共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Identification of a novel A20-binding inhibitor of nuclear factor-kappa B activation termed ABIN-2 总被引:9,自引:0,他引:9
Van Huffel S Delaei F Heyninck K De Valck D Beyaert R 《The Journal of biological chemistry》2001,276(32):30216-30223
The nuclear factor kappaB (NF-kappaB) plays a central role in the regulation of genes implicated in immune responses, inflammatory processes, and apoptotic cell death. The zinc finger protein A20 is a cellular inhibitor of NF-kappaB activation by various stimuli and plays a critical role in terminating NF-kappaB responses. The underlying mechanism for NF-kappaB inhibition by A20 is still unknown. A20 has been shown to interact with several proteins including tumor necrosis factor (TNF) receptor-associated factors 2 and 6, as well as the inhibitory protein of kappaB kinase (IKK) gamma protein. Here we report the cloning and characterization of ABIN-2, a previously unknown protein that binds to the COOH-terminal zinc finger domain of A20. NF-kappaB activation induced by TNF and interleukin-1 is inhibited by overexpression of ABIN-2. The latter also inhibits NF-kappaB activation induced by overexpression of receptor-interacting protein or TNF receptor-associated factor 2. In contrast, NF-kappaB activation by overexpression of IKKbeta or direct activators of the IKK complex, such as Tax, cannot be inhibited by ABIN-2. These results indicate that ABIN-2 interferes with NF-kappaB activation upstream of the IKK complex and that it might contribute to the NF-kappaB-inhibitory function of A20. 相似文献
3.
4.
Leotoing L Chereau F Baron S Hube F Valencia HJ Bordereaux D Demmers JA Strouboulis J Baud V 《The Journal of biological chemistry》2011,286(37):32277-32288
5.
Li CC Chou CK Wang MH Tsai TF 《Biochemical and biophysical research communications》2006,342(1):300-309
Activation of NF-kappaB is one of the earliest responses at the start of liver regeneration, and is required for hepatocyte cell cycle progression. The A20-binding inhibitor of NF-kappaB activation-2, ABIN-2, is an inhibitor of NF-kappaB. However, its effects on hepatocyte cell cycle progression are not known and its involvement in liver regeneration has not been explored. In this study, the temporal expression pattern of the mouse ABIN-2 was studied during liver regeneration induced by partial hepatectomy. We demonstrate that ABIN-2 is rapidly and transiently induced, and expression peaked at around 8h post-hepatectomy. To test that the inducible expression of ABIN-2 serves to regulate NF-kappaB during liver regeneration, transgenic mice overexpressing human ABIN-2 protein in the liver were generated. Our transgenic data demonstrated that overexpression of ABIN-2 inhibited NF-kappaB nuclear translocation, which peaked at around 2-4h post-hepatectomy, and this led to an impairment of the G1/S transition as well as a delay in hepatocyte cell cycle progression of the regenerating liver. In addition, overexpression of ABIN-2 specifically inhibited endogenous ABIN-2 mRNA induction, suggesting a negative feedback mechanism for ABIN-2 expression. In conclusion, ABIN-2 may function as a negative regulator that downregulates NF-kappaB activation during liver regeneration. 相似文献
6.
7.
8.
9.
10.
11.
12.
Mauro C Pacifico F Lavorgna A Mellone S Iannetti A Acquaviva R Formisano S Vito P Leonardi A 《The Journal of biological chemistry》2006,281(27):18482-18488
Nuclear factor kappaB (NF-kappaB) plays a pivotal role in inflammation, immunity, stress responses, and protection from apoptosis. Canonical activation of NF-kappaB is dependent on the phosphorylation of the inhibitory subunit IkappaBalpha that is mediated by a multimeric, high molecular weight complex, called IkappaB kinase (IKK) complex. This is composed of two catalytic subunits, IKKalpha and IKKbeta, and a regulatory subunit, NEMO/IKKgamma. The latter protein is essential for the activation of IKKs and NF-kappaB, but its mechanism of action is not well understood. Here we identified ABIN-1 (A20 binding inhibitor of NF-kappaB) as a NEMO/IKKgamma-interacting protein. ABIN-1 has been previously identified as an A20-binding protein and it has been proposed to mediate the NF-kappaB inhibiting effects of A20. We find that both ABIN-1 and A20 inhibit NF-kappaB at the level of the IKK complex and that A20 inhibits activation of NF-kappaB by de-ubiquitination of NEMO/IKKgamma. Importantly, small interfering RNA targeting ABIN-1 abrogates A20-dependent de-ubiquitination of NEMO/IKKgamma and RNA interference of A20 impairs the ability of ABIN-1 to inhibit NF-kappaB activation. Altogether our data indicate that ABIN-1 physically links A20 to NEMO/IKKgamma and facilitates A20-mediated de-ubiquitination of NEMO/IKKgamma, thus resulting in inhibition of NF-kappaB. 相似文献
13.
14.
Hu WH Mo XM Walters WM Brambilla R Bethea JR 《The Journal of biological chemistry》2004,279(34):35975-35983
NF-kappaB-inducing kinase (NIK) has been implicated as an essential component of NF-kappaB activation. However, the regulatory mechanism of NIK signaling remains elusive. We have identified a novel NIK interacting protein, TNAP (for TRAFs and NIK-associated protein). In mammalian cells, TNAP physically interacts with NIK, TRAF2, and TRAF3 but not IKK1 or IKK2. TNAP specifically inhibits NF-kappaB activation induced by tumor necrosis factor (TNF)-alpha, TNF receptor 1, TRADD, RIP, TRAF2, and NIK but does not affect IKK1- and IKK2-mediated NF-kappaB activation. Knockdown of TNAP by lentiviral-mediated small interference RNA potentiates TNF-alpha-induced NF-kappaB activation. TNAP suppresses NIK kinase activity and subsequently reduces p100 processing, p65 phosphorylation, and IkappaBalpha degradation. These data suggest that TNAP is a repressor of NIK activity and regulates both the classical and alternative NF-kappaB signaling pathways. 相似文献
15.
Qiao G Li Z Molinero L Alegre ML Ying H Sun Z Penninger JM Zhang J 《Molecular and cellular biology》2008,28(7):2470-2480
It has previously been shown that E3 ubiquitin ligase Casitas B-lineage lymphoma-b (Cbl-b) negatively regulates T-cell activation, but the molecular mechanism(s) underlying this inhibition is not completely defined. In this study, we report that the loss of Cbl-b selectively results in aberrant activation of NF-kappaB upon T-cell antigen receptor (TCR) ligation, which is mediated by phosphatidylinositol 3-kinase (PI3-K)/Akt and protein kinase C-theta (PKC-theta). TCR-induced hyperactivation of Akt in the absence of Cbl-b may potentiate the formation of caspase recruitment domain-containing membrane-associated guanylate kinase protein 1 (CARMA1)-B-cell lymphoma/leukemia 10 (Bcl10)-mucosa-associated lymphatic tissue 1(MALT1) (CBM) complex, which appears to be independent of PKC-theta. Cbl-b associates with PKC-theta upon TCR stimulation and regulates TCR-induced PKC-theta activation via Vav-1, which couples PKC-theta to PI3-K and allows it to be phosphorylated. PKC-theta then couples IkappaB kinases (IKKs) to the CBM complex, resulting in the activation of the IKK complex. Therefore, our data provide the first evidence to demonstrate that the down-regulation of TCR-induced NF-kappaB activation by Cbl-b is mediated coordinately by both Akt-dependent and PKC-theta-dependent signaling pathways in primary T cells. 相似文献
16.
Riboflavin-binding protein (RBP) from chicken egg, which was recently reported to be a selective sweet inhibitor for protein sweeteners, was also found to be a bitter inhibitor. RBP elicited broadly tuned inhibition of various bitter substances including quinine-HCl, naringin, theobromine, caffeine, glycyl-L-phenylalanine (Gly-Phe), and denatonium benzoate, whereas several other proteins, such as ovalbumin (OVA) and beta-lactoglobulin, were ineffective in reducing bitterness of these same compounds. Both the bitter tastes of quinine and caffeine were reduced following an oral prerinse with RBP. It was found that RBP binds to quinine but not to caffeine, theobromine, naringin, and Gly-Phe. However, the binding of RBP to quinine was probably not responsible for the bitter inhibition because OVA bound to quinine as well as RBP. Based on these results, it is suggested that the bitter inhibitory effect of RBP is the consequence of its ability to interact with taste receptors rather than because it interacts with the bitter tastants themselves. RBP may have practical uses in reducing bitterness of foods and pharmaceuticals. It may also prove a useful tool in studies of mechanisms of bitter taste. 相似文献
17.
Rakonczay Z Jármay K Kaszaki J Mándi Y Duda E Hegyi P Boros I Lonovics J Takács T 《Free radical biology & medicine》2003,34(6):696-709
18.
The small heat shock protein alpha B-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3 总被引:10,自引:0,他引:10
Kamradt MC Lu M Werner ME Kwan T Chen F Strohecker A Oshita S Wilkinson JC Yu C Oliver PG Duckett CS Buchsbaum DJ LoBuglio AF Jordan VC Cryns VL 《The Journal of biological chemistry》2005,280(12):11059-11066
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor alpha family of cytokines that preferentially induces apoptosis in transformed cells, making it a promising cancer therapy. However, many neoplasms are resistant to TRAIL-induced apoptosis by mechanisms that are poorly understood. We demonstrate that the expression of the small heat shock protein alpha B-crystallin (but not other heat shock proteins or apoptosis-regulating proteins) correlates with TRAIL resistance in a panel of human cancer cell lines. Stable expression of wild-type alpha B-crystallin, but not a pseudophosphorylation mutant impaired in its assembly and chaperone function, protects cancer cells from TRAIL-induced caspase-3 activation and apoptosis in vitro. Furthermore, selective inhibition of alpha B-crystallin expression by RNA interference sensitizes cancer cells to TRAIL. In addition, wild-type alpha B-crystallin promotes xenograft tumor growth and inhibits TRAIL-induced apoptosis in vivo in nude mice, whereas a pseudophosphorylation alpha B-crystallin mutant impaired in its anti-apoptotic function inhibits xenograft tumor growth. Collectively, these findings indicate that alpha B-crystallin is a novel regulator of TRAIL-induced apoptosis and tumor growth. Moreover, these results demonstrate that targeted inhibition of alpha B-crystallin promotes TRAIL-induced apoptosis, thereby suggesting a novel strategy to overcome TRAIL resistance in cancer. 相似文献
19.
20.
Iyer AK Azad N Talbot S Stehlik C Lu B Wang L Rojanasakul Y 《Journal of immunology (Baltimore, Md. : 1950)》2011,187(6):3256-3266
Fas ligand (FasL) belongs to the TNF family of death ligands, and its binding to the FasR leads to activation of several downstream signaling pathways and proteins, including NF-κB and PI3K/Akt. However, it is not known whether cross-talk exists between NF-κB and PI3K/Akt in the context of FasL signaling. We demonstrate using both human renal epithelial 293T cells and Jurkat T-lymphocyte cells that although FasL activates both Akt and NF-κB, Akt inhibits FasL-dependent NF-κB activity in a reactive oxygen species-dependent manner. Cellular FLICE-inhibitory protein (c-FLIP), an antioxidant and an important component of the death-inducing signaling complex, also represses NF-κB upstream of the regulatory IκB kinase-γ protein subunit in the NF-κB signaling pathway, and positive cross-talk exists between Akt and c-FLIP in the context of inhibition of FasL-induced NF-κB activity. The presence of two death effector domains of c-FLIP and S-nitrosylation of its caspase-like domain were found to be important for mediating c-FLIP-dependent downregulation of NF-κB activity. Taken together, our study reveals a novel link between NF-κB and PI3K/Akt and establishes c-FLIP as an important regulator of FasL-mediated cell death. 相似文献