首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of 25-hydroxycholesterol (25-OH-cholesterol) and chenodeoxycholic (CDC) acid on apoprotein secretion, low-density lipoprotein receptor activity, and [3H]triacylglycerol secretion in Hep G2 cells was studied. Both 25-OH-cholesterol and CDC acid increased the secretion of apolipoprotein (apo) E by Hep G2 cells. The secretion of apo A-I was slightly lowered (less than 10% disease). The maximal increase in apo E secretion was observed in culture medium containing 2 micrograms of 25-OH-cholesterol/ml or 10 micrograms of CDC acid/ml plus 10% fetal calf serum. Cholesterol, 7-OH-cholesterol and other bile acids were ineffective in inducing increases in apo E secretion. Another cholesterol synthesis inhibitor, mevinolin, was also ineffective in generating an increase in apoprotein secretion. The data indicated a specific interaction between 25-OH-cholesterol or CDC acid and apo E secretion in Hep G2 cells. Cholesterol synthesis, as measured by the incorporation of [14C]acetic acid into sterols, was repressed in Hep G2 cells in the presence of 25-OH-cholesterol (17% of control value). CDC acid, on the other hand, increased [14C]acetic acid incorporation (156% of control value). The number of LDL receptors in Hep G2 cells was decreased after incubation with 25-OH-cholesterol (62% of control value), but increased significantly after incubation with CDC acid (149% of control value). The secretion of [3H]triacylglycerol by Hep G2 cells incubated with 25-OH-cholesterol was greatly increased (248% of control value). On the contrary, CDC acid did not cause any increase in [3H]triacylglycerol secretion. The above results suggest that 25-OH-cholesterol and CDC acid have different effects on lipid metabolism in Hep G2 cells. The mRNA levels of apo E increased in cells preincubated with 25-OH-cholesterol and CDC acid, which suggested that the increase in apo E secretion is at least partly due to an increase in synthesis.  相似文献   

2.
A total of six established human hepatoma-derived cell lines, including Hep3B, NPLC/PRF/5 (NPLC), Tong/HCC, Hep 10, huH1, and huH2, were screened for their ability to accumulate significant quantities of lipoproteins in serum-free medium. Only two cell lines, Hep3B and NPLC, secreted quantitatively significant amounts of lipoproteins. In a 24-h period the accumulated mass of apolipoproteins (apo) A-I, A-II, B, and E and albumin for Hep3B cells was 1.96, 1.01, 1.96, 1.90, and 53.2 micrograms/mg cell protein per 24 h, respectively. NPLC cells secreted no detectable albumin but the 24-h accumulated mass for apolipoproteins A-I, A-II, B, and E was 0.45, 0.05, 0.32, and 0.68 micrograms/mg cell protein per 24 h, respectively. Twenty four-hour serum-free medium of Hep3B cells contained lipoproteins corresponding to the three major density classes of plasma; percent protein distribution among the lipoprotein classes was 4%, 41%, and 56% for very low density lipoprotein ("VLDL"), low density lipoprotein ("LDL"), and high density lipoprotein ("HDL"), respectively. NPLC was unusual since most of the lipoprotein mass was in the d 1.063-1.235 g/ml range. Hep3B "LDL", compared with plasma LDL, contained elevated triglyceride, phospholipid, and free cholesterol. Nondenaturing gradient gel electrophoresis revealed that Hep3B "LDL" possessed a major component at 25.5 nm and a minor one at 18.3 nm. Immunoblots showed that the former contained only apoB while the latter possessed only apoE. Like plasma VLDL, Hep3B "VLDL" particles (30.5 nm diameter) isolated from serum-free medium contained apoB, apoC, and apoE. "HDL" harvested from Hep3B and NPLC medium were enriched in phospholipid and free cholesterol and poor cholesteryl ester which is similar to the composition of HepG2 "HDL." "HDL" from Hep3B and NPLC culture medium on gradient gel electrophoresis had peaks at 7.5, 10, and 11.9 nm which were comparable to major components found in HepG2 cell medium. Hep3B cells, in addition, possessed a particle that banded at 8.2 nm which appeared to be an apoA-II without apoA-I particle by Western blot analysis. The cell line also produced a subpopulation of larger-sized "HDL" not found in HepG2 medium. NPLC "HDL" had a distinct peak at 8.3 nm which by Western blot was an apoE-only particle. Electron microscopy revealed that "HDL" harvested from Hep3B and NPLC medium consisted of discoidal and small, spherical particles like those of HepG2. The "HDL" apolipoprotein content of each cell line was distinct from that of HepG2. ApoA-II at 35% of apolipoprotein distinguishes Hep3B "HDL" from HepG2, which contains only 10%.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The human hepatoma cell line Hep G2 can be maintained in continuous culture and secretes numerous plasma proteins and lipoproteins into the medium. To better characterize cholesterol homeostasis in these cells we have examined the binding, internalization and degradation of [125I]LDL by cultured Hep G2 cells. Hep G2 cells express high-affinity low-density lipoprotein (LDL) receptors which facilitate the binding, internalization and degradation of [125I]LDL; these receptors can be induced by growth in LDL-depleted medium and repressed by further incubation in medium supplemented with LDL. The degradation of [125I]LDL by derepressed Hep G2 cells was inhibited by greater than 90% by monensin. Incubation of Hep G2 cells in the presence of increasing concentrations of LDL also inhibited cholesterol biosynthesis. Our results indicate that Hep G2 cells possess high affinity LDL receptors which are subject to metabolic regulation and suggest that this cell line affords a valuable model to further examine cholesterol and lipoprotein metabolism in human liver cells.  相似文献   

4.
The regulation of low-density lipoprotein (LDL) receptor activity, protein synthesis, and cellular mRNA content was evaluated in the human hepatoma cell line Hep G2. Incubation of the cells with LDL led to a complete downregulation of LDL receptor mRNA and LDL receptor protein synthesis. This LDL regulation of the LDL receptor and its mRNA was both time- and concentration-dependent. In contrast to protein synthesis and cellular mRNA concentrations of the LDL receptor, which were reduced to undetectable levels by prolonged incubation in the presence of LDL, LDL receptor activity was reduced to only 44% of preincubation levels. These findings support the presence of a second metabolic pathway for LDL uptake in human hepatocytic cells. The effect of LDL on cellular LDL receptor expression was specific for LDL because incubation in the presence of HDL did not affect any of these study end points. The potential coordinate regulation of the expression of the LDL receptor with its principal ligands, apolipoproteins (apo) B and E, was also investigated. In contrast to the LDL receptor mRNA downregulation with LDL incubation, cellular apoB and apoE mRNA concentrations were not affected by either LDL or HDL. Secretion of apoB, however, was significantly increased by incubating Hep G2 cells with LDL. These findings indicate that, in contrast to LDL receptor which is regulated at the mRNA level, the ligands for the LDL receptor are regulated either co- or post-translationally.  相似文献   

5.
Niacin and cholesterol: role in cardiovascular disease (review)   总被引:5,自引:0,他引:5  
Niacin has been widely used as a pharmacologic agent to regulate abnormalities in plasma lipid and lipoprotein metabolism and in the treatment of atherosclerotic cardiovascular disease. Although the use of niacin in the treatment of dyslipidemia has been reported as early as 1955, only recent studies have yielded an understanding about the cellular and molecular mechanism of action of niacin on lipid and lipoprotein metabolism. In brief, the beneficial effect of niacin to reduce triglycerides and apolipoprotein-B containing lipoproteins (e.g., VLDL and LDL) are mainly through: a) decreasing fatty acid mobilization from adipose tissue triglyceride stores, and b) inhibiting hepatocyte diacylglycerol acyltransferase and triglyceride synthesis leading to increased intracellular apo B degradation and subsequent decreased secretion of VLDL and LDL particles. The mechanism of action of niacin to raise HDL is by decreasing the fractional catabolic rate of HDL-apo AI without affecting the synthetic rates. Additionally, niacin selectively increases the plasma levels of Lp-AI (HDL subfraction without apo AII), a cardioprotective subfraction of HDL in patients with low HDL. Using human hepatocytes (Hep G2 cells) as an in vitro model system, recent studies indicate that niacin selectively inhibits the uptake/removal of HDL-apo AI (but not HDL-cholesterol ester) by hepatocytes, thereby increasing the capacity of retained HDL-apo AI to augment cholesterol efflux through reverse cholesterol transport pathway. The studies discussed in this review provide evidence to extend the role of niacin as a lipid-lowering drug beyond its role as a vitamin.  相似文献   

6.
Lipid and lipoprotein metabolism in Hep G2 cells   总被引:6,自引:0,他引:6  
Lipid composition, lipid synthesis and lipoprotein secretion by the Hep G2 cell line have been studied with substrate and insulin supplied under different conditions. The lipid composition of Hep G2 cells was close to that of normal human liver, except for a higher content in sphingomyelin (P less than 0.005) and a lower phosphatidylcholine/sphingomyelin ratio. Most of the [14C]triacylglycerols secreted into the medium were recovered by ultracentrifugation at densities of 1.006 to 1.020 g/ml. The main apolipoproteins secreted were apo B-100 and apo A-I. Hep G2 mRNA synthesized in vitro the pro-apolipoproteins A-I and E. Triacylglycerol secretion was 7.38 +/- 1.04 micrograms/mg cell protein per 20 h with 5.5 mM glucose in the medium and increased linearly with glucose concentration. Oleic acid (1 mM) increased the incorporation of [3H]glycerol into the medium and cell triacylglycerols by 251 and 899%, with a concomitant increment in cell triacylglycerols and cholesterol ester. Insulin (1 mU or 7 pmol/ml) inhibited triacylglycerol secretion and [35S]methionine incorporation into secreted protein by 47 and 28%, respectively, with a corresponding increase in the cells. Preincubation of cells with 2.5-10 mM mevalonolactone decreased the incorporation of [14C]acetate into cholesterol 6.2-fold, indicating an inhibitory effect on HMG-CoA reductase. It is concluded that in spite of some differences between Hep G2 and normal human hepatocytes, this line offers an alternative and reliable model for studies on liver lipid metabolism.  相似文献   

7.
Administration of estrogens in pharmacologic doses to rats and rabbits induces hepatic low-density lipoprotein (LDL) receptor activity. To determine if estrogens can regulate LDL receptor activity in human cells, 125I-LDL binding and ligand blotting studies were performed with the cell line Hep G2, well-differentiated cells derived from a human hepatoma, and with normal human fibroblasts. Addition of estradiol to Hep G2 cells growing in lipoprotein-deficient medium increased cell surface receptor activity by 141%, whereas fibroblast receptors were slightly reduced. Measurement of LDL internalization and degradation showed that estradiol induced the entire LDL receptor pathway and not simply surface receptors for LDL. Scatchard analysis of specific binding data in Hep G2 cells revealed that increased LDL receptor activity was due to high-affinity binding. When Hep G2 cells were incubated with LDL as well as estradiol, estradiol induction of LDL receptor activity did not occur. Estrogen treatment reduced Hep G2 free cholesterol content by 24% as determined by gas-liquid chromatography but had no significant effect on fibroblast free cholesterol, suggesting that estrogens may induce Hep G2 LDL receptor activity indirectly by lowering intracellular cholesterol. LDL receptor activity in Hep G2 cells grown in the absence of estradiol was resistant to down-regulation by LDL; incubation of cells with LDL for 48 h reduced receptor activity by only 25.8% in Hep G2 cells compared to 80.3% in fibroblasts. The Hep G2 LDL receptor was shown to be biochemically similar to the fibroblast receptor by ligand blotting and immunoblotting with IgG-C7, a monoclonal antibody to the extrahepatic LDL receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The purpose of this study was to test the use of human hepatocarcinoma HepG2 cells as a model for studying the formation and secretion of human hepatic lipoproteins. To this end, we determined the rate of accumulation and percent composition of neutral lipids and apolipoproteins in the culture medium of HepG2 cells and isolated and partially characterized the apolipoprotein B (ApoB) containing lipoprotein particles. The rates of accumulation in the medium of HepG2 cells, grown in minimum essential medium during a 24-h incubation, of triglycerides, cholesterol, and cholesterol esters expressed as microgram/(g of cell protein X h) were 373 +/- 55, 167 +/- 14, and 79 +/- 10, respectively; the secretion rates for apolipoproteins B, A-I, E, A-II, and C-III were 372 +/- 36, 149 +/- 14, 104 +/- 13, 48 +/- 4, and 13 +/- 1 microgram/(g of cell protein X h), respectively. The major portion of ApoB was present in very low density lipoproteins (VLDL) and low-density lipoproteins (LDL) (84%), with the remainder occurring in high-density lipoproteins (HDL) (16%). Approximately 10-13% of ApoA-I and ApoA-II were present in VLDL and LDL, while 60% of ApoE occurred in HDL and 40% in VLDL and LDL. To separate ApoB-containing lipoproteins, secreted lipoproteins were fractionated by either sequential immunoprecipitation or immunoaffinity chromatography with antibodies to ApoB and ApoE. Results showed that 60-70% of ApoB occurred in the culture medium as lipoprotein B (LP-B) and 30-40% as lipoprotein B:E (LP-B:E). Both ApoB-containing lipoproteins represent polydisperse systems of spherical particles ranging in size from 100 to 350 A for LP-B and from 200 to 500 A for LP-B:E. LP-B particles were identified in VLDL, LDL, and HDL, while LP-B:E particles were only present in VLDL and LDL. The major neutral lipid of both ApoB-containing lipoproteins was triglyceride (50-70% of the total neutral lipid content); cholesterol and cholesterol esters were present in equal amounts. The LP-B:E particles contained 70-90% ApoB and 10-30% ApoE. The ApoB was identified in both types of particles as B-100. A time study on the accumulation of ApoB-containing lipoproteins showed that LP-B particles were secreted independently of LP-B:E particles.  相似文献   

9.
Summary Confluent monolayers of normal human hepatocytes obtained by collagenase perfusion of liver pragments were incubated in a serum-free medium. Intracellular apolipoproteins apo AI, apo C, apo B, and apo E were detected between Day 1 and Day 6 of the culture by immunoenzymatic staining using polyclonal antibodies directed against these apoproteins and monoclonal antibodies directed against both forms of apo B (B100 and B48). Translation of mRNA isolated from these hepatocytes in an acellular system revealed that apo AI and apo E were synthesized as the precusor forms of mature plasma apo AI and apo E. Three lipoprotein fractions corresponding to the density of very low density lipoprotein (VLDL), low density lipoprotein (LDL), and high density lipoprotein (HDL) were isolated from the medium at Day 5 of culture and examined by electron microscopy after negative staining. VLDL and LDL particles are similar in size and shape to plasma lipoproteins; spherical HDL are larger than normal plasma particles isolated at the same density. Their protein represented 44, 19.5, and 36.5% respectively, of the total lipoprotein protein. The secretion rate of VLDL protein corresponded to that measured in primary cultures of rat hepatocytes. After incorporation of [3H]glycerol, more than 92% of the [3H]triglyceride secreted into the medium was recovered in the VLDL fraction. These results demonstrate that primary cultures of normal human hepatocytes are able to synthesize and secrete lipoproteins and thus could be a useful model to study lipoprotein metabolism in human liver.  相似文献   

10.
Calmodulin binding to human spectrin   总被引:1,自引:0,他引:1  
Human hepatocellular carcinoma cells (Hep G2) were shown to secrete apo A-I as a proprotein . No apo A-I synthesis could be detected with endothelial cells from human umbilical cord veins. Conversion of proapo A-I into apo A-I is a slow (of the order of hours) process, mediated by a Ca2+/Mg2+-dependent enzyme which is present on the surface of plasma lipoprotein particles, endothelial cells and Hep G2 cells, and is probably synthesized by Hep G2 cells.  相似文献   

11.
Summary Although Caco-2 cells are frequently employed for the study of enterocyte lipid metabolism, variable results have been reported regarding their ability to synthesize and secrete lipids and apolipoproteins. The major goal of this investigation is to examine the capacity of Caco-2 cells to elaborate and secrete lipids, lipoproteins, and apolipoproteins at different degrees of morphological and functional differentiation. Cells were cultured in medium with 5% fetal bovine serum (FBS), on permeable polycarbonate filters from 2 to 30 d in the presence of 14C-oleate or 35S-methionine. Cellular differentiation, as assessed by morphology (light and electron microscopy), transepithelial resistance, free fatty acid flux, and sucrase activity, progressed steadily up to 20 d of culture. Caco-2 cells esterified oleic acid mainly into phospholipids, triglycerides (TG), and smaller amounts of cholesterol esters. Lipid synthesis began as early as 2 d, and TG secretion was enhanced with increased duration of culture. However, very low efficiency of lipid export was observed at all levels of differentiation, reaching a maximum of only 6% of intracellular lipids. VLDL and LDL were the dominant lipoproteins secreted, with HDL comprising <20% of the total. VLDL secretion increased, while LDL decreased, whereas the lipid composition of lipoproteins varied little with increasing duration of culture. Apoprotein B and A-I synthesis and secretion increased markedly from 11 to 20 d of culture. The ratio of apo B-100/B-48 decreased between 11 and 30 d, consistent with enhanced apo B editing of more mature enterocytes. Taken together, our data suggest that from 20 d of culture, Caco-2 cells are morphologically and functionally mature, capable of lipid esterification, and lipoprotein and apolipoprotein synthesis. However, despite their functional and morphological similarities to mature enterocytes, Caco-2 cells have a very limited lipid export capacity.  相似文献   

12.
The human hepatoblastoma cell line HepG2 is a liver model commonly used for lipid metabolism studies. Numerous cell types have been found to oxidize low-density lipoprotein (LDL) but, to our knowledge, the effects of HepG2 cells on LDL have not been investigated. We found that LDL is modified by HepG2 cells through a peroxidative mechanism, as judged by an increase in TBARS content (which was prevented in the presence of the antioxidants vitamin E, 2, 6-di-tert-butyl-cresol and probucol), increased degradation by J774 macrophages, decreased internalization by MRC5 fibroblasts, and aggregation of apo B. Aspirin and allopurinol, which inhibit cyclooxygenase and xanthine-oxidase activities, respectively, had no effect on HepG2-induced LDL modification, and neither did catalase, which dismutates hydrogen peroxide; or mannitol, which scavenges hydroxyl radicals. In contrast, superoxide dismutase, a superoxide anion scavenger, and glutamate and threonine, which alter cellular cystine uptake, prevented LDL modifications, as did the removal of cysteine/cystine from the culture medium. Oxidation of LDL by HepG2 cells might thus involve superoxide anion production and/or thiol metabolism.  相似文献   

13.
The regulation of the LDL receptor activity in the human hepatoma cell line Hep G2 was studied. In Hep G2 cells, in contrast with fibroblasts, the LDL receptor activity was increased 2.5-fold upon increasing the concentration of normal whole serum in the culture medium from 20 to 100% by volume. Incubation of the Hep G2 cells with physiological concentrations of LDL (up to 700 micrograms/ml) instead of incubation under serum-free conditions resulted in a maximum 2-fold decrease in LDL receptor activity (10-fold decrease in fibroblasts). Incubation with physiological concentrations of HDL with a density of between 1.16 and 1.20 g/ml (heavy HDL) resulted in an approximately 7-fold increase in LDL receptor activity (1.5-fold increase in fibroblasts). This increased LDL receptor activity is due to an increase in the number of LDL receptors. Furthermore, simultaneous incubation of Hep G2 cells with LDL and heavy HDL (both 200 micrograms/ml) resulted in a 3-fold stimulation of the LDL receptor activity as compared with incubation in serum-free medium. 3-Hydroxy-3-methylglutaryl-CoA reductase activity was also stimulated after incubation of Hep G2 with heavy HDL (up to 3-fold). The increased LDL receptor activity in Hep G2 cells after incubation with heavy HDL was independent of the action of lecithin:cholesterol acyltransferase during that incubation. However, previous modification of heavy HDL by lecithin:cholesterol acyltransferase resulted in an enhanced ability of heavy HDL to stimulate the LDL receptor activity. Our results indicate that in Hep G2 cells the heavy HDL-mediated stimulation of the LDL receptor activity overrules the LDL-mediated down-regulation and raises the suggestion that in man the presence of heavy HDL and the action of lecithin:cholesterol acyltransferase in plasma may be of importance in receptor-mediated catabolism of LDL by the liver.  相似文献   

14.
We have recently reported an increased clearance of plasma very-low-density lipoprotein (VLDL) after intravenous injection of apolipoprotein (apo) E in Watanabe heritable hyperlipidemic (WHHL) rabbits. In the present study, we have investigated the cellular uptake of VLDL enriched in apo E (VLDL-E) which had been incubated with purified rabbit apo E. VLDL-E was taken up approx. 2-fold more than VLDL in human skin fibroblast, human monocyte-derived macrophage and Hep G2 cell and its degradation was least in macrophage. To characterize the binding of VLDL-E, we performed a binding assay using hepatic endosome isolated from estradiol-treated rats and we observed both increased EDTA-sensitive and -resistant binding of VLDL-E on endosome. Ligand blotting of hepatic endosome demonstrated two major bands of LDL receptor (130 and 260 kDa protein) and a minor band of LDL receptor-related protein (580 kDa protein) with a ligand of VLDL-E. These results suggested that VLDL-E was endocytosed in liver through a similar pathway among three cell types, and enrichment of apo E in VLDL enhanced the uptake of VLDL not only via an EDTA-sensitive binding site (classical LDL receptor) but also via other binding sites including an EDTA-resistant binding site and an LDL receptor-related protein.  相似文献   

15.
N B Javitt 《FASEB journal》1990,4(2):161-168
Hep G2, a liver cell line derived from a human hepatoblastoma that is free of known hepatotropic viral agents, has been found to express a wide variety of liver-specific metabolic functions. Among these functions are those related to cholesterol and triglyceride metabolism. Confluent Hep G2 monolayers express normal low-density lipoprotein (LDL) receptors and continue to internalize and metabolize chylomicrons, very low-density lipoproteins (VLDL), LDL, and high-density lipoproteins. In lipoprotein-free medium, apolipoproteins A-I, A-II, B, C, and E accumulate in the medium together with cholesterol, cholesteryl ester, triglyceride, and all the primary bile acids. The regulation of their synthesis and secretion is not fully known and their interrelationships have not been established. Because Hep G2 cells express these and other components of cholesterol and triglyceride metabolism, they are a microcosm for studying the central role of the liver.  相似文献   

16.
We have utilized the human hepatocellular carcinoma cell line, Hep G2, to study the effects of low density lipoproteins (LDL), high density lipoproteins (HDL), and free cholesterol on apolipoprotein (apo) A-I mRNA levels. Incubation of the Hep G2 cells with LDL and free cholesterol led to a significant increase in the cellular content of cholesterol without any effect on the yield of total RNA or in the cellular protein content. Our studies established that incubation with LDL or free cholesterol increased the relative levels of apoA-I mRNA in the Hep G2 cells. In contrast with cholesterol loading, HDL had the effect of lowering the levels of apoA-I mRNA. These results indicate the LDL and HDL pathways as well as intracellular cholesterol may be important in apoA-I gene expression and regulation.  相似文献   

17.
The human hepatoma cell line Hep G2 was studied with respect to metabolism of human low-density lipoprotein (LDL). The Hep G2 cells bind, take up and degrade human LDL with a high-affinity saturable and with a low-affinity non-saturable component. The high-affinity binding possesses a KD of 25 nM-LDL and a maximal amount of binding of about 70 ng of LDL-apoprotein/mg of cell protein. The high-affinity binding, uptake and degradation of LDL by Hep G2 cells is dependent on the extracellular Ca2+ concentration and is down-regulated by the presence of fairly high concentrations of extracellular LDL. Incubation of the Hep G2 cells with LDL results in suppression of the intracellular cholesterol synthesis. It is concluded that the human hepatoma cell line Hep G2 possesses specific LDL receptors similar to the LDL receptors demonstrated on extrahepatic tissue cells.  相似文献   

18.
The regulation of lipoprotein assembly and secretion at a molecular level is incompletely understood. To begin to identify the determinants of apoprotein synthesis and distribution among lipoprotein classes, we have examined the effects of chylomicron remnants which deliver triglyceride and cholesterol, and beta very low density lipoprotein (beta VLDL), which deliver primarily cholesterol, on apolipoprotein synthesis and secretion by the human hepatoma Hep G2. Hep G2 cells were incubated with remnants or beta VLDL for 24 h, the medium was changed and the cells then incubated with [35S]methionine. The secreted lipoproteins were separated by gradient ultracentrifugation and the radiolabeled apoproteins were isolated by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and counted. Remnants caused a 14-fold, and beta VLDL a 7-fold, increase in VLDL apoprotein (apo) secretion; the apoB/apoE ratio in this class was unchanged. Preincubation with either of the lipoproteins also stimulated low density lipoprotein apoB secretion. Preincubation with beta VLDL, but not with remnants, significantly increased apoE and apoA-I secreted in high density lipoprotein (HDL). In addition, the apoE/apoA-I ratio precipitated from the HDL of beta VLDL-treated cells by anti-apoE was 2.2-fold higher than that precipitated by anti-apoA-I. There was no difference in the ratios precipitated from control HDL. This was due to the secretion of a lipoprotein, subsequently isolated by immunoaffinity chromatography, that contained predominantly apoE. When Hep G2 cells were preincubated with oleic acid alone, total apoprotein secretion was not altered. However, cholesterol-rich liposomes stimulated secretion of newly synthesized apoE, but not apoB, while apoA-I secretion was variably affected. Cholesterol-poor liposomes had no effect. Thus, lipid supply is a determinant of apoprotein synthesis and secretion, and cholesterol may be of particular importance in initiating apoprotein synthesis.  相似文献   

19.
A procedure was developed for the dissociation of apolipoprotein (a) (apo (a)) from pure human lipoprotein (a) (Lp(a)) prepared by density gradient ultracentrifugation and gel filtration. Lp(a) was ultracentrifuged through a layer of saline which was adjusted to a density of 1.182 g/mL and contained 30 mM dithiothreitol (50 mM) and phenylmethylsulfonyl fluoride (1.25 mM). Following centrifugation, the lipid and apolipoprotein B (apo B) were recovered as a lipoprotein (Lp(a) B) in the supernatant fraction, while the apo (a) was recovered as a lipid-poor protein pellet. An investigation of the supernatant lipoprotein by electron microscopy and compositional analysis revealed that it was similar in size and composition to low density lipoprotein (LDL) isolated from the same density range and contained apo B100 with an amino acid and carbohydrate composition which was similar to apo B from LDL. Estimates of the apparent molecular weight of the apo (a) varied amongst individuals but was always greater than apo B100 (congruent to 450,000). The amino acid composition of apo (a), which was very distinct from apo B, was characterized by a higher content of serine, threonine, proline, and tyrosine, but lower amounts of isoleucine, phenylalanine, and lysine when compared with apo B of Lp(a) or LDL. The apo (a) contained a much higher proportion of carbohydrate, in particular N-acetylgalactosamine, galactose, and N-acetylneuraminic acid (which were three- to six-fold higher) than the apo B of Lp(a). It is concluded that apo (a) is distinct from other apolipoproteins owing to its low avidity for lipid and the nature of the interaction with apo B. Lp(a) consists of an LDL-like particle with a carbohydrate-rich apo (a) attached to the surface of apo B.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号