首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In embryo axes excised from mature horse chestnut (Aesculus hippocastanum L.) seeds, both freshly-fallen and subjected to cold stratification, the ability for growth was studied. While excised axes were kept on water at 28°C for 3 days, their fresh weight and length increased, the polypeptide composition of soluble proteins changed, the content of some heat-stable polypeptides decreased, and the capacity for protein synthesis in vivo retained. All these processes were similar to those in the axes of intact seeds during stratification until radicle protrusion. Growth of excised axes accelerated with the increasing duration of stratification. Cycloheximide (50 mg/l) and -amanitin (7 mg/l) inhibited axis growth, but an inhibitor of ABA synthesis fluridone (5 mg/l) and a natural cytokinin dihydrozeatin (10–5 M) did not influence the growth rate. The growth capacity of axes excised from dormant and germinating horse chestnut seeds indicates the absence of dormancy in the axes of mature seeds. ABA (10–5 M) suppressed completely the growth of axes detached from seeds experiencing cold stratification but still not germinating, although protein synthesis was not inhibited. The axes excised from the seeds after radicle emergence were insensitive to ABA and grew actively in its presence. ABA-induced growth inhibition might be related to the suppressed synthesis of minor polypeptides required for growth or to the activated synthesis of some growth-retarding proteins. The conclusion was drawn that the excised axes could be used as a model for studying the processes preceding visible germination of recalcitrant seeds.  相似文献   

2.
This is the first characterization of proteins from axial organs of recalcitrant horse chestnut seeds during deep dormancy, dormancy release, and germination. We demonstrated that, during the entire period of cold stratification, axial organs were enriched in easily soluble albumin-like proteins and almost devoid of globulins. About 80% of the total protein was found in the cytosol. Approximately one third of cytosolic proteins were heat-stable polypeptides, which were major components of total proteins. Heat-stable proteins comprised three groups of polypeptides with mol wts of 52–54, 24–25, and 6–12 kD with a predominance of low-molecular-weight proteins. The polypeptide patterns of heat-stable and thermolabile proteins differed strikingly. Heat-stable proteins accumulated in axes during the late seed maturation, comprising more than 30% of the total protein in axes of mature seeds. The polypeptide patterns of the total protein of axial organs and its particular fractions did not change in the course of seed dormancy and release. At early germination, the content of heat-stable proteins in axes decreased and their polypeptide pattern changed both in the cytosol and cell structures. We believe that at least some heat-stable proteins can function as storage proteins in the axes. Localization of storage proteins in the cells of axial organs and the role of heat-stable proteins in recalcitrant seeds are discussed.  相似文献   

3.
In recalcitrant seeds of horse chestnut (Aesculus hippocastanum L.) maintaining a high water content during winter, dormancy is determined by the presence and influence of the seed coat, while the axial organs of the embryos excised from these seeds are not dormant. Such axial organs were capable for active water uptake and rapid fresh weight increase, so that their fresh weights exceeded those in intact seeds at the time of radicle protrusion. Fructose plays an essential role in the water uptake as a major osmotically active compound. ABA interferes with the water uptake by the axial organs and thus delays the commencement of their growth. The manifestation of seed response to ABA during the entire dormancy period indicates the presence of active ABA receptors and the pathways of its signal transduction. The content of endogenous ABA in the embryo axes doubled in the middle of dormancy period, which coincided with a partial suppression of water uptake by the axes. During seed dormancy release and imbibition before radicle protrusion, the level of endogenous ABA in axes declined gradually. Application of exogenous ABA can imitate dormancy by limiting water absorption by axial organs. Fusicoccin A (FC A) treatment neutralized completely this ABA effect. Endogenous FC-like ligands were detected in the seed axial organs during dormancy release and germination. Apparently, endogenous FC stimulates water uptake via the activation of plasmalemmal H+-ATPase, acidification of cell walls, their loosening, and turgor pressure reduction. FC can evidently counteract the ABA-induced suppression of water uptake by controlling the activity of H+-ATPase. It is likely that, in dormant intact recalcitrant seeds, axial organs, maintaining a high water content, are competent to elevate their water content and to start their preparation for germination under the influence of FC when coat-imposed dormancy becomes weaker.  相似文献   

4.
It was shown that the content of carbohydrates and their composition in embryo axes of horse chestnut seeds changed as seeds acquired a capability of dormancy release and germination. Sucrose prevailed among carbohydrates, comprising to 150–160 mg/g dry wt. During the first half of the seed imbibition time, oligosaccharides, namely raffinose and stachyose, degraded, whereas the contents of glucose and fructose were very low. The second half of the imbibition period (until radicle protrusion) was characterized by a cessation of oligosaccharide breakdown and accumulation of monosaccharides. Carbohydrate balance showed that the contribution of oligosaccharide breakdown to sucrose and monosaccharide accumulation was rather small, and monosaccharides accumulated mostly at the expense of sucrose gradually coming from cotyledons during imbibition. The trend of carbohydrate metabolism in imbibing axial organs was similar during the entire period of a seed dormancy release in the course of stratification. A readiness for the commencement of these processes during the entire dormancy period implies that carbohydrate conversions in embryo axes are not a trigger for a dormancy release. Monosaccharide accumulation in embryo axes before radicle protrusion produces an increase in the osmotic pressure, as compared to that provided by sucrose, by approximately 20%. Recalcitrance of the horse chestnut seeds is discussed in relation to the role of carbohydrates and other endogenous osmotica in the establishment of osmotic properties.  相似文献   

5.
The studies were carried out on Fagus sylvatica seeds during stratification and their germination. After imbibition beechnuts were subjected to cold (3 °C — temperature which breaks dormancy) or warm (15 °C — temperature unable to break dormancy) stratification and alternatively were treated with polyamine synthesis inhibitors: canavanine and DFMO (difluoromethylornithine). After cold stratification in embryo axes we found (using 2-D electrophoresis) about 150 new proteins absent in dry seeds. Exogenous spermidine increased the protein synthesis, percent of germinated seeds and accelerated breaking of dormancy. In contrast, canavanine and DFMO decreased dynamic of protein synthesis, quantity of proteins probably synthesised de novo, and percent of germinated seeds. The maximum of polyamine content in embryo axes during cold stratification preceded such the maximum during warm stratification. Irrespective of the influence of PAs and inhibitors of PA synthesis, the comparison of electrophoregrams and autoradiograms showed that different groups synthesised de novo appeared after different periods of cold stratification. Probably the part of this protein is associated with Fagus sylvatica seeds dormancy breaking.  相似文献   

6.
The fraction of heat-stable dehydrins cytosolic proteins from mature recalcitrant seeds of horse chestnut (Aesculus hippocastanum L.) was studied in the period of their dormancy and germination in order to identify and characterize stress-induced dehydrin-like polypeptides. In our experiments, in tissues of dormant seeds, dehydrin was identifies by immunoblotting as a single bright band with a mol wt of about 50 kD. Low-molecular-weight heat-stable proteins with mol wts of 25 kD and below 16 kD, which were abundant in this fraction, did not cross-react with the antibody. Dehydrin was detected in all parts of the embryo: in the cells of axial organs, cotyledon storage parenchyma, and petioles of cotyledonary leaves. This indicates the absence of tissue-specificity in distribution of these proteins in the horse chestnut seeds. Dehydrins were detected among heat-stable proteins during the entire period of stratification and also radicle emersion. During radicle emergence, not only the fraction of heat-stable proteins was reduced but also the proportion of dehydrins in it decreased. In vitro germination of axes excised at different terms of stratification also resulted in dehydrin disappearance. When growth of excised axes was retarded by treatments with ABA, cycloheximide, or α-amanitin, dehydrins did not disappeared from the fraction of heat-stable proteins. When excised axes were germinated in vitro in the presence of compounds, which did not affect their growth or stimulated it (dehydrozeatin, glucose), this resulted in dehydrin disappearance. This means that dehydrin metabolism is closely related to the process of germination. Dehydrin in the horse chestnut seeds could cross-react with the antibody against ubiquitin, which can indicate the involvement of ubiquitination in the process of dehydrin degradation during germination via the proteasome system. The analysis of total proteins of the homogenate from horse chestnut seeds revealed, along with a 50-kD heat-stable dehydrin, one more component with a mol wt of 80 kD, which was located in the fraction of heat-sensitive proteins and was named as a dehydrin-like protein. It was demonstrated that dehydrins in horse chestnut seeds represented only a very small fraction of heat-stable cytosolic proteins. The role and function of major heat-stable proteins in horse chestnut seeds are yet to be studied.  相似文献   

7.
The activities of superoxide-dismutase (SOD), catalase (CAT) and peroxidase (POD), and concentrations of glutathione and ascorbate have been studied during the first stages of germination in Chenopodium rubrum L. seeds. The highest CAT and SOD activity was found prior to radicle protrusion, while POD activity was maximal at the time of radicle protrusion and seedling development, new POD isozymes simultaneously appearing. The concentrations of total, reduced and oxidized glutathione showed similar changes during germination, the highest values being detected at the time of radicle protrusion. Ascorbic acid was present in the seeds in a detectable concentration only at the time preceding radicle protrusion, while its oxidized form dehydroascorbic acid was detected during the whole germination period studied. Gibberellic acid (GA3, 160 M) had no effect on germination percentage, but in presence of GA3, SOD and CAT activity notably increased prior to radicle protrusion, and oxidized glutathione concentration decreased in further germination.  相似文献   

8.
10−5M abscisic acid (ABA) completely inhibits germination or (if seeds deprived of integuments are used) embryo elongation in Haplopappus gracilis (Nutt.) Gray. Nevertheless, considerable rates of protein and RNA synthesis were found in embryos grown in abscisic acid, at least during the early hours after sowing. On the contrary, seeds grown in cycloheximide + fusicoccin (a powerful promoter of cell expansion), where protein synthesis is almost completely inhibited, show full protrusion of radicle, thus simulating a "germination" process. These results suggest that some of the most important events involved in seed germination, i.e. protein and RNA synthesis, and cell elongation which leads to radicle protrusion, may not necessarily be linked together and are possibly regulated by different control mechanisms. Moreover, when seeds or embryos are grown in abscisic acid + fusicoccin, protein synthesis is considerable, cell elongation is greater than in water controls at least for 12 h, and germination in its early stages appears to be normal; but DNA synthesis and cell division are not resumed, possibly since some other factor is required. All these findings propose a reevaluation of criteria for defining successful germination.  相似文献   

9.
10.
Differences in ethylene production between dormant (D) and nondormant(ND) lower seeds of cocklebur (Xanthium pennsylvanicum Wallr.)were studied with respect to changes in the activity of conversionof 1-aminocyclopropane-l-carboxylic acid (ACC) to ethylene andin the contents of ACC and malonyl-ACC in their axial-tissuesduring soaking. Superior ethylene production in ND seeds ascompared to D seeds became evident during a soaking period rangingfrom 12–24 h, when the radicle protrusion in ND seedshad not yet occurred. Ethylene production in ND seeds increasedabruptly after the radicle protrusion. The inhibitors of ethyleneproduction, aminoethoxyvinyglycine, cobaltous ion and -aminoisobutyricacid, inhibited the germination of ND seeds, whereas ACC enabledD seeds to germinate. Activity of ACC-ethylene conversion was absent in dry axialtissues and developed with soaking. After 24 h, this activityin ND axes was superior to that in D axes. Under hypoxia, however,the difference in the ACC-conversion activity appeared before24 h. On the other hand, the contents of ACC in both D and NDaxes remained almost unchanged until 24 h of soaking. It isthus suggested that the inferior ethylene production in D seedsis associated mainly with their low activity of ACC-ethyleneconversion, though partly with their low activity of ACC supply. Activity of ACC-ethylene conversion in the axes of ND seedsincreased sharply after radicle protrusion which occurred after24 h of soaking. Correspondingly, the contents of both ACC andmalonyl-ACC increased in the axes of germinated ND seeds. Theseimply that the high ethylene production in the ND seeds in thepost-germination period comes from the increasing activitiesof ACC supply as well as ACC-ethylene conversion in their axes. Key words: Cocklebur seeds, Dormancy, Ethylene production, 1-aminocyclopropane-1-carboxylic acid, Germination, Xanthium  相似文献   

11.
Life strategy of plants depends on successful seed germination in the available environment, and sufficient soil water is the most important external factor. Taking into account a broad spectrum of roles played by water in seed viability and its maintenance during germination, the review embraces early germination events in seeds different in their water status. Two seed types are compared, namely orthodox and recalcitrant seeds, in terms of water content in the embryonic axes, vacuole biogenesis, and participation of water channels in membrane water transport. Mature orthodox seeds desiccate to low water content and remain viable during storage, whereas mature recalcitrant seeds are shed while well hydrated but die during desiccation and cannot be stored. In orthodox Vicia faba minor air-dry seeds remaining viable at 8–10% water content in embryonic axes, the vacuoles in hypocotyl are preserved as protein storage vacuoles, then restored to vacuoles in imbibing seeds in the course of protein mobilization. However, in newly produced meristematic root cells, the vacuoles are formed de novo from provacuoles. In recalcitrant Aesculus hippocastanum seeds, embryonic axes have a water content of 63–64% at shedding and they lack protein storage vacuoles but preserve vacuoles preformed in maturing seeds. Independent of the vacuolar biogenetic patterns, their further trend is similar; they expand and fuse, thus producing an osmotic compartment, which precedes and becomes an obligatory step for the initiation of cell elongation. Prior to this, water moves in imbibing seeds through the membranes by diffusion, although the aquaporins forming water channels are present. In both seed types, water channels are opened and actively participate in water transport only after growth initiation. Aquaporin gene expression and their composition change in broad bean embryonic axes after growth initiation. This is the way how a mass water flow into growing seedling cells is achieved, independent of differences in seed water content and vacuole biogenesis patterns.  相似文献   

12.
Macromolecule syntheses, especially incorporation of radioactive labelled precursors into proteins, RNA and DNA were investigated. Some results on the action of phytohormones applied to dormant seeds and on the influence on water stress conditions by interruption of imbibition even before the radicle protrudes, on germination as well as on RNA and DNA synthesis were analysed. Benzylaminopurine and ethylene, applied in combination, could break dormancy of dormant seeds; a process which is correlated with the onset of DNA synthesis. Interruption of the imbibition during the time of onset of DNA synthesis (after 16 h of imbibition) did not impair the germination, and the protein, RNA and DNA syntheses started after reimbibition at that level which was reached at the interruption point. Only after a break in later phases (after 22 h of imbibition) a weak impairment of germination could be observed.  相似文献   

13.
Freshly harvested seeds of Agrostemma githago L. do not germinate when they are imbibed at 20°C. The block is located in the embryo and is relased by dry storage at 20°C (after-ripening). Freshly harvested seeds complete only a small part of the processes that occur in after-ripened seeds during the lag phase prior to germination (radicle protrusion). After-ripening removed the block on lag phase processes much faster than the block on germination. This was shown both by direct determinations of the completion of lag phase processes and by measurements of the rate of axial protein synthesis, which approximately doubles when seeds are progressing through the lag phase. It is concluded that the percentage germination does not adequately reflect the extent to which the dormancy mechanism has been overcome.  相似文献   

14.
Flow cytometric analyses of nuclear DNA levels were carriedout during development, stratification and germination of dormantseeds from three tree species with contrasting characteristics.Norway maple (Acer platanoides) and sycamore (Acer pseudoplatanus)have orthodox (desiccation-tolerant) and recalcitrant (desiccation-sensitive)storage behaviours, respectively, and require only a periodof cold to break dormancy, whereas, orthodox cherry (Prunusavium) seeds require an initial warm period before cold stratificationto fully stimulate germination. Whole embryos and radicle tipsof both Norway maple and sycamore were found to have stablehigh levels of 4C DNA during the latter stages of developmentand both contained nuclei arrested at the 2C and 4C levels atmaturity. Mature cherry embryos had nuclei predominantly arrestedat the 2C level. This suggests that the acquisition of desiccationtolerance is not correlated with the arrest of the cell cycleat any particular nuclear DNA level. Neither DNA replicationin radicle cells nor germination occurred when seeds were maintainedmoist at a constant 20 °C. However, in the late stages ofcold treatment during stratification, nuclear DNA levels inradicle cells changed in advance of radicle emergence in theorthodox Norway maple and cherry, whereas in the recalcitrantsycamore, change was not recorded until after radicle emergence.These results show that DNA replication has potential use asan indicator of the progress of tree seeds through stratificationtreatments used to break some types of dormancy. The ways inwhich this indicator could be exploited for seed quality andperformance testing are discussed.Copyright 1998 Annals of BotanyCompany Norway maple,Acer platanoidesL., sycamore,Acer pseudoplatanusL., cherry,Prunus aviumL., DNA replication, flow cytometry, seed dormancy, stratification  相似文献   

15.
Cell cycle events in embryo axes of Norway maple (Acer platanoides L.) seeds were studied during dormancy breaking by flow cytometric analyses of the nuclear DNA content and by immunodetection of β-tubulin. Most embryonic nuclei of dry, fully matured seeds were arrested in the G2 phase of the cell cycle. In addition, the lowest content of β-tubulin was detected in dry, mature seeds. Imbibition in water and cold stratification resulted in a decrease in the number of nuclei in G2, and a simultaneous increase in β-tubulin content. In germinated seeds the content of β-tubulin was the highest and the number of cells in G2 was the lowest. Both cell cycle events preceded cell expansion and division and subsequent growth of the radicle through the seed coat. The anatomical investigation has proved that the main reason for decrease in the number of nuclei in G2 is mitosis, started with seeds germination (radicle protrusion). The activation of the cell cycle and the β-tubulin accumulation were associated with embryo dormancy breaking. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Proteomics of Arabidopsis seeds revealed the differential accumulation during germination of two housekeeping enzymes. The first corresponded to methionine synthase that catalyses the last step in the plant methionine biosynthetic pathway. This protein was present at low level in dry mature seeds, and its level was increased strongly at 1-day imbibition, prior to radicle emergence. Its level was not increased further at 2-day imbibition, coincident with radicle emergence. However, its level in 1-day imbibed seeds strongly decreased upon subsequent drying of the imbibed seeds back to the original water content of the dry mature seeds. The second enzyme corresponded to S -adenosylmethionine synthetase that catalyses the synthesis of S -adenosylmethionine from methionine and ATP. In this case, this enzyme was detected in the form of two isozymes with different p I and M r. Both proteins were absent in dry mature seeds and in 1-day imbibed seeds, but specifically accumulated at the moment of radicle protrusion. Arabidopsis seed germination was strongly delayed in the presence of dl -propargylglycine, a specific inhibitor of methionine synthesis. Furthermore, this compound totally inhibited seedling growth. These phenotypic effects were largely alleviated upon methionine supplementation in the germination medium. The results indicated that methionine synthase and S -adenosylmethionine synthetase are fundamental components controlling metabolism in the transition from a quiescent to a highly active state during seed germination. Moreover, the observed temporal patterns of accumulation of these proteins are consistent with an essential role of endogenous ethylene in Arabidopsis only after radicle protrusion.  相似文献   

17.
In white spruce ( Picea glauca [Moench.] Voss.) seeds, the raffinose family oligosaccharides (RFOs) provide carbon reserves for the early stages of germination prior to radicle protrusion. Some seedlots contain seeds that are dormant, failing to complete germination under optimal conditions. Since dormancy may be imposed through a metabolic block in reserve mobilization, the goal of this project was to identify any impediment to RFO mobilization in dormant relative to nondormant seeds. Desiccated seeds contain primarily, and in order of abundance on a molar basis, sucrose and the first 3 members of the RFOs, raffinose, stachyose and verbascose. Upon radicle protrusion at 25°C, the contents of RFOs decreased to low amounts in all seed parts, regardless of prior dormancy status and sucrose was metabolized to glucose and fructose, which increased in seed parts. During moist chilling at 4°C, RFO content initially decreased before stabilizing and then increasing. In seeds that did not complete germination, the synthesis of RFOs at 4°C favored verbascose, so that at the end of 14 (nondormant) or 35 (dormant) weeks, verbascose contents in megagametophytes exceeded the amount initially present in the desiccated seed. This was also true in the embryos of the dormant seedlot. In seed parts from both seedlots after months of moist chilling, stachyose amounts exceeded raffinose amounts. Upon radicle protrusion at 4°C, RFO contents decreased to amounts most similar to those present in seeds that completed germination at 25°C. Hence, the RFOs are utilized as a source of energy, regardless of the temperature at which white spruce seeds complete germination. Based on the similarity of sugar contents in seed parts between dormant and nondormant seeds that did not complete germination, differences in sugar metabolism are probably not the basis of dormancy in white spruce seeds.  相似文献   

18.
Shepley S. C. Chen 《Planta》1970,95(4):330-335
Summary Germination of the seeds of Phacelia tanacetifolia is inhibited by light. Removal of that part of the covering structures of the seeds which directly covers the radicle allows full germination in light. The rate of O2 uptake in the seeds increases following imbibition, and reaches the same steady rate in light and in darkness after 3 hr. From the 14 th hour on, dark-imbibed seeds show a linear increase in the rate of respiration. This increase is not observed in dormant seeds incubated in light. In normal dark germination, protrusion of the radicle begins at 12 th hour following soaking, and by the end of 18 th hour approximately 60% of the seeds have germinated. The seeds which have been scarified at the radicle end and germinate readily in light show a steady increase in Q O 2. If scarified seeds are allowed to imbibe 0.3 M mannitol and are then incubated in light, the embryo does not grow and the pattern of O2 uptake becomes identical with that of intact seeds in light. Mannitol, however, does not inhibit respiration by itself. These observations indicate that the increased O2 uptake is the result rather than the cause of seed germination, and that light does not cause dormancy by inhibiting O2 uptake. Measures effective in releasing dormancy (dark incubation, mechanical scarification, gibberellin treatment) do not induce germination by facilitating oxygen entry.This work was supported in part by the Jane Coffin Childs Memorial Fund for Medical Resarch, and by the U. S. Atomic Energy Commission under Contract No. AT (11-1)-1338.  相似文献   

19.
Germination of Alaska pea seeds is inhibited by –0.3 MPapolyethylene glycol but upon subsequent transfer to water, germinationis completed rapidly and radicle emergence occurs more quicklythan in water-imbibed seeds. Protein synthesis is reduced inthe axes of seeds imbibed on PEG but increases upon their returnto water, though not to the level exhibited by axes germinatedon water. Mobilization of proteins in the axes is retarded bytheir failure to complete germination on PEG, although somedoes occur. The quantitative reduction in protein synthesisresulting from incubation in osmoticum is not accompanied bymarked qualitative changes. The block to germination is notobviously associated with a restriction in synthesis of anyparticular protein or set of proteins; conversely, no ‘water-stress’proteins are synthesized in the presence of PEG. The synthesisof growth-specific proteins is prevented by PEG, but these increaseupon relief from the osmoconditioning treatments. These observationsdispute earlier claims for accelerated protein synthesis resultingfrom PEG treatments. Key words: Osmotic priming, Pisum sativum, germination, protein synthesis  相似文献   

20.
Yellow cedar (Chamaecyparis nootkatensis) seeds exhibit prolonged dormancy following their dispersal from the parent plant. Embryos excised fully from their enclosing seed tissues exhibit 100% germination, indicating that the seed tissues enclosing the embryo (the testa, remnants of the nucellus and the megagametophyte) play an inhibitory role and prevent radicle emergence. As part of an assessment of the role of seed tissues in the dormancy mechanism of yellow cedar seeds, light microscopy was used to examine changes within the major structures of the seed following a 90 d war (26C)/cold (4C) moist treatment ('stratification') and during germination. In the micropylar tip of the seed, the nucellus forms a hard nucellar cap covering the radicle. The nucellar cap is composed primarily of degenerated cells; histological staining with ruthenium red revealed a predominance of pectins. There were no obvious cellular or morphological differences (detected by light microscopy) between mature seeds subjected to a 3 d soak and seeds subjected to a 3 d soak and the 90 d dormancy-breaking treatment. However, just prior to germination there was an outward projection of the nucellar cap through the micropyle, which appeared to be caused by the extension of highly folded proteinaceous strands lying immediately in front of the radicle. When the testa was removed, the embryo enclosed within the intact megagametophyte was incapable of germination. If, however, the megagametophyte surrounding the embryo was slit or the embryo surrounded by an intact megagametophyte was subjected to a 3d rinse in water, some germination occurred, perhaps as a result of an enhanced release of inhibitors from the megagametophyte. After stratification, dormancy of yellow cedar seeds is broken; concurrent with dormancy breakage, there was a mechanical weakening of the megagametophyte. The embryo also underwent changes that included an increase in turgor and a reduced sensitivity to highly negative osmotic potential. It is concluded that coat-imposed dormancy of yellow cedar seeds is enforced by mechanical restraint of the megagametophyte as well as a leachable chemical inhibitor (most probably ABA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号