首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase equilibria in the phosphatidylcholine-cholesterol system   总被引:35,自引:0,他引:35  
A thermodynamic and a microscopic interaction model are proposed to describe the phase equilibria in the phosphatidylcholine-cholesterol system. The model calculations allow for a solid phase with conformationally ordered acyl chains and liquid phases with conformationally ordered as well as disordered chains. The resulting phase diagram is in excellent agreement with the experimental phase diagram for dipalmitoylphosphatidylcholine bilayers with cholesterol as determined by a recent NMR and calorimetry study. It is thus demonstrated that the phase behaviour of phosphatidylcholine-cholesterol mixtures can be rationalized using only a few basic assumptions: (i) Cholesterol interacts favourably with phosphatidylcholine chains in an extended conformation, (ii) the main transition of pure phosphatidylcholine bilayers takes place in terms of translational variables as well acyl-chain conformational variables, and (iii) cholesterol disturbs the translational order in the crystalline (gel) state of phosphatidylcholine. These results suggest that the occurrence of specific phosphatidylcholine-cholesterol complexes is not implied by the experimental thermodynamic data.  相似文献   

2.
A set of Vlasov-Maxwell equations for collisionless electromagnetic drift instabilities of high-β plasma configurations with a nonuniform magnetic fields is solved. The effect of the transverse static magnetic field variation and magnetic field line curvature, as well as the plasma temperature and density gradients, is considered. It is shown that, in a nonuniform magnetic field, the behavior of the instabilities differs substantially from that in a uniform field. Electromagnetic modes propagating strictly transverse to the lines of the static magnetic field are analyzed in detail, and unstable solutions are obtained for both extraordinary and ordinary waves. Numerical results show that, in the latter case, instability occurs when the magnetic field decreases toward the periphery and the plasma temperature and density gradients are oppositely directed.  相似文献   

3.
We use fluorescence microscopy to directly observe liquid phases in giant unilamellar vesicles. We find that a long list of ternary mixtures of high melting temperature (saturated) lipids, low melting temperature (usually unsaturated) lipids, and cholesterol produce liquid domains. For one model mixture in particular, DPPC/DOPC/Chol, we have mapped phase boundaries for the full ternary system. For this mixture we observe two coexisting liquid phases over a wide range of lipid composition and temperature, with one phase rich in the unsaturated lipid and the other rich in the saturated lipid and cholesterol. We find a simple relationship between chain melting temperature and miscibility transition temperature that holds for both phosphatidylcholine and sphingomyelin lipids. We experimentally cross miscibility boundaries both by changing temperature and by the depletion of cholesterol with beta-cyclodextrin. Liquid domains in vesicles exhibit interesting behavior: they collide and coalesce, can finger into stripes, and can bulge out of the vesicle. To date, we have not observed macroscopic separation of liquid phases in only binary lipid mixtures.  相似文献   

4.
The instability of polysaccharide/protein mixtures occurs because of either thermodynamic incompatibility or complexation. We studied which instability mechanism dominated given the external conditions. Therefore the effect of temperature, pH, and biopolymer concentration on the phase separation of pectin/caseinate mixtures was investigated. At pH > 6, thermodynamic incompatibility with spinodal decomposition was observed in pectin/caseinate mixtures resulting in the formation of water-in-water emulsions in intermediate stages of the phase separation process. The demixing rate of these emulsions and appearance of two macroscopic phases (lower phase enriched with caseinate and upper phase with pectin) was retarded when the pectin concentration increased or when the storage temperature decreased due to a higher viscosity of the mixtures at those conditions. As the pH of the mixture was lowered below 6, pectin accumulated in the caseinate-rich phase. Complexation of pectin and caseinate led to the formation of microparticles (approximately 3 microm), whose shape depends on the biopolymer concentration ratio and rate of acidification. These pectin/caseinate particles do not coalesce and are insensitive to salt addition.  相似文献   

5.
Vesicles containing ternary mixtures of diphytanoylphosphatidylcholine, dipalmitoylphosphatidylcholine (DPPC), and cholesterol produce coexisting liquid phases over an unusually large range of temperature and composition. Liquid domains persist well above the DPPC chain melting temperature (41 degrees C), resulting in a closed-loop miscibility gap bounded by two critical points at fixed temperature. Quantitative tie-lines are determined directly from 2H NMR spectra using a novel analysis, and are found to connect a liquid-disordered phase rich in diphytanoyl PC with a liquid-ordered phase rich in DPPC. The direction of the tie-lines implies that binary DPPC/cholesterol mixtures are in one uniform phase above 41 degrees C. All 2H NMR results for tie-lines are verified by independent fluorescence microscopy results.  相似文献   

6.
Cryogen spray cooling (CSC) is used in conjunction with pulsed laser irradiation for treatment of dermatologic indications. The main goal of this study was to determine the radial temperature distribution created by CSC and evaluate the importance of radial temperature gradients upon the subsequent analysis of tissue cooling throughout the skin. Since direct measurement of surface temperatures during CSC are hindered by the formation of a liquid cryogen layer, temperature distributions were estimated using a thin, black aluminum sheet. An infrared focal plane array camera was used to determine the 2-D backside temperature distribution during a cryogen spurt, which preliminary measurements have shown is a good indicator of the front-side temperature distribution. The measured temperature distribution was approximately gaussian in shape. Next, the transient temperature distributions in skin were calculated for two cases: 1) the standard 1-D solution which assumes a uniform cooling temperature distribution, and 2) a 2-D solution using a nonuniform surface cooling temperature distribution based upon the back-side infrared temperature measurements. At the end of a 100-ms cryogen spurt, calculations showed that, for the two cases, large discrepancies in temperatures at the surface and at a 60-micron depth were found at radii greater than 2.5 mm. These results suggest that it is necessary to consider radial temperature gradients during cryogen spray cooling of tissue.  相似文献   

7.
Water and solute activity gradients created during freeze-thaw processes produce water and solute fluxes across the cell membrane resulting in volume changes. Under these conditions, osmotic and thermal stresses affect the curvature, the phase behavior, and the surface properties of the lipid bilayer. These structural changes are not considered by the classical formalisms describing permeability of lipid membranes to water and nonelectrolytes such as the Nernst-Planck equation, Eyring's absolute rate theory, and Kedem-Katchalsky's thermodynamic of irreversible processes approach. In this paper, the influence of such changes on the glycerol permeation kinetics are reported. The results indicate that osmotic and chemical effects of the cryoprotectant on the membrane properties affect the rate of volume swelling depending on whether the membrane is in the gel or in the liquid crystalline state.  相似文献   

8.
The set of three pair atom–atom potentials for zirconia crystals and nano objects was developed. Besides Buckingham potential and Coulomb interaction, these force fields employ the additional functional forms: Fermi-Dirac, Inverse Gaussian or Morse potential. The developed force fields are capable to reproduce the structural, mechanical and thermodynamic properties of five zirconia phases: monoclinic, tetragonal, cubic, brookite and cotunnite with acceptable accuracy. The proposed force fields give monoclinic phase as a ground state structure and predict the correct energy ordering of the phases. The Raman and IR phonon frequencies, temperature dependencies of the thermodynamic properties of monoclinic and tetragonal zirconia are predicted in good and moderate agreement with the experimentally observed data and results of first-principles calculations. To test the transferability of proposed potentials, the zirconia-based nanosheets and nanotubes were simulated. Results of structure optimisation and calculation of the nanotubes’ strain energies are well compared with the corresponding data of the first-principles calculations.  相似文献   

9.
Abstract

The transport properties of bulk liquid, gas and at the gas/liquid interface were studied for two binary Lennard-Jones/spline mixtures by use of nonequilibrium molecular dynamics. One of the mixtures was an ideal isotope mixture, the other a non-ideal mixture. The simulations gave the thermal conductivity, mutual diffusion coefficient, heat flux, mass flux, and the changes in these quantities across the interface. The local entropy production was expressed in terms of fluxes and thermodynamic forces, and numercial estimates are given. It was shown that the largest contribution to the total entropy production occurs in the vapor phase under the chosen conditions. We expect, however that if the mass flux were larger, the major contribution to the entropy production would come from the liquid phase.  相似文献   

10.
Protein solubility modeling.   总被引:2,自引:0,他引:2  
A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process.  相似文献   

11.
It is shown that good estimates of the activity of cholesterol in phosphatidylcholine-cholesterol mixed model membranes are obtained by examining the orientational order parameter S of cholestane spin probe (CSL) that is obtained from electron spin resonance by spectral simulation. By introducing thermodynamic stability conditions of liquid mixtures, the variation of activity (or S) as a function of cholesterol mole fraction is utilized to predict the concentration at which the phase separation occurs. These results for DMPC and cholesterol binary mixtures agree very well with those of Tempo-partitioning experiments. The comparison of activity coefficients and the phase boundary in DMPC/cholesterol mixtures with those of POPC/cholesterol mixtures suggests that acyl chain unsaturation leads to poorer mixing of cholesterol in phosphatidylcholine model membranes at higher temperatures (i.e., greater than 35 degrees C). In ternary solutions of DMPC, POPC, and cholesterol, it is found that cholesterol shows less deviation from ideality than in either of the two binary mixtures, and this implies that the phase separation occurs at higher cholesterol concentration than in either of the two binary mixtures. The present analysis suggests that there may not be a critical point in DMPC/cholesterol mixtures, even though phase separation does occur.  相似文献   

12.
Non-ideal miscibility in the liquid phase of mono- or diglycerides with triglycerides has been described in terms of thermodynamic excess functions. To this end the heat of mixing and the solubility temperatures of several ideal and non-ideal binary glyceride mixtures have been measured. The non-ideal phase behaviour of glyceride systems reported in the literature has been satisfactorily predicted, which indicates that the excess functions are generally applicable to mixtures of mono- or diglycerides with triglycerides.  相似文献   

13.
A new mechanism for stomatal responses to humidity and temperature is proposed. Unlike previously-proposed mechanisms, which rely on liquid water transport to create water potential gradients within the leaf, the new mechanism assumes that water transport to the guard cells is primarily through the vapour phase. Under steady-state conditions, guard cells are assumed to be in near-equilibrium with the water vapour in the air near the bottom of the stomatal pore. As the water potential of this air varies with changing air humidity and leaf temperature, the resultant changes in guard cell water potential produce stomatal movements. A simple, closed-form, mathematical model based on this idea is derived. The new model is parameterized for a previously published set of data and is shown to fit the data as well as or better than existing models. The model contains mathematical elements that are consistent with previously-proposed mechanistic models based on liquid flow as well as empirical models based on relative humidity. As such, it provides a mechanistic explanation for the realm of validity for each of these approaches.  相似文献   

14.
We describe a kinetic Monte Carlo molecular simulation procedure to calculate the Helmholtz free energy, the entropy and the chemical potentials of all components in a bulk fluid mixture. This allows us to derive the excess properties (volume, free energy and entropy) resulting from the mixing of homogeneous fluids of pure components at constant temperature and pressure. We have chosen neon–xenon mixtures to illustrate our method because of the large difference in collision diameter and well-depth of the interaction energy. When xenon is predominant in the mixture, the volume of mixing is larger. The excess entropy of mixing correlates with the volume of mixing, since a positive excess volume enables more configurations (more possible molecular distributions). The excess thermodynamic quantities as functions of the total density were found to be insensitive to temperature. To investigate the effects of the molecular parameters, we also studied argon–nitrogen and argon–krypton mixtures. The effect of the difference in molecular parameters is in the order: argon–nitrogen < argon–krypton < neon–xenon. A large difference in the well-depth of the interaction energies results in an increase in the excess thermodynamic variables, which is in agreement with the literature McDonald IR. NpT-ensemble Monte Carlo calculations for binary liquid mixtures. Mol Phys. 1972;23(1):41–58; Singer JVL, Singer K. Monte Carlo calculation of thermodynamic properties of binary mixtures of Lennard-Jones (12-6) liquids. Mol Phys. 1972;24(2):357–390.  相似文献   

15.
There is a demand of novel high resolution separation media for separation of complex mixtures, particularly biological samples. One of the most flexible techniques for development of new separation media currently is synthesis of the continuous bed (monolithic) stationary phases. In this study the capillary format gradient stationary phases were formed using continuous bed (monolith) polymerization in situ. Different reversed-phase stationary phase gradients were tailored and their resolution using capillary liquid chromatography and capillary electrochromatography at isocratic mobile phase conditions was evaluated. It is demonstrated, that efficiency and resolution of the gradient stationary phases can be substantially increased comparing to the common (isotropic) stationary phases. The proposed formation approach of the gradient stationary phase is reproducible and compatible with the capillary format or microchip format separations. It can be easily automated for the separation optimizations or mass production of the capillary columns or chips.  相似文献   

16.
There is a demand of novel high resolution separation media for separation of complex mixtures, particularly biological samples. One of the most flexible techniques for development of new separation media currently is synthesis of the continuous bed (monolithic) stationary phases. In this study the capillary format gradient stationary phases were formed using continuous bed (monolith) polymerization in situ. Different reversed-phase stationary phase gradients were tailored and their resolution using capillary liquid chromatography and capillary electrochromatography at isocratic mobile phase conditions was evaluated. It is demonstrated, that efficiency and resolution of the gradient stationary phases can be substantially increased comparing to the common (isotropic) stationary phases. The proposed formation approach of the gradient stationary phase is reproducible and compatible with the capillary format or microchip format separations. It can be easily automated for the separation optimizations or mass production of the capillary columns or chips.  相似文献   

17.
Abstract

We present an extension of the Gibbs-Duhem integration method that permits direct evaluation of vapour-liquid equilibria of mixtures by molecular dynamics. The Gibbs-Duhem integration combines the best elements of the Gibbs ensemble Monte Carlo technique and thermodynamic integration. Given conditions of coexistence of pure substances, simultaneous but independent molecular dynamics simulations of each phase at constant number of particles, constant pressure, constant temperature and constant fugacity fraction of species 2 are carried out in succession along coexistence lines. In each simulation, the coexistence pressure is adjusted to satisfy the Clapeyron-type equation. The Clapeyron-type equation is a first-order nonlinear differential equation that prescribes how the pressure must change with the fugacity fraction of species 2 to maintain coexistence at constant temperature. The Clapeyron-type equation is solved by the predictor-corrector method. Running averages of mole fraction and compressibility factor for the two phases are used to evaluate the right-hand side of the Clapeyron-type equation. The Gibbs-Duhem integration method is applied to three prototypes of binary mixtures of the two-centre Lennard-Jones fluid having various elongations. The starting points on the coexistence curve were taken from published data.  相似文献   

18.
Some binary mixtures of cholesterol and phospholipids in monolayers have thermodynamic phase diagrams with two upper miscibility critical points. This feature has been interpreted in terms of 'condensed complexes' between the phospholipid and cholesterol. The present work gives evidence for the formation of complexes with a common simple integral stoichiometry in binary mixtures of cholesterol and a series of five sphingomyelins where the amide-linked acyl chain length is varied. This indicates that these complexes have a distinct geometry even though they form a liquid phase.  相似文献   

19.
20.
For multilamella vesicles of DMPC, DPPC, DSPC, binary mixtures of DMPC-DPPC, DMPC-DSPC, DMPC-DPPE, DOPC and egg lecithin, the optical turbidity decreases significantly on the application of a magnetic field in excess of about 0.2 T, provided that the temperature is above the pretransition value. The turbidity reaches a limiting value for magnetic fields of about 2 T. The effect is attributed to augmentation of the diamagnetic anisotropy of the lipid molecules by clustering within the bilayer, with consequent orientation of either the individual ‘superdiamagnetic’ clusters or the whole liposome. It is suggested that, since most animal cell membranes are largely in the liquid crystalline phase, it is possible that homogeneous magnetic fields as low as 0.2 T may cause biologically significant changes within the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号