   

10.
The Escherichia coli multidrug transporter MdfA contains a membrane-embedded charged residue (Glu-26) that was shown to play an important role in substrate recognition. To identify additional determinants of multidrug recognition we isolated 58 intragenic second-site mutations that restored the function of inactive MdfA E26X mutants. In addition, two single-site mutations that enhanced the activity of wild-type MdfA were identified. Most of the mutations were found in two regions, the cytoplasmic half of transmembrane segments (TMs) 4, 5, and 6 (cluster 1) and the periplasmic half of TM 1 and 2 (cluster 2). The identified residues were mutated to cysteines in the background of a functional cysteine-less MdfA, and substrate protection against alkylation was analyzed. The results support the suggestion that the two clusters are involved in substrate recognition. Using inverted membrane vesicles we observed that a proton electrochemical gradient (Deltamicro(H(+)), inside positive and acidic) enhanced the substrate-protective effect in the cytoplasmic region, whereas it largely reduced this effect in the periplasmic side of MdfA. Therefore, we propose that substrates interact with two sites in MdfA, one in the cytoplasmic leaflet of the membrane and the other in the periplasmic leaflet. Theoretically, these domains could constitute a large part of the multidrug pathway through MdfA.  相似文献   

11.
Sigal N  Lewinson O  Wolf SG  Bibi E 《Biochemistry》2007,46(17):5200-5208
MdfA is a 410-residue-long secondary multidrug transporter from E. coli. Cells expressing MdfA from a multicopy plasmid exhibit resistance against a diverse group of toxic compounds, including neutral and cationic ones, because of active multidrug export. As a prerequisite for high-resolution structural studies and a better understanding of the mechanism of substrate recognition and translocation by MdfA, we investigated its biochemical properties and overall structural characteristics. To this end, we purified the beta-dodecyl maltopyranoside (DDM)-solubilized protein using a 6-His tag and metal affinity chromatography, and size exclusion chromatography (SE-HPLC). Purified MdfA was analyzed for its DDM and phospholipid (PL) content, and tetraphenylphosphonium (TPP+)-binding activity. The results are consistent with MdfA being an active monomer in DDM solution. Furthermore, an investigation of two-dimensional crystals by electron crystallography and 3D reconstruction lent support to the notion that MdfA may also be monomeric in reconstituted proteoliposomes.  相似文献   

12.
MdfA from Escherichia coli is a prototypical secondary multi-drug (Mdr) transporter that exchanges drugs for protons. MdfA-mediated drug efflux is driven by the proton gradient and enabled by conformational changes that accompany the recruitment of drugs and their release. In this work, we applied distance measurements by W-band double electron-electron resonance (DEER) spectroscopy to explore the binding of mito-TEMPO, a nitroxide-labeled substrate analog, to Gd(III)-labeled MdfA. The choice of Gd(III)-nitroxide DEER enabled measurements in the presence of excess of mito-TEMPO, which has a relatively low affinity to MdfA. Distance measurements between mito-TEMPO and MdfA labeled at the periplasmic edges of either of three selected transmembrane helices (TM3101, TM5168, and TM9310) revealed rather similar distance distributions in detergent micelles (n-dodecyl-β-d-maltopyranoside, DDM)) and in lipid nanodiscs (ND). By grafting the predicted positions of the Gd(III) tag on the inward-facing (If) crystal structure, we looked for binding positions that reproduced the maxima of the distance distributions. The results show that the location of the mito-TEMPO nitroxide in DDM-solubilized or ND-reconstituted MdfA is similar (only 0.4 nm apart). In both cases, we located the nitroxide moiety near the ligand binding pocket in the If structure. However, according to the DEER-derived position, the substrate clashes with TM11, suggesting that for mito-TEMPO-bound MdfA, TM11 should move relative to the If structure. Additional DEER studies with MdfA labeled with Gd(III) at two sites revealed that TM9 also dislocates upon substrate binding. Together with our previous reports, this study demonstrates the utility of Gd(III)-Gd(III) and Gd(III)-nitroxide DEER measurements for studying the conformational behavior of transporters.  相似文献   

13.
R Edgar  E Bibi 《Journal of bacteriology》1997,179(7):2274-2280
Multidrug resistance (MDR) translocators recently identified in bacteria constitute an excellent model system for studying the MDR phenomenon and its clinical relevance. Here we describe the identification and characterization of an unusual MDR gene (mdfA) from Escherichia coli. mdfA encodes a putative membrane protein (MdfA) of 410 amino acid residues which belongs to the major facilitator superfamily of transport proteins. Cells expressing MdfA from a multicopy plasmid are substantially more resistant to a diverse group of cationic or zwitterionic lipophilic compounds such as ethidium bromide, tetraphenylphosphonium, rhodamine, daunomycin, benzalkonium, rifampin, tetracycline, and puromycin. Surprisingly, however, MdfA also confers resistance to chemically unrelated, clinically important antibiotics such as chloramphenicol, erythromycin, and certain aminoglycosides and fluoroquinolones. Transport experiments with an E. coli strain lacking F1-F0 proton ATPase activity indicate that MdfA is a multidrug transporter that is driven by the proton electrochemical gradient.  相似文献   

14.
LmrP is a secondary active multidrug transporter from Lactococcus lactis. The protein belongs to the major facilitator superfamily and utilizes the electrochemical proton gradient (inside negative and alkaline) to extrude a wide range of lipophilic cations from the cell. Previous work has indicated that ethidium, a monovalent cationic substrate, is exported by LmrP by electrogenic antiport with two (or more) protons. This observation raised the question whether these protons are translocated sequentially along the same pathway, or through different routes. To address this question, we constructed a 3-D homology model of LmrP based on the high-resolution structure of the glycerol-3P/Pi antiporter GlpT from Escherichia coli, and we tested by mutagenesis the possible proton conduction points suggested by this model. Similar to the template, LmrP is predicted to contain an internal cavity formed at the interface between the two halves of the transporter. On the surface of this cavity lie two clusters of polar, aromatic and carboxylate residues with potentially important function in proton shuttling. Cluster 1 in the C-terminal half contains D235 and E327 in immediate proximity of each other, and is located near the apex of the cavity. Cluster 2 in the N-terminal half contains D142. Analyses of LmrP mutants containing charge-conservative or carboxyl-to-amide replacements at positions 142, 235 and 327 suggest that D142 is part of a dedicated proton translocation pathway in the ethidium translocation reaction. In contrast, D235 and E327 are part of an independent pathway, in which D235 interacts with protons. E327 appears to modulate the pKa of D235 and plays a role in the interaction with ethidium. These results are consistent with the proposal that major facilitator superfamily proteins consist of two membrane domains, one of which is involved in substrate binding and the other in ion coupling, and they indicate that there are two proton conduction pathways at play in the transport mechanism.  相似文献   

15.
《Biophysical journal》2019,116(12):2296-2303
Bacterial multidrug-resistance transporters of the major facilitator superfamily are distinguished by their extraordinary ability to bind structurally diverse substrates, thus serving as a highly efficient tool to protect cells from multiple toxic substances present in their environment, including antibiotic drugs. However, details of the dynamic conformational changes of the transport cycle involved remain to be elucidated. Here, we used the single-molecule fluorescence resonance energy transfer technique to investigate the conformational behavior of the Escherichia coli multidrug transporter MdfA under conditions of different substrates, pH, and alkali metal ions. Our data show that different substrates exhibit distinct effects on both the conformational distribution and transition rate between two major conformations. Although the cationic substrate tetraphenylphosphonium favors the outward-facing conformation, it has less effect on the transition rate. In contrast, binding of the electroneutral substrate chloramphenicol tends to stabilize the inward-facing conformation and decreases the transition rate. Therefore, our study supports the notion that the MdfA transporter uses distinct mechanisms to transport electroneutral and cationic substrates.  相似文献   

16.
EmrE is a small multidrug transporter (110 amino acids long) from Escherichia coli that extrudes various drugs in exchange with protons, thereby rendering bacteria resistant to these compounds. Glu-14 is the only charged membrane-embedded residue in EmrE and is evolutionarily highly conserved. This residue has an unusually high pK and is an essential part of the binding domain, shared by substrates and protons. The occupancy of the binding domain is mutually exclusive, and, as such, this provides the molecular basis for the coupling between substrate and proton fluxes. Systematic cysteine-scanning mutagenesis of the residues in the transmembrane segment (TM1), where Glu-14 is located, reveals an amino acid cluster on the same face of TM1 as Glu-14 that is part of the substrate- and proton-binding domain. Substitutions at most of these positions yielded either inactive mutants or mutants with modified affinity to substrates. Substitutions at the Ala-10 position, one helix turn away from Glu-14, yielded mutants with modified affinity to protons and thereby impaired in the coupling of substrate and proton fluxes. Taken as a whole, the results strongly support the concept of a common binding site for substrate and protons and stress the importance of one face of TM1 in substrate recognition, binding, and H(+)-coupled transport.  相似文献   

17.
The Escherichia coli multidrug transporter MdfA contains a single membrane-embedded charged residue (Glu-26) that plays a critical role in the recognition of cationic substrates (Edgar, R., and Bibi, E. (1999) EMBO J. 18, 822-832). Using an inactive mutant (MdfA-E26T), we isolated a spontaneous second-site mutation (MdfA-E26T/V335E) that re-established the recognition of cationic drugs by the transporter. Only a negative charge at position 335 was able to restore the functioning of the inactive mutant MdfA-E26T. Intriguingly, the two genetically interacting residues are located at remote and distinct regions along the secondary structure of MdfA. Glu-26 is located in the periplasmic half of transmembrane helix 1, and as shown here, the complementing charge at position 335 resides within the cytoplasmic loop connecting transmembrane helices 10 and 11. The spatial relation between the two residues was investigated by cross-linking. A functional split version of MdfA devoid of cysteines was constructed and introduced with a cysteine pair at positions 26 and 335. Strikingly, the results indicate that residues 26 and 335 are spatially adjacent, suggesting that they both constitute parts of the multidrug recognition pocket of MdfA. The fact that electrostatic interactions are preserved with cationic substrates even if the critical acidic residue is placed on another face of the pocket reveals an additional dimension of promiscuity in multidrug recognition and transport.  相似文献   

18.
The resistance of cells to many drugs simultaneously (multidrug resistance) often involves the expression of membrane transporters (Mdrs); each can recognize and expel a broad spectrum of chemically unrelated drugs from the cell. Despite extensive research for many years, the actual mechanism of multidrug transport is still largely unknown. In addition to general questions dealing with energy coupling, the molecular view of substrate recognition by Mdrs is generally obscure. This mini-review describes structural and functional properties of the Escherichia coli Mdr, MdfA, and discusses the possibility that this transporter may serve as a model for studying the multidrug recognition phenomenon and the mechanism of multidrug transport.  相似文献   

19.
Antiporters are ubiquitous membrane proteins that catalyze obligatory exchange between two or more substrates across a membrane in opposite directions. Some utilize proton electrochemical gradients generated by primary pumps by coupling the downhill movement of one or more protons to the movement of a substrate. Since the direction of the proton gradient usually favors proton movement toward the cytoplasm, their function results in removal of substrates other than protons from the cytoplasm, either into acidic intracellular compartments or out to the medium. H+-coupled antiporters play central roles in living organisms, for example, storage of neurotransmitter and other small molecules, resistance to antibiotics, homeostasis of ionic content and more. Biochemical and structural data support a general mechanism for H+-coupled antiporters whereby the substrate and the protons cannot bind simultaneously to the protein. In several cases, it was shown that the binding sites overlap, and therefore, there is a direct competition between the protons and the substrate. In others, the “competition” seems to be indirect and it is most likely achieved by allosteric mechanisms. The pKa of one or more carboxyls in the protein must be tuned appropriately in order to ensure the feasibility of such a mechanism. In this review, I discuss in detail the case of EmrE, a multidrug transporter from Escherichia coli and evaluate the information available for other H+-coupled antiporters.  相似文献   

20.
Vesicular monoamine transporter 2 (VMAT2) transports monoamines into storage vesicles in a process that involves exchange of the charged monoamine with two protons. VMAT2 is a member of the DHA12 family of multidrug transporters that belongs to the major facilitator superfamily of secondary transporters. Tetrabenazine (TBZ) is a non-competitive inhibitor of VMAT2 that is used in the treatment of hyperkinetic disorders associated with Huntington disease and Tourette syndrome. Previous biochemical studies suggested that the recognition site for TBZ and monoamines is different. However, the precise mechanism of TBZ interaction with VMAT2 remains unknown. Here we used a random mutagenesis approach and selected TBZ-resistant mutants. The mutations clustered around the lumenal opening of the transporter and mapped to either conserved proline or glycine, or to residues immediately adjacent to conserved proline and glycine. Directed mutagenesis provides further support for the essential role of the latter residues. Our data strongly suggest that the conserved α-helix breaking residues identified in this work play an important role in conformational rearrangements required for TBZ binding and substrate transport. Our results provide a novel insight into the mechanism of transport and TBZ binding by VMAT2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号