首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion channels are gated, i.e. they can switch conformation between a closed and an open state. Molecular dynamics simulations may be used to study the conformational dynamics of ion channels and of simple channel models. Simulations on model nanopores reveal that a narrow (<4 A) hydrophobic region can form a functionally closed gate in the channel and can be opened by either a small (approximately 1 A) increase in pore radius or an increase in polarity. Modelling and simulation studies confirm the importance of hydrophobic gating in K channels, and support a model in which hinge-bending of the pore-lining M2 (or S6 in Kv channels) helices underlies channel gating. Simulations of a simple outer membrane protein, OmpA, indicate that a gate may also be formed by interactions of charged side chains within a pore, as is also the case in ClC channels.  相似文献   

2.
N-methyl-D-aspartate (NMDA) receptors are obligate heterotetrameric ligand-gated ion channels that play critical roles in learning and memory. Here, using targeted molecular dynamics simulations, we developed an atomistic model for the gating of the GluN1/GluN2A NMDA receptor. Upon agonist binding, lobe closure of the ligand-binding domain produced outward pulling of the M3-D2 linkers, leading to outward movements of the C-termini of the pore-lining M3 helices and opening of the channel. The GluN2A subunits, similar to the distal (B/D) subunits in the homotetrameric GluA2 α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate receptor, had greater M3 outward movements and thus contributed more to channel gating than the GluN1 subunits. Our gating model is validated by functional studies, including cysteine modification data indicating wider accessibility to the GluN1 M3 helices than to the GluN2A M3 helices from the lumen of the open channel, and reveals why the Lurcher mutation in GluN1 has a stronger ability in maintaining channel opening than the counterpart in GluN2A. The resulting structural model for the open state provides an explanation for the Ca2+ permeability of NMDA receptors, and the structural differences between the closed and open states form the basis for drug design.  相似文献   

3.
Nicotinic acetylcholine receptors are ligand-gated ion channels found in the plasma membrane of both excitable and non-excitable cells. Previously we reported that nicotinic receptors containing α7 subunits were present in the outer membranes of mitochondria to regulate the early apoptotic events like cytochrome c release. Here we show that signaling of mitochondrial α7 nicotinic receptors affects intramitochondrial protein kinases. Agonist of α7 nicotinic receptors PNU 282987 (30 nM) prevented the effect of phosphatidyl inositol-3-kinase inhibitor wortmannin, which stimulated cytochrome c release in isolated mouse liver mitochondria, and restored the Akt (Ser 473) phosphorylation state decreased by either 90 μM Ca2+ or wortmannin. The effect of PNU 282987 was similar to inhibition of calcium-calmodulin-dependent kinase II (upon 90 μM Ca2+) or of Src kinase(s) (upon 0.5 mM H2O2) and of protein kinase C. Cytochrome c release from mitochondria could be also attenuated by α7 nicotinic receptor antagonist methyllicaconitine or α7-specific antibodies. Allosteric modulator PNU 120526 (1 μM) did not improve the effect of agonist PNU 282987. Acetylcholine (1 μM) and methyllicaconitine (10 nM) inhibited superoxide release from mitochondria measured according to alkalization of Ca2+-containing medium. It is concluded that α7 nicotinic receptors regulate mitochondrial permeability transition pore formation through ion-independent mechanism involving activation of intramitochondrial PI3K/Akt pathway and inhibition of calcium-calmodulin-dependent or Src-kinase-dependent signaling pathways.  相似文献   

4.
Communication in the nervous system takes place at chemical and electrical synapses, where neurotransmitter-gated ion channels, such as the nicotinic acetylcholine (ACh) receptor, and gap junction channels control propagation of electrical signals from one cell to the next. Newly developed electron crystallographic methods have revealed the structures of these channels trapped in open as well as closed states, suggesting how they work. The ACh receptor has large vestibules extending from the membrane which shape the ACh-binding pockets and facilitate selective transport of cations across a narrow membrane-spanning pore. When ACh enters the pockets it triggers a concerted conformational change that opens the pore by destabilizing a gate in the middle of the membrane made by a ring of pore-lining alpha-helical segmets. The alternative 'open' configuration of pore-lining segments reshapes the lumen and creates new surfaces, allowing the ions to pass through. The gap junction channel uses a similar structural mechanism, involving coordinated rearrangements of alpha-helical segments in the plane of the membrane, to open its pore.  相似文献   

5.
Using the recently unveiled crystal structure, and molecular and Brownian dynamics simulations, we elucidate several conductance properties of the inwardly rectifying potassium channel, Kir3.2, which is implicated in cardiac and neurological disorders. We show that the pore is closed by a hydrophobic gating mechanism similar to that observed in Kv1.2. Once open, potassium ions move into, but not out of, the cell. The asymmetrical current–voltage relationship arises from the lack of negatively charged residues at the narrow intracellular mouth of the channel. When four phenylalanine residues guarding the intracellular gate are mutated to glutamate residues, the channel no longer shows inward rectification. Inward rectification is restored in the mutant Kir3.2 when it becomes blocked by intracellular Mg2 +. Tertiapin, a polypeptide toxin isolated from the honey bee, is known to block several subtypes of the inwardly rectifying channels with differing affinities. We identify critical residues in the toxin and Kir3.2 for the formation of the stable complex. A lysine residue of tertiapin protrudes into the selectivity filter of Kir3.2, while two other basic residues of the toxin form hydrogen bonds with acidic residues located just outside the channel entrance. The depth of the potential of mean force encountered by tertiapin is ? 16.1 kT, thus indicating that the channel will be half-blocked by 0.4 μM of the toxin.  相似文献   

6.
Large conductance calcium activated potassium channels (BKCa) are fundamental in the control of cellular excitability. Thus, compounds that activate BKCa channels could provide potential therapies in the treatment of pathologies of the cardiovascular and central nervous system. A series of novel N-arylbenzamide compounds, and the reference compound NS1619, were evaluated for BKCa channel opener properties in Human Embryonic Kidney (HEK293) cells expressing the human BKCa channel α-subunit alone or α + β1-subunit complex.Channel activity was determined using a non-radioactive Rb+ efflux assay to construct concentration effect curves for each compound. All N-arylbenzamide compounds and NS1619 evoked significant (p <0.05) concentration related increases in Rb+ efflux both in cells expressing α-subunit alone or α + β1-subunits. Co-expression of the β1-subunit modified the Rb+ efflux responses, relative to that obtained in cells expressing the α-subunit alone, for most of the N-arylbenzamide compounds, in contrast to NS1619. The EC40 values of NS1619, BKMe1 and BKOEt1 were not significantly affected by the co-expression of the BKCa channel α + β1-subunits. In contrast, 5 other N-arylbenzamides (BKPr2, BKPr3, BKPr4, BKH1 and BKVV) showed a significant (p <0.05) 2- to 10-fold increase in EC40 values when tested on the BKCa α + β1-subunit expressing cells compared to BKCa α-subunit expressing cells. Further, the Emax values for BKPr4, BKVV and BKH1 were lower in the BKCa channel α + β1-subunit expressing cells.In conclusion, the N-arylbenzamides studied, like NS1619, were able to activate BKCa channels formed of the α-subunit only. The co-expression of the β1-subunit, however, modified the ability of certain compounds to active the channel leading to differentiated pharmacodynamic profiles.  相似文献   

7.
P2X receptors are ligand-gated cation channels that transition from closed to open states upon binding ATP. The crystal structure of the closed zebrafish P2X4.1 receptor directly reveals that the ion-conducting pathway is formed by three transmembrane domain 2 (TM2) α-helices, each being provided by the three subunits of the trimer. However, the transitions in TM2 that accompany channel opening are incompletely understood and remain unresolved. In this study, we quantified gated access to Cd2+ at substituted cysteines in TM2 of P2X2 receptors in the open and closed states. Our data for the closed state are consistent with the zebrafish P2X4.1 structure, with isoleucines and threonines (Ile-332 and Thr-336) positioned one helical turn apart lining the channel wall on approach to the gate. Our data for the open state reveal gated access to deeper parts of the pore (Thr-339, Val-343, Asp-349, and Leu-353), suggesting the closed channel gate is between Thr-336 and Thr-339. We also found unexpected interactions between native Cys-348 and D349C that result in tight Cd2+ binding deep within the intracellular vestibule in the open state. Interpreted with a P2X2 receptor structural model of the closed state, our data suggest that the channel gate opens near Thr-336/Thr-339 and is accompanied by movement of the pore-lining regions, which narrow toward the cytosolic end of TM2 in the open state. Such transitions would relieve the barrier to ion flow and render the intracellular vestibule less splayed during channel opening in the presence of ATP.  相似文献   

8.
This study aimed to investigate the effects of obovatol isolated from Magnolia obovata on pentobarbital-induced sleeping behaviors and to determine whether these effects were mediated by GABAA receptors/chloride channel activation, using a western blot technique and Cl? sensitive fluorescence probe. GABAA receptors subunits expression and chloride influx were investigated in cultured cerebellar granule cells. Obovatol (0.05, 0.1, and 0.2 mg/kg) prolonged the sleeping time induced by pentobarbital (42 mg/kg). In addition, obovatol (20 and 50 μM) significantly increased Cl? influx in the primary cultured cerebellar granule cells. Moreover, obovatol increased the expression of GABAA receptor α-, β-, and γ-subunits. However, it had no effect on the abundance of the expression of glutamic acid decarboxylase (GAD), suggesting that obovatol might not activate GAD. These results suggest that obovatol potentiates pentobarbital-induced sleeping time through the GABAA receptors/chloride channel activation.  相似文献   

9.
Ion channels open and close in response to changes in transmembrane voltage or ligand concentration. Recent studies show that K+ channels possess two gates, one at the intracellular end of the pore and the other at the selectivity filter. In this study we determined the location of the activation gate in a voltage-gated Ca2+ channel (VGCC) by examining the open/closed state dependence of the rate of modification by intracellular methanethiosulfonate ethyltrimethylammonium (MTSET) of pore-lining cysteines engineered in the S6 segments of the alpha1 subunit of P/Q type Ca2+ channels. We found that positions above the putative membrane/cytoplasm interface, including two positions below the corresponding S6 bundle crossing in K+ channels, showed pronounced state-dependent accessibility to internal MTSET, reacting approximately 1,000-fold faster with MTSET in the open state than in the closed state. In contrast, a position at or below the putative membrane/cytoplasm interface was modified equally rapidly in both the open and closed states. Our results suggest that the S6 helices of the alpha1 subunit of VGCCs undergo conformation changes during gating and the activation gate is located at the intracellular end of the pore.  相似文献   

10.
Parkinson’s disease is a debilitating movement disorder characterized by altered levels of α6β21 (1 indicates the possible presence of additional subunits) nicotinic acetylcholine receptors (nAChRs) localized on presynaptic striatal catecholaminergic neurons. α-Conotoxin MII (α-CTx MII) is a highly useful ligand to probe α6β2 nAChRs structure and function, but it does not discriminate among closely related α61 nAChR subtypes. Modification of the α-CTx MII primary sequence led to the identification of α-CTx MII[E11A], an analog with 500–5300-fold discrimination between α61 subtypes found in both human and non-human primates. α-CTx MII[E11A] binds most strongly (femtomolar dissociation constant) to the high affinity α6 nAChR, a subtype that is selectively lost in Parkinson’s disease. Here, we present the three-dimensional solution structure for α-CTx MII[E11A] as determined by two-dimensional 1H NMR spectroscopy to 0.13 ± 0.09 ? backbone and 0.45 ± 0.08 ? heavy atom root-mean-square deviation from mean structure. Structural comparisons suggest that the increased hydrophobic area of α-CTx MII[E11A] relative to other members of the α-CTx family may be responsible for its exceptionally high affinity for α6α4β21 nAChR as well as discrimination between α6β2 and α3β2 containing nAChRs. This finding may enable the rational design of novel peptide analogs that demonstrate enhanced specificity for α61 nAChR subunit interfaces and provide a means to better understand nAChR structural determinants that modulate brain dopamine levels and the pathophysiology of Parkinson’s disease.  相似文献   

11.
In the present study, we describe the existence of a large-conductance calcium-activated potassium (BKCa) channel in the mitochondria of Dictyostelium discoideum. A single-channel current was recorded in a reconstituted system, using planar lipid bilayers. The large-conductance potassium channel activity of 258 ± 12 pS was recorded in a 50/150 mM KCl gradient solution. The probability of channel opening (the channel activity) was increased by calcium ions and NS1619 (potassium channel opener) and reduced by iberiotoxin (BKCa channel inhibitor). The substances known to modulate BKCa channel activity influenced the bioenergetics of D. discoideum mitochondria. In isolated mitochondria, NS1619 and NS11021 stimulated non-phosphorylating respiration and depolarized membrane potential, indicating the channel activation. These effects were blocked by iberiotoxin and paxilline. Moreover, the activation of the channel resulted in attenuation of superoxide formation, but its inhibition had the opposite effect. Immunological analysis with antibodies raised against mammalian BKCa channel subunits detected a pore-forming α subunit and auxiliary β subunits of the channel in D. discoideum mitochondria. In conclusion, we show for the first time that mitochondria of D. discoideum, a unicellular ameboid protozoon that facultatively forms multicellular structures, contain a large-conductance calcium-activated potassium channel with electrophysiological, biochemical and molecular properties similar to those of the channels previously described in mammalian and plant mitochondria.  相似文献   

12.
We demonstrated a role for the Mg2 + transporter TRPM7, a bifunctional protein with channel and α-kinase domains, in aldosterone signaling. Molecular mechanisms underlying this are elusive. Here we investigated the function of TRPM7 and its α-kinase domain on Mg2 + and pro-inflammatory signaling by aldosterone. Kidney cells (HEK-293) expressing wild-type human TRPM7 (WThTRPM7) or constructs in which the α-kinase domain was deleted (ΔKinase) or rendered inactive with a point mutation in the ATP binding site of the α-kinase domain (K1648R) were studied. Aldosterone rapidly increased [Mg2 +]i and stimulated NADPH oxidase-derived generation of reactive oxygen species (ROS) in WT hTRPM7 and TRPM7 kinase dead mutant cells. Translocation of annexin-1 and calpain-II and spectrin cleavage (calpain target) were increased by aldosterone in WT hTRPM7 cells but not in α-kinase-deficient cells. Aldosterone stimulated phosphorylation of MAP kinases and increased expression of pro-inflammatory mediators ICAM-1, Cox-2 and PAI-1 in Δkinase and K1648R cells, effects that were inhibited by eplerenone (mineralocorticoid receptor (MR) blocker). 2-APB, a TRPM7 channel inhibitor, abrogated aldosterone-induced Mg2 + responses in WT hTRPM7 and mutant cells. In 2-APB-treated ΔKinase and K1648R cells, aldosterone-stimulated inflammatory responses were unchanged. These data indicate that aldosterone stimulates Mg2 + influx and ROS production in a TRPM7-sensitive, kinase-insensitive manner, whereas activation of annexin-1 requires the TRPM7 kinase domain. Moreover TRPM7 α-kinase modulates inflammatory signaling by aldosterone in a TRPM7 channel/Mg2 +-independent manner. Our findings identify novel mechanisms for non-genomic actions of aldosterone involving differential signaling through MR-activated TRPM7 channel and α-kinase.  相似文献   

13.
14.
G E Flynn  W N Zagotta 《Neuron》2001,30(3):689-698
In cyclic nucleotide-gated channels (CNG), direct binding of cyclic nucleotides in the carboxy-terminal region is allosterically coupled to opening of the pore. A CNG1 channel pore was probed using site-directed cysteine substitution to elucidate conformational changes associated with channel opening. The effects of cysteine modification on permeation suggest a structural homology between CNG and KcsA pores. We found that intersubunit disulfide bonds form spontaneously between S399C residues in the helix bundle when channels are in the closed but not in the open state. While MTSET modification of pore-lining residues was state dependent, Ag(+) modification of V391C, in the inner vestibule, occurred at the same diffusion-limited rate in both open and closed states. Our results suggest that the helix bundle undergoes a conformational change associated with gating but is not the activation gate for CNG channels.  相似文献   

15.
16.
17.
Potassium channels allow the selective flow of K(+) ions across membranes. In response to external gating signals, the potassium channel can move reversibly through a series of structural conformations from a closed to an open state. 2D crystals of the inwardly rectifying K(+) channel KirBac3.1 from Magnetospirillum magnetotacticum have been captured in two distinct conformations, providing "snap shots" of the gating process. Analysis by electron cryomicroscopy of these KirBac3.1 crystals has resulted in reconstructed images in projection at 9 A resolution. Kir channels are tetramers of four subunits arranged as dimers of dimers. Each subunit has two transmembrane helices (inner and outer). In one crystal form, the pore is blocked; in the other crystal form, the pore appears open. Modeling based on the KirBac1.1 (closed) crystal structure shows that opening of the ion conduction pathway could be achieved by bending of the inner helices and significant movements of the outer helices.  相似文献   

18.
Cytochrome c oxidase (CcO) is the terminal enzyme in the electron transfer chain. CcO catalyzes a four electron reduction of O2 to water at a catalytic site formed by high-spin heme (a3) and copper atoms (CuB). While it is recognized that proton movement is coupled to oxygen reduction, the proton channel(s) have not been well defined. Using computational methods developed to study protein topology, membrane channels and 3D packing arrangements within transmembrane (TM) helix arrays, we find that subunit-1 (COX-1), subunit-2 (COX-2) and subunit-3 (COX-3) contribute 139, 46 and 25 residues, respectively, to channel formation between the mitochondrial matrix and intermembrane space. Nine of 12 TM helices in COX-1, both helices in COX-2 and 5 of the 6 TM helices in COX-3 are pore-lining regions (possible channel formers). Heme a3 and the CuB sites (as well as the CuA center of COX-2) are located within the channel that includes TM-6, TM-7, TM-10 and TM-11 of COX-1 and are associated with multiple cholesterol and caveolin-binding (CB) motifs. Sequence analysis identifies five CB motifs within COX-1, two within COX-2 and four within COX-3; each caveolin containing a pore-lining helix C-terminal to a TM helix–turn–helix. Channel formation involves interaction between multiple pore-lining regions within protein subunits and/or dimers. PoreWalker analysis lends support to the D-channel model of proton translocation. Under physiological conditions, caveolins may introduce channel formers juxtaposed to those in COX-1, COX-2 and COX-3, which together with cholesterol may form channel(s) essential for proton translocation through the inner mitochondrial membrane.  相似文献   

19.
《Phytomedicine》2013,21(14):1272-1279
This study aimed to investigate the effect of magnolol (5,5′-diallyl-2,2′-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca2+ currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3–100 μM). In the presence of Bay K8644 (100 nM), magnolol (10–100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-l-arginine methyl ester (l-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3–100 μM) inhibited the L-type Ca2+ currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca2+ channel activity.  相似文献   

20.
《Phytomedicine》2014,21(10):1146-1153
IntroductionR(+)-pulegone is a ketone monoterpene and it is the main constituent of essential oils in several plants. Previous studies provided some evidence that R(+)-pulegone may act on isolated cardiac myocytes. In this study, we evaluated in extended detail, the pharmacological effects of R(+)-pulegone on cardiac tissue.MethodsUsing in vivo measurements of rat cardiac electrocardiogram (ECG) and patch-clamp technique in isolated myocytes we determinate the influence of R(+)-pulegone on cardiac excitability.ResultsR(+)-pulegone delayed action potential repolarization (APR) in a concentration-dependent manner (EC50 = 775.7 ± 1.48, 325.0 ± 1.30, 469.3 ± 1.91 μM at 10, 50 and 90% of APR respectively). In line with prolongation of APR R(+)-pulegone, in a concentration-dependent manner, blocked distinct potassium current components (transient outward potassium current (Ito), rapid delayed rectifier potassium current (IKr), inactivating steady state potassium current (Iss) and inward rectifier potassium current (IK1)) (EC50 = 1441 ± 1.04; 605.0 ± 1.22, 818.7 ± 1.22; 1753 ± 1.09 μM for Ito, IKr, Iss and IK1, respectively). The inhibition occurred in a fast and reversible way, without changing the steady-state activation curve, but instead shifting to the left the steady-state inactivation curve (V1/2 from −56.92 ± 0.35 to −67.52 ± 0.19 mV). In vivo infusion of 100 mg/kg R(+)-pulegone prolonged the QTc (∼40%) and PR (∼62%) interval along with reducing the heart rate by ∼26%.ConclusionTaken together, R(+)-pulegone prolongs the APR by inhibiting several cardiomyocyte K+ current components in a concentration-dependent manner. This occurs through a direct block by R(+)-pulegone of the channel pore, followed by a left shift on the steady state inactivation curve. Finally, R(+)-pulegone induced changes in some aspects of the ECG profile, which are in agreement with its effects on potassium channels of isolated cardiomyocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号