首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray absorption studies of yeast copper metallothionein   总被引:3,自引:0,他引:3  
The local structures of the metal sites in copper metallothionein from Saccharomyces cerevisiae have been investigated by x-ray absorption spectroscopy at the copper and sulfur K edges. Analysis of the EXAFS (extended x-ray absorption fine structure) data indicates that each copper is trigonally coordinated to sulfur at a distance of 2.23 A. Cu-Cu interactions at 2.7 and 3.9 A have also been tentatively identified. Sulfur K edge data are compatible with cysteinyl thiolates bridging each of the eight Cu(I) ions. The data support a model for the copper cluster in yeast metallothionein consisting of a Cu8S12 core. EXAFS data on two specifically engineered carboxyl-terminal truncated mutants reveal that the copper coordination in the mutants is similar to that observed in the wild-type protein.  相似文献   

2.
The metal binding site in the lysosomal copper metallothionein from canine liver (LyCuLP) was examined with X-ray edge and extended X-ray absorption fine structure (EXAFS) spectroscopies. The k-absorption edge spectrum of LyCuLP was consistent with the coordination of univalent copper. The Fourier transform of the EXAFS data showed four resolved shells of backscattering atoms. Comparisons between the phase and amplitude functions derived from the isolated shells to those of Cu-Cu, Cu-S, and Cu-N model compounds showed that each copper was coordinated by four sulfur atoms at a distance of 2.27 +/- 0.02 A. Analysis of the outer shell data indicated backscattering copper atoms at 2.74 +/- 0.05, 3.32 +/- 0.05, and 3.88 +/- 0.05 A. Interatomic distances determined from the EXAFS data were compared to the distances observed by X-ray crystallographic analysis of adamantane-like clusters containing four and five copper atoms and a cubic cluster containing four copper atoms, structurally similar to the 4Fe-4S clusters in some ferredoxins. The results of these comparisons suggest that the copper complexed in LyCuLP is arranged in an adamantane-like cluster. The structure derived for this protein may be conserved in other copper metallothioneins.  相似文献   

3.
The effect of deficiency in sulfur, copper and iron in the growth medium on cyanide resistant respiration and cytochrome composition was studied in Pseudomonas aeruginosa and Candida lipolytica. It has been shown that: cyanide resistant respiration was observed at the stationary growth phase when the two microorganisms were cultivated in a complete medium; this respiration was detected already at the phase of decelerated growth in the case of copper deficiency; iron deficiency inhibited cyanide resistant respiration in the bacterium but stimulated its appearance in the yeast; sulfur deficiency inhibited the manifestation of cyanide resistant respiration in the both microorganisms; limitation of the bacterial growth with iron resulted in the accumulation of an iron complex (identical to pyoverdin in its spectral characteristics) in the cultural broth; the deficiency of sulfur, copper and iron inhibited the synthesis of all cytochromes in the bacterium; copper deficiency inhibited only the synthesis of a + a3 in the yeast; iron deficiency inhibited the synthesis of all cytochromes in the yeast; sulfur deficiency had virtually no effect on the content of cytochromes in the yeast. A possible nature of cyanide resistant oxidases in these microorganisms is discussed.  相似文献   

4.
The structure of the CuA-containing, extracellular domain of Thermus thermophilus ba3-type cytochrome c oxidase has been determined to 1.6 A resolution using multiple X-ray wavelength anomalous dispersion (MAD). The Cu2S2 cluster forms a planar rhombus with a copper-copper distance of 2.51 +/- 0.03 A. X-ray absorption fine-structure (EXAFS) studies show that this distance is unchanged by crystallization. The CuA center is asymmetrical; one copper is tetrahedrally coordinated to two bridging cysteine thiolates, one histidine nitrogen and one methionine sulfur, while the other is trigonally coordinated by the two cysteine thiolates and a histidine nitrogen. Combined sequence-structure alignment of amino acid sequences reveals conserved interactions between cytochrome c oxidase subunits I and II.  相似文献   

5.
S-adenosylmethionine (SAM) accumulated in cultured yeast cells and affected growth in two ways. High levels of intracellular SAM in yeast inhibited early growth, but increased growth in medium without sources of nitrogen and sulfur. Accumulated SAM in the yeast cells was recycled as a nutritional source depending on the sulfur and nitrogen contents of the medium.  相似文献   

6.
7.
Mutations in Cu,Zn superoxide dismutase (SOD1) can cause amyotrophic lateral sclerosis (ALS) through mechanisms proposed to involve SOD1 misfolding, but the intracellular factors that modulate folding and stability of SOD1 are largely unknown. By using yeast and mammalian expression systems, we demonstrate here that SOD1 stability is governed by post-translational modification factors that target the SOD1 disulfide. Oxidation of the human SOD1 disulfide in vivo was found to involve both the copper chaperone for SOD1 (CCS) and the CCS-independent pathway for copper activation. When both copper pathways were blocked, wild type SOD1 stably accumulated in yeast cells with a reduced disulfide, whereas ALS SOD1 mutants A4V, G93A, and G37R were degraded. We describe here an unprecedented role for the thiol oxidoreductase glutaredoxin in reducing the SOD1 disulfide and destabilizing ALS mutants. Specifically, the major cytosolic glutaredoxin of yeast was seen to reduce the intramolecular disulfide of ALS SOD1 mutant A4V SOD1 in vivo and in vitro. By comparison, glutaredoxin was less reactive toward the disulfide of wild type SOD1. The apo-form of A4V SOD1 was highly reactive with glutaredoxin but not SOD1 containing both copper and zinc. Glutaredoxin therefore preferentially targets the immature form of ALS mutant SOD1 lacking metal co-factors. Overall, these studies implicate a critical balance between cellular reductants such as glutaredoxin and copper activation pathways in controlling the disulfide and stability of SOD1 in vivo.  相似文献   

8.
In yeast cells galactosamine in concentrations of 0.1 1M partially inhibits the synthesis of RNA but has little effect on the protein synthesis. In vivo and in vitro studies show that galactosamine is metabolized in yeast to UDP-N-acetylhexosamines but at a reduced rate, compared to the metabolism of galactose. The addition of galactosamine to growing yeast cells leads to the induction of the galactose pathway enzymes. Studies using different mutants in the galactose genes provide evidence that galactosamine is an inducer of the galactose structural genes in yeast. The same degree of induction of galactokinase and galactotransferase, found when galactose or galactosamine were used as inducers, supports the model of coordinated regulation in the expression of the structural genes for the galactose pathway enzymes in yeast.  相似文献   

9.
Treatment of mice bearing BCL1 lymphoma with bispecific antibodies   总被引:1,自引:0,他引:1  
Bispecific antibodies with specificity for the CD3/TCR complex of CTL and a target cell Ag can bridge both cell types and trigger cellular cytoxicity. We have produced bispecific antibodies, directed against the surface-expressed Id of the mouse BCL1 lymphoma and the mouse CD3 complex, by hybrid-hybridoma fusion. Two recombination Ig were purified to homogeneity: B1 X 7D6F, which is univalent for Id and CD3 binding and B1 X 7D6M, which is univalent for Id binding but has lost the CD3 binding because of association of the anti-CD3 H chain with the inappropriate L chain. In vitro studies indicate that bridging the TCR/CD3 complex of resting T cells with tumor IgM Id and the appropriate bispecific antibody induced proliferation and secretion of IL-2. Furthermore, in cytotoxicity assays using 51Cr-labeled tumor cells, preactivated T cells could be targeted with the bispecific antibody to give complete lysis of the Ag+ tumor. Finally, the activity of the bispecific antibody was confirmed in vivo. Animals treated i.v. with 5 micrograms of bispecific antibody 9 days after receiving BCL1 cells were cured. Furthermore, when these animals were checked at 150 days for dormant or variant tumors, as have been reported after other forms of immunotherapy in this model, none could be found. Immunotherapy experiments comparing a mixture of control antibodies with the bispecific antibody demonstrate that tumor cell-T cell bridging is established in vivo and is required for therapeutic success. These results indicate the importance of bispecific antibodies as a novel form of treatment for cancer.  相似文献   

10.
The copper chaperone for superoxide dismutase (SOD1) inserts the catalytic metal cofactor into SOD1 by an unknown mechanism. We demonstrate here that this process involves the cooperation of three distinct regions of the copper chaperone for SOD1 (CCS): an amino-terminal Domain I homologous to the Atx1p metallochaperone, a central portion (Domain II) homologous to SOD1, and a short carboxyl-terminal peptide unique to CCS molecules (Domain III). These regions fold into distinct polypeptide domains as revealed through proteolysis protection studies. The biological roles of the yeast CCS domains were examined in yeast cells. Surprisingly, Domain I was found to be necessary only under conditions of strict copper limitation. Domain I and Atx1p were not interchangeable in vivo, underscoring the specificity of the corresponding metallochaperones. A putative copper site in Domain II was found to be irrelevant to yeast CCS activity, but SOD1 activation invariably required a CXC in Domain III that binds copper. Copper binding to purified yeast CCS induced allosteric conformational changes in Domain III and also enhanced homodimer formation of the polypeptide. Our results are consistent with a model whereby Domain I recruits cellular copper, Domain II facilitates target recognition, and Domain III, perhaps in concert with Domain I, mediates copper insertion into apo-SOD1.  相似文献   

11.
One-carbon flux into methionine and S-adenosylmethionine (AdoMet) is thought to be controlled at the methylenetetrahydrofolate reductase (MTHFR) step. Mammalian MTHFRs are inhibited by AdoMet in vitro, and it has been proposed that methyl group biogenesis is regulated in vivo by this feedback loop. In this work, we used metabolic engineering in the yeast Saccharomyces cerevisiae to test this hypothesis. Like mammalian MTHFRs, the yeast MTHFR encoded by the MET13 gene is NADPH-dependent and is inhibited by AdoMet in vitro. This contrasts with plant MTHFRs, which are NADH-dependent and AdoMet-insensitive. To manipulate flux through the MTHFR reaction in yeast, the chromosomal copy of MET13 was replaced by an Arabidopsis MTHFR cDNA (AtMTHFR-1) or by a chimeric sequence (Chimera-1) comprising the yeast N-terminal domain and the AtMTHFR-1 C-terminal domain. Chimera-1 used both NADH and NADPH and was insensitive to AdoMet, supporting the view that the C-terminal domain is responsible for AdoMet inhibition. Engineered yeast expressing Chimera-1 accumulated 140-fold more AdoMet and 7-fold more methionine than did the wild-type and grew normally. Yeast expressing AtMTHFR-1 accumulated 8-fold more AdoMet. This is the first in vivo evidence that the AdoMet sensitivity and pyridine nucleotide preference of MTHFR control methylneogenesis. (13)C labeling data indicated that glycine cleavage becomes a more prominent source of one-carbon units when Chimera-1 is expressed. Possibly related to this shift in one-carbon fluxes, total folate levels are doubled in yeast cells expressing Chimera-1.  相似文献   

12.
The crystal structure of amicyanin, a cupredoxin isolated from Paracoccus denitrificans, has been determined by molecular replacement. The structure has been refined at 2.0 A resolution using energy-restrained least-squares procedures to a crystallographic residual of 15.7%. The copper-free protein, apoamicyanin, has also been refined to 1.8 A resolution with residual 15.5%. The protein is found to have a beta-sandwich topology with nine beta-strands forming two mixed beta-sheets. The secondary structure is very similar to that observed in the other classes of cupredoxins, such as plastocyanin and azurin. Amicyanin has approximately 20 residues at the N-terminus that have no equivalents in the other proteins; a portion of these residues forms the first beta-strand of the structure. The copper atom is located in a pocket between the beta-sheets and is found to have four coordinating ligands: two histidine nitrogens, one cysteine sulfur, and, at a longer distance, one methionine sulfur. The geometry of the copper coordination is very similar to that in the plant plastocyanins. Three of the four copper ligands are located in the loop between beta-strands eight and nine. This loop is shorter than that in the other cupredoxins, having only two residues each between the cysteine and histidine and the histidine and methionine ligands. The amicyanin and apoamicyanin structures are very similar; in particular, there is little difference in the positions of the coordinating ligands with or without copper. One of the copper ligands, a histidine, lies close to the protein surface and is surrounded on that surface by seven hydrophobic residues. This hydrophobic patch is thought to be important as an electron transfer site.  相似文献   

13.
Cells of a normal yeast strain and of its copper-resistant substrainwere more severely injured by copper treatment under sulfurdeficiency than under nitrogen or carbon deficiency. Even underthese starved conditions, the resistant substrain gave higherviable counts than the parent strain after the copper treatment.Several hours were needed for the sulfur-starved cells to recovertheir copper-resistance when resupplied with sulfur. The observed effect of the amount of sulfur supply on the cellyield was not contradictory to the idea that resistant cellsuse for their resistance mechanism a part of sulfur they absorb.Methionine made cells more sensitive to copper, and this effectwas antagonized by ethionine to some extent. The importance of sulfur metabolism in copper resistance isdiscussed. 1This work was supported by a Grant in Aid for Fundamental ScientificResearch, Ministry of Education, Japan. 2Present address: Konan University, Kobe, Japan. (Received October 8, 1959; )  相似文献   

14.
The homeostatic regulation of essential elements such as copper requires many proteins whose activities are often mediated and tightly coordinated through protein-protein interactions. This regulation ensures that cells receive enough copper without intracellular concentrations reaching toxic levels. To date, only a small number of proteins implicated in copper homeostasis have been identified, and little is known of the protein-protein interactions required for this process. To identify other proteins important for copper homeostasis, while also elucidating the protein-protein interactions that are integral to the process, we have utilized a known copper protein, the copper ATPase ATP7A, as a bait in a yeast two-hybrid screen of a human cDNA library to search for interacting partners. One of the ATP7A-interacting proteins identified is a novel protein with a single PDZ domain. This protein was recently identified to interact with the plasma membrane calcium ATPase b-splice variants. We propose a change in name for this protein from PISP (plasma membrane calcium ATPase-interacting single-PDZ protein) to AIPP1 (ATPase-interacting PDZ protein) and suggest that it represents the protein that interacts with the class I PDZ binding motif identified at the ATP7A C terminus. The interaction in mammalian cells was confirmed and an additional splice variant of AIPP1 was identified. This study represents an essential step forward in identifying the proteins and elucidating the network of protein-protein interactions involved in maintaining copper homeostasis and validates the use of the yeast two-hybrid approach for this purpose.  相似文献   

15.
Sco1 is a conserved essential protein, which has been implicated in the delivery of copper to cytochrome c oxidase, the last enzyme of the electron transport chain. In this study, we show for the first time that the purified C-terminal domain of yeast Sco1 binds one Cu(I)/monomer. X-ray absorption spectroscopy suggests that the Cu(I) is ligated via three ligands, and we show that two cysteines, present in a conserved motif CXXXC, and a conserved histidine are involved in Cu(I) ligation. The mutation of any one of the conserved residues in Sco1 expressed in yeast abrogates the function of Sco1 resulting in a non-functional cytochrome c oxidase complex. Thus, the function of Sco1 correlates with Cu(I) binding. Data obtained from size-exclusion chromatography experiments with mitochondrial lysates suggest that full-length Sco1 may be oligomeric in vivo.  相似文献   

16.
Tah18-Dre2 is a recently identified yeast protein complex, which is highly conserved in human and has been implicated in the regulation of oxidative stress induced cell death and in cytosolic Fe-S proteins synthesis. Tah18 is a diflavin oxido-reductase with binding sites for flavin mononucleotide, flavin adenine dinucleotide and nicotinamide adenine dinucleotide phosphate, which is able to transfer electrons to Dre2 Fe-S clusters. In this work we characterized in details the interaction between Tah18 and Dre2, and analysed how it conditions yeast viability. We show that Dre2 C-terminus interacts in vivo and in vitro with the flavin mononucleotide- and flavin adenine dinucleotide-binding sites of Tah18. Neither the absence of the electron donor nicotinamide adenine dinucleotide phosphate-binding domain in purified Tah18 nor the absence of Fe-S in aerobically purified Dre2 prevents the binding in vitro. In vivo, when this interaction is affected in a dre2 mutant, yeast viability is reduced. Conversely, enhancing artificially the interaction between mutated Dre2 and Tah18 restores cellular viability despite still reduced cytosolic Fe-S cluster biosynthesis. We conclude that Tah18-Dre2 interaction in vivo is essential for yeast viability. Our study may provide new insight into the survival/death switch involving this complex in yeast and in human cells.  相似文献   

17.
P V Attfield 《FEBS letters》1987,225(1-2):259-263
The storage disaccharide, trehalose, is accumulated in yeast during a temperature shift from 30 to 45 degrees C. The response peaks at 90 min and is transient since levels of trehalose decline rapidly in cells returned to 30 degrees C. Storage of trehalose is inhibited when cells are incubated in the presence of acridine orange or ethidium bromide prior to and during temperature shift, suggesting a requirement for de novo RNA synthesis. Accumulation of trehalose occurs when cells are exposed to either ethanol, copper sulphate or hydrogen peroxide at 30 degrees C, indicating that the phenomenon may be a general response to physiological stress. Parallels are drawn between the trehalose accumulation response and the heat shock response in yeast.  相似文献   

18.
Hydrostatic pressure is a thermodynamic parameter that has recently received further consideration in various experimental fields. Although the physicochemical basis of pressure effects is well established, the effects of high pressure on in vivo biological processes have not been systematically investigated due to its presumed complexity. The word "piezophysiology" was proposed to describe the unique cellular responses to high pressure in living cells. The yeast Saccharomyces cerevisiae is one of the best-characterized organisms in many fields in bioscience. Here I review the accumulated literature on cellular responses to increasing hydrostatic pressure in yeast, focusing on survival, growth, gene expression and metabolism.  相似文献   

19.
We discovered that a mutant strain of the dimorphic yeast Yarrowia lipolytica could grow in the yeast form in high concentrations of copper sulfate. The amount of metal accumulated by Y. lipolytica increased with increasing copper concentrations in the medium. Washing with 100 mM EDTA released at least 60% of the total metal from the cells, but about 20–25 μmol/g DW persisted, which represented about 30% of the soluble fraction of cultured cells. The soluble fraction (mainly cytosol) contained only about 10% of the total metal content within cells cultured in medium supplemented with 6 mM copper. We suggest that although a high copper concentration induces an efflux mechanism, the released copper becomes entrapped in the periplasm and in other parts of the cell wall. Washing with EDTA liberated not only copper ions, but also melanin, a brown pigment that can bind metal and which located at the cell wall. These findings indicated that melanin participates in the mechanism of metal accumulation. Culture in medium supplemented with copper obviously enhanced the activities of Cu, Zn-SOD, but not of Mn-SOD.  相似文献   

20.
Epstein-Barr virus nuclear antigen 2 (EBNA-2) has been shown to be indispensable for immortalization of latently infected B lymphocytes, and it has been shown that EBNA-2 exists in a high-molecular-weight complex in these cells. In order to study the components of this protein machinery, we have purified baculovirus-expressed EBNA-2 from insect cells to greater than 95% homogeneity. We have shown by both gel filtration and sucrose gradient analysis that the purified material corresponds to a multimer containing eight EBNA-2 subunits. This multimeric complex is stable in 1.0 M NaCl, suggesting that the self-association is quite strong in vitro. By expressing portions of the EBNA-2 open reading frame to generate fusion proteins in yeast cells, we have used the two-hybrid system to demonstrate that this self-association occurs in vivo and is mediated at least in part by a domain of EBNA-2 encompassing amino acids 122 to 344. Mutational analysis of the self-association function suggests that two subdomains that flank amino acid 232 may each play a role in EBNA-2 protein-protein interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号