首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, covalently cross-linked hydrogel composed of N,O-carboxymethyl chitosan and oxidized alginate was developed intending for drug delivery application. In vitro/vivo cytocompatibility and biocompatibility of the developed hydrogel were preliminary evaluated. In vitro cytocompatibility test showed that the developed hydrogel exhibited good cytocompatibility against NH3T3 cells after 3-day incubation. According to the results of acute toxicity test, there was no obvious cytotoxicity for major organs during the period of 21-day intraperitoneal administration. Meanwhile, the developed hydrogel did not induce any cutaneous reaction within 72 h of subcutaneous injection followed by slow degradation and adsorption with the time evolution. Moreover, the extraction of developed hydrogel had nearly 0% of hemolysis ratio, which indicated the good hemocompatibility of hydrogel. Based on the above results, it may be concluded that the developed N,O-carboxymethyl chitosan/oxidized alginate hydrogel with non-cytotoxicity and good biocompatibility might suitable for the various drug delivery applications.  相似文献   

2.
Adhesion to biological tissues is a challenge especially when the adhesive is in contact with physiological fluids. Abdominal hernia is a disease that often requires the implantation of a mesh within the abdominal wall. To minimize pain and postsurgical complications, gluing the mesh appears to be a convenient method. For this purpose, a bioadhesive system based on solutions of chitosan and modified starch (oxidized maltodextrin) has been developed. Mixtures of these polysaccharides form either viscoelastic solutions or hydrogels, depending on various experimental parameters (chitosan concentration, starch degree of oxidation, molar ratio between amine and aldehyde functions, pH, etc.). An adhesion test was developed to assess the adherence of such systems under conditions similar to the intended use. The rheological behavior of each formulation was correlated to its adherence, and it was found that optimum adhesion is obtained for systems exhibiting an intermediate behavior between the viscoelastic solution and the gel.  相似文献   

3.
In the present study, carboxymethyl chitosan was prepared from chitosan, crosslinked with glutaraldehyde and evaluated in vitro as a potential carrier for colon targeted drug delivery of ornidazole. Ornidazole was incorporated at the time of crosslinking of carboxymethyl chitosan. The chitosan was evaluated for its degree of deacetylation (DD) and average molecular weight; which were found to be 84.6% and 3.5×10(4) Da, respectively. The degree of substitution on prepared carboxymethyl chitosan was found to be 0.68. All hydrogel formulations showed more than 85% and 74% yield and drug loading, respectively. The swelling behaviour of prepared hydrogels checked in different pH values, 1.2, 6.8 and 7.4, indicated pH responsive swelling characteristic with very less swelling at pH 1.2 and quick swelling at pH 6.8 followed by linear swelling at pH 7.4 with slight increase. In vitro release profile was carried out at the same conditions as in swelling and drug release was found to be dependant on swelling of hydrogels and showed biphasic release pattern with non-fickian diffusion kinetics at higher pH. The carboxymethylation of chitosan, entrapment of drug and its interaction in prepared hydrogels were checked by FTIR, (1)H NMR, DSC and p-XRD studies, which confirmed formation of carboxymethyl chitosan from chitosan and absence of any significant chemical change in ornidazole after being entrapped in crosslinked hydrogel formulations. The surface morphology of formulation S6 checked before and after dissolution, revealed open channel like pores formation after dissolution.  相似文献   

4.
《Process Biochemistry》2014,49(5):863-871
Human Umbilical Vein Endothelial Cell (HUVEC) growth on chitosan films and its enzymatically functionalized derivatives films with ferulic acid (FA) and ethyl ferulate (EF) was assessed by evaluating cell adhesion, morphology and cell viability. The results indicated that chitosan derivative films improved protein adsorption properties compared to chitosan films. The HUVEC cell morphology showed well attachment and spread phenotype on chitosan derivative films compared to those growing on chitosan films which did not spread and remained round. Evaluation of cell viability revealed improvement of cell adhesion on chitosan derivative films compared to chitosan film depending on the quantity of oxidized phenols grafted on chitosan. In addition, FA-/EF-chitosan films allowed almost similar cell adhesion. Furthermore, cell adhesion was increased with the film thickness. These results suggested that the oxidized phenols grafting on chitosan is a promising process to enhance cell adhesion, growth and creating useful functional biomaterials.  相似文献   

5.
The objective of the present study was to develop carboxymethyl starch (CMS) and dextran sulfate (DS) hydrogels that are able to efficiently encapsulate 5-,10-,15-,20-tetrakis(meso-hydroxyphenyl)porphyrin (mTHPP), a porphyrin-based PS agent. The study showed that the lifetime of the triplet state for porphyrin PS is significantly increase when encapsulate into hydrogel. In addition to the possible enhancement of (1)O(2) generation, other advantages to incorporating porphyrin-based PS agents into hydrogel include the ability to solubilize these generally hydrophobic agents, the small and uniform size of hydrogels, and potential for passive targeting of solid tumors via the enhanced permeation and retention effect decreasing systemic photosensitization. This novel type of carboxymethyl starch (CMS) hydrogel using dextran sulfate (DS) as a polyanionic polymer was developed to achieve complex coacervation for the incorporation and controlled release of an anti-angiogenesis hexapeptide, this was the first report describing the use of DS to formulate CMS based hydrogels.  相似文献   

6.
Weng L  Chen X  Chen W 《Biomacromolecules》2007,8(4):1109-1115
The gelation kinetics of an in situ gelable hydrogel formulated from oxidized dextran (Odex) and N-carboxyethyl chitosan (CEC) was investigated rheologically. Both Schiff base mediated chemical and physical crosslinking account for its rapid gelation (30-600 s) between 5 and 37 degrees C. The correlation between gelation kinetics and hydrogel properties with Odex/CEC concentration, their feed ratio, and temperature were elucidated. The gelation time determined from crossing over of storage moduli (G') and loss moduli (G' ') was in good agreement with that deduced from frequency sweeping tests according to the Winter-Chambon power law. The power law exponents for a 2% (w/v) Odex/CEC solution (ratio 5:5) at the gel point was 0.61, which is in excellent agreement with the value predicted from percolation theory (2/3). Temperature dependence of gelation time for the same hydrogel formulation is well-described by an Arrhenius plot with its apparent activation energy calculated at 51.9 kJ/mol.  相似文献   

7.
Oral bioavailability of insulin contained in polysaccharide nanoparticles   总被引:2,自引:0,他引:2  
The pharmacological activity of insulin-loaded dextran sulfate/chitosan nanoparticles was evaluated following oral dosage in diabetic rats. Nanoparticles were mucoadhesive and negatively charged with a mean size of 500 nm, suitable for uptake within the gastrointestinal tract. Insulin association efficiency was over 70% and was released in a pH-dependent manner under simulated gastrointestinal conditions. Orally delivered nanoparticles lowered basal serum glucose levels in diabetic rats around 35% with 50 and 100 IU/kg doses sustaining hypoglycemia over 24 h. Pharmacological availability was 5.6 and 3.4% for the 50 and 100 IU/kg doses, respectively, a significant increase over 1.6%, determined for oral insulin alone in solution. Confocal microscopic examinations of FITC-labeled insulin nanoparticles showed adhesion to rat intestinal epithelium, and internalization of insulin within the intestinal mucosa. Encapsulation of insulin into dextran sulfate/chitosan nanoparticles was a key factor in the improvement of the bioavailability of its oral delivery over insulin solution.  相似文献   

8.
Bacterial infected environments and resulting bacterial infections have been threatening the human health globally. Due to increased bacterial resistance caused by improper and excessive use of antibiotics, antibacterial biomaterials are being developed as alternatives to antibiotics in some cases. Herein, an advanced multifunctional hydrogel with excellent antibacterial properties, enhanced mechanical properties, biocompatibility and self-healing performance, was designed through freezing-thawing method. This hydrogel network is composed of polyvinyl alcohol (PVA), carboxymethyl chitosan (CMCS), protocatechualdehyde (PA), ferric iron (Fe) and an antimicrobial cyclic peptide actinomycin X2 (Ac.X2). The double dynamic bonds among protocatechualdehyde (PA), ferric iron (Fe) and carboxymethyl chitosan containing coordinate bond (catechol-Fe) as well as dynamic Schiff base bonds and hydrogen bonds endowed the hydrogel with enhanced mechanical properties. Successful formation of hydrogel was confirmed through ATR-IR and XRD, and structural evaluation through SEM analysis, whereas mechanical properties were tested with electromechanical universal testing machine. The resulting PVA/CMCS/Ac.X2/PA@Fe (PCXPA) hydrogel has favorable biocompatibility and excellent broad-spectrum antimicrobial activity against both S. aureus (95.3 %) and E. coli (90.2 %) compared with free-soluble Ac.X2, which exhibited subpar performance against E. coli reported in our previous studies. This work provides a new insight on preparing multifunctional hydrogels containing antimicrobial peptides as antibacterial material.  相似文献   

9.
Chitin and chitosan are novel biomaterials. The novel chitosan/gelatin membranes were prepared using the suspension of chitosan hydrogel mixed with gelatin. The prepared chitosan/gelatin membranes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical, swelling, and thermal studies. The morphology of these chitosan/gelatin membranes was found to be very smooth and homogeneous. The XRD studies showed that the chitosan/gelatin membranes have good compatibility and interaction between the chitosan and gelatin. The stress and elongation of chitosan/gelatin membranes on wet condition showed excellent when the mixture ratio of gelatin was 0.50. The prepared chitosan/gelatin membranes showed good swelling, mechanical and thermal properties. Cell adhesion studies were also carried out using human MG-63 osteoblast-like cells. The cells incubated with chitosan/gelatin membranes for 24 h were capable of forming cell adhesion. Thus the prepared chitosan/gelatin membranes are bioactive and are suitable for cell adhesion suggesting that these membranes can be used for tissue-engineering applications. Therefore, these novel chitosan/gelatin membranes are useful for biomedical applications.  相似文献   

10.
Preparation and properties of alginate/carboxymethyl chitosan blend fibers   总被引:5,自引:0,他引:5  
Alginate/carboxymethyl chitosan blend fibers, prepared by spinning their mixture solution through a viscose-type spinneret into a coagulating bath containing aqueous CaCl2, were studied for structure and properties with the aid of infrared spectroscopy (IR), X-ray diffraction (XRD) and scanning electron micrography (SEM). The analyses indicated a good miscibility between alginate and carboxymethyl chitosan, because of the strong interaction from the intermolecular hydrogen bonds. The best values of the dry tensile strength and breaking elongation were obtained when carboxymethyl chitosan content was 30 and 10 wt%, respectively. The wet tensile strength and breaking elongation decreased with the increase of carboxymethyl chitosan content. Introduction of CM-chitosan in the blend fiber improved water-retention properties of blend fiber compared to pure alginate fiber. Antibacterial fibers, obtained by treating the fibres with aqueous solution of N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride and silver nitrate, respectively, exhibited good antibacterial activity to Staphylococcus aureus.  相似文献   

11.
Zhang H  Qadeer A  Chen W 《Biomacromolecules》2011,12(5):1428-1437
In situ gelable interpenetrating double-network hydrogels composed of thiolated chitosan (Chitosan-NAC) and oxidized dextran (Odex), completely devoid of potentially cytotoxic small molecule cross-linkers and that do not require complex maneuvers or catalysis, have been formulated. The interpenetrating network structure is created by Schiff base formations and disulfide bond inter-cross-linkings through exploiting the disparity of their reaction times. Compared with the autogelable thiolated chitosan hydrogels that typically require a relatively long time span for gelation to occur, the Odex/Chitosan-NAC composition solidifies rapidly and forms a well-developed 3D network in a short time span. Compared with typical hydrogels derived from natural materials, the Odex/Chitosan-NAC hydrogels are mechanically strong and resist degradation. The cytotoxicity potential of the hydrogels was determined by an in vitro viability assay using fibroblast as a model cell, and the results reveal that the hydrogels are noncytotoxic. In parallel, in vivo results from subdermal implantation in mice models demonstrate that this hydrogel is not only highly resistant to degradation but also induces very mild tissue response.  相似文献   

12.
壳聚糖温敏凝胶是一种新型的可注射、在体固化的载体材料,该材料在室温条件下呈生理中性的溶液状态,在37℃左右可由溶液转变成水凝胶。该水凝胶对大分子药物具有良好的缓释效能,但对小分子药物缓释效能极差。为制备同时缓释生长因子重组人骨形态发生蛋白-2(recombined human bone morphogenetic protein-2,rhBMP-2)和抗菌药物氯己定的功能性壳聚糖温敏凝胶,将小分子药物氯己定先与β-环糊精制备成包结物,再将rhBMP-2与β-环糊精/氯己定包结物共混于壳聚糖温敏凝胶中,通过HAAKE粘度测量仪,对比加入目标药物前后系统的流变学性质,并且分别通过高效液相(high performance liquid chromatography,HPLC)和酶联免疫吸附(enzyme-linkedimmunosorbent assay,ELISA)方法测量目标药物的体外释放性质,温敏凝胶系统的流变学性质几乎未受加入药物的影响。而氯己定从凝胶系统中释放的速度大大减慢,药物持续释放可保持1月以上。同时,rhBMP-2也获得较好的缓释效果。通过先行环糊精包结共混的方法,成功制备同时缓释rhBMP-2和氯己定的功能性温敏凝胶。  相似文献   

13.
An in situ injectable chitosan/gelatin hydrogel was formed under slightly acidic conditions (pH 4.0 ~ 4.5) using an acid-tolerant tyrosinase, tyrosinase-CNK. A homogeneous chitosan/tyrosinase-CNK solution was prepared in one part of a dual-barrel syringe, and highly soluble gelatin in distilled water was prepared in the other part of the syringe without any additional crosslinking materials. Chitosan/gelatin hydrogel was formed in situ by simple injection of the solutions at room temperature followed by curing at 37°C. However, conventional mushroom tyrosinase did not catalyze this permanent gel formation. Tyrosinase- CNK-catalyzed glycol chitosan/gelatin hydrogel was similarly formed by this in situ injection approach. The hydrogels exhibited a high swelling ratio of 20-fold their own weight, interconnected micropores with an average diameter of approximately 260 μm and in vitro biodegradability suitable for tissue engineering and drug delivery applications. These results showed that tyrosinase-CNK-mediated chitosan/gelatin hydrogel formation has remarkable potential for the development of novel formulations for in situ injectable gel-forming systems.  相似文献   

14.
15.

Introduction

Composite biomaterials designed for the repair of abdominal wall defects are composed of a mesh component and a laminar barrier in contact with the visceral peritoneum. This study assesses the behaviour of a new composite mesh by comparing it with two latest-generation composites currently used in clinical practice.

Methods

Defects (7x5cm) created in the anterior abdominal wall of New Zealand White rabbits were repaired using a polypropylene mesh and the composites: PhysiomeshTM; VentralightTM and a new composite mesh with a three-dimensional macroporous polyester structure and an oxidized collagen/chitosan barrier. Animals were sacrificed on days 14 and 90 postimplant. Specimens were processed to determine host tissue incorporation, gene/protein expression of neo-collagens (RT-PCR/immunofluorescence), macrophage response (RAM-11-immunolabelling) and biomechanical resistance. On postoperative days 7/14, each animal was examined laparoscopically to quantify adhesions between the visceral peritoneum and implant.

Results

The new composite mesh showed the lowest incidence of seroma in the short term. At each time point, the mesh surface covered with adhesions was greater in controls than composites. By day 14, the implants were fully infiltrated by a loose connective tissue that became denser over time. At 90 days, the peritoneal mesh surface was lined with a stable mesothelium. The new composite mesh induced more rapid tissue maturation than PhysiomeshTM, giving rise to a neoformed tissue containing more type I collagen. In VentralightTM the macrophage reaction was intense and significantly greater than the other composites at both follow-up times. Tensile strengths were similar for each biomaterial.

Conclusions

All composites showed optimal peritoneal behaviour, inducing good peritoneal regeneration and scarce postoperative adhesion formation. A greater foreign body reaction was observed for VentralightTM. All composites induced good collagen deposition accompanied by optimal tensile strength. The three-dimensional macroporous structure of the new composite mesh may promote rapid tissue regeneration within the mesh.  相似文献   

16.
A novel interpenetrating network hydrogel for drug controlled release, composed of modified poly(aspartic acid) (KPAsp) and carboxymethyl chitosan (CMCTS), was prepared in aqueous system. The surface morphology and composition of hydrogels were characterized by SEM and FTIR. The swelling properties of KPAsp, KPAsp/CMCTS semi-IPN and KPAsp/CMCTS IPN hydrogels were investigated and the swelling dynamics of the hydrogels was analyzed based on the Fickian equation. The pH, temperature and salt sensitivities of hydrogels were further studied, and the prepared hydrogels showed extremely sensitive properties to pH, temperature, the ionic salts kinds and concentration. The results of controlled drug release behaviors of the hydrogels revealed that the introduction of IPN observably improved the drug release properties of hydrogels, the release rate of drug from hydrogels can be controlled by the structure of the hydrogels and pH value of the external environment, a relative large amount of drug released was preferred under simulated intestinal fluid. These results illustrated high potential of the KPAsp/CMCTS IPN hydrogels for application as drug carriers.  相似文献   

17.
In this paper, a series of nano-hydroxyapatite(n-HA)/chitosan cross-linking composite membranes (n-HA; 0, 5, 10, 15, 20 and 30 wt%) were successfully developed by a simple casting/solvent evaporation method. n-HA with size about 20 nm in vertical diameter and about 100 nm in horizontal diameter was successfully synthesized by a hydro-thermal precipitation method, and then dispersed into chitosan/genipin solution with the aid of continuous ultrasound to develop n-HA/chitosan cross-linking composite membranes. The detailed characterizations including Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), water adsorption and tensile test were performed. With the analysis of FTIR spectra and TGA spectra, it suggested that there was existence of possible interactions between polymer and n-HA. Meanwhile, the n-HA content was greatly effected on the morphology as well as the tensile property of composite membrane. In vitro cytotoxicity test suggested that the developed n-HA/chitosan cross-linking composite membrane was non-cytotoxicity against L929 cells after 24 h's incubation might be suitable for further in vivo application.  相似文献   

18.
A new efficient, low cost chitosan based biosorbent was successfully prepared and employed for the biosorption of copper ions from an aqueous solution using a fixed bed column. Pyromellitic dianhydride crosslinked chitosan as the new adsorbent was characterized by SEM, FTIR spectroscopy, X-ray diffraction, thermogravimetric analysis and solid state (13)C NMR analysis. Scanning electron microscopy coupled with an X-ray energy dispersed analysis for the copper-equilibrated biomass confirmed the presence of Cu(II) ions on the surface of the hydrogel. Thermogravimetric analysis showed a significant improvement in the thermal stability of the new hydrogel compared to pure chitosan. Kinetic models were applied to predict the breakthrough curves. This study shows that the prepared hydrogel based on modified chitosan could be utilized as an efficient bioadsorbent for the removal of copper ions from wastewater.  相似文献   

19.
唾液的增加加速了含羧甲基壳聚糖口香糖的抗菌效果   总被引:1,自引:0,他引:1  
目的:本论文采用了含羧甲基壳聚糖的口香糖,咀嚼这种口香糖的机械效果加速了其对口腔细菌的抑制作用,还比较口腔嗽洗液和咀嚼口香糖的抗菌效果,证明了通过咀嚼这种口香糖加速了唾液的分泌.方法:从青岛大学口腔科的老师和学生中选取了12名健康的受试者.在测试前取受试者的唾液测试细菌含量.在测试口香糖的试验中,受试者咀嚼5分钟口香糖然后休息5分钟.在测试口腔嗽洗液时,受试者用10ml嗽洗液漱口30秒后,休息9分30秒.同一天中这些测试步骤在50分钟内连续不断的进行了5次.5次测试后分别在0、30和60min收集被试者的唾液测试细菌含量.在测试唾液分泌的试验中,受试者每天咀嚼三次口香糖持续两天.结果:与使用口腔嗽洗液相比,咀嚼含羧甲基壳聚糖口香糖的受试者,在三个取样时间内口腔细菌的含量基本都明显减少,但是在60分钟的取样时间结果有点差异.咀嚼含羧甲基壳聚糖的口香糖明显提高了唾液的分泌量.结论:咀嚼含羧甲基壳聚糖的口香糖具有明显的抗菌效果.目前的研究结果强有力的证明了:使用像壳聚糖以及其衍生物这样的天然物质,对我们的口腔健康以及生活质量都有很大的帮助.  相似文献   

20.
壳聚糖基角膜细胞载体的制备及其细胞相容性   总被引:1,自引:0,他引:1  
为探讨羟丙基壳聚糖基共混膜作为组织工程技术中角膜细胞培养载体的可行性, 分别制备了羟丙基壳聚糖/硫酸软骨素、羟丙基壳聚糖/明胶/硫酸软骨素以及羟丙基壳聚糖/氧化透明质酸/硫酸软骨素三种共混膜。测定其透光率、含水量和蛋白吸附性能; 在共混膜上培养兔角膜上皮细胞, 通过观察角膜上皮细胞在不同载体膜上的生长状态、贴附情况, 测定细胞活性以及上清液中乳酸脱氢酶的活性, 研究三种壳聚糖基载体膜片与角膜上皮细胞的相容性。膜片理化性质测定结果表明三种共混膜片具有良好的透明度, 适宜的含水量和较强的蛋白吸附性能; 细胞相容性实验结果表明羟丙基壳聚糖/明胶/硫酸软骨素共混膜对细胞的损伤最小, 有利于细胞在膜上的贴附和生长, 表现出良好的细胞相容性, 有望作为角膜细胞载体体外构建组织工程化角膜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号