首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Grüss A  Kaplan DM  Hart DR 《PloS one》2011,6(5):e19960
Movement of individuals is a critical factor determining the effectiveness of reserve networks. Marine reserves have historically been used for the management of species that are sedentary as adults, and, therefore, larval dispersal has been a major focus of marine-reserve research. The push to use marine reserves for managing pelagic and demersal species poses significant questions regarding their utility for highly-mobile species. Here, a simple conceptual metapopulation model is developed to provide a rigorous comparison of the functioning of reserve networks for populations with different admixtures of larval dispersal and adult movement in a home range. We find that adult movement produces significantly lower persistence than larval dispersal, all other factors being equal. Furthermore, redistribution of harvest effort previously in reserves to remaining fished areas ('fishery squeeze') and fishing along reserve borders ('fishing-the-line') considerably reduce persistence and harvests for populations mobile as adults, while they only marginally changes results for populations with dispersing larvae. Our results also indicate that adult home-range movement and larval dispersal are not simply additive processes, but rather that populations possessing both modes of movement have lower persistence than equivalent populations having the same amount of 'total movement' (sum of larval and adult movement spatial scales) in either larval dispersal or adult movement alone.  相似文献   

2.
A recent study ( White et al. 2008 ) claimed that fishery profits will often be higher with management that employs no‐take marine reserves than conventional fisheries management alone. However, this conclusion was based on the erroneous assumption that all landed fish have equal value regardless of size, and questionable assumptions regarding density‐dependence. Examination of an age‐structured version of the White et al. (2008) model demonstrates that their results are not robust to these assumptions. Models with more realistic assumptions generally do not indicate increased fishery yield or profits from marine reserves except for overfished stocks.  相似文献   

3.
The way in which density‐dependent effects are partitioned amongst survival, growth and dispersal are key in determining the temporal and spatial dynamics of populations. Here we propose a mechanistic approach to understanding how the relative importance of these sources of density dependence can change over ontogeny through changes in dispersal abilities, energy stores and mortality risks. Whereas the potential for active dispersal typically increases over ontogeny as a function of body size, susceptibility to starvation and predation decreases. The joint effect of these mechanisms suggests a general model for the ontogenetic sequence of how density dependence is manifested, with density dependence early in ontogeny being primarily expressed as mortality on local spatial scales, whereas later stages respond to local density in terms of dispersal and potentially growth. Here we test this model by manipulating the densities of juvenile Atlantic salmon (Salmo salar L.) at two life‐history stages in the wild. Density‐dependent mortality during the early juvenile stage (i.e. fry at onset of exogenous feeding) was accompanied by no effects on body size and weak effects on dispersal. In contrast, dispersal of older juveniles (i.e. parr 2–3 months after onset of feeding) was strongly density‐dependent, with more individuals emigrating from high‐density release sites, and with no effect of initial density on mortality. This dispersal, however, appeared insufficient to produce an ideal free distribution within the study stream, as indicated by the effect of spatial variation in density on body size by the end of the first growth season. These results demonstrate that the way density‐dependent effects are partitioned amongst survival, growth and dispersal changes throughout ontogeny. Furthermore, these changes occur in correlation with changes in individual mortality risks and dispersal abilities, and suggest a general paradigm for the way in which juvenile density‐dependence is manifest in spatially structured populations of highly fecund organisms.  相似文献   

4.
Marine reserve effects on fishery profit   总被引:1,自引:0,他引:1  
Some studies suggest that fishery yields can be higher with reserves than under conventional management. However, the economic performance of fisheries depends on economic profit, not fish yield. The predictions of higher yields with reserves rely on intensive fishing pressures between reserves; the exorbitant costs of harvesting low-density populations erode profits. We incorporated this effect into a bioeconomic model to evaluate the economic performance of reserve-based management. Our results indicate that reserves can still benefit fisheries, even those targeting species that are expensive to harvest. However, in contrast to studies focused on yield, only a moderate proportion of the coast in reserves (with moderate harvest pressures outside reserves) is required to maximize profit. Furthermore, reserve area and harvest intensity can be traded off with little impact on profits, allowing for management flexibility while still providing higher profit than attainable under conventional management.  相似文献   

5.
Marine reserves have been advocated worldwide as conservation and fishery management tools. It is argued that they can protect ecosystems and also benefit fisheries via density-dependent spillover of adults and enhanced larval dispersal into fishing areas. However, while evidence has shown that marine reserves can meet conservation targets, their effects on fisheries are less understood. In particular, the basic question of if and over what temporal and spatial scales reserves can benefit fished populations via larval dispersal remains unanswered. We tested predictions of a larval transport model for a marine reserve network in the Gulf of California, Mexico, via field oceanography and repeated density counts of recently settled juvenile commercial mollusks before and after reserve establishment. We show that local retention of larvae within a reserve network can take place with enhanced, but spatially-explicit, recruitment to local fisheries. Enhancement occurred rapidly (2 yrs), with up to a three-fold increase in density of juveniles found in fished areas at the downstream edge of the reserve network, but other fishing areas within the network were unaffected. These findings were consistent with our model predictions. Our findings underscore the potential benefits of protecting larval sources and show that enhancement in recruitment can be manifested rapidly. However, benefits can be markedly variable within a local seascape. Hence, effects of marine reserve networks, positive or negative, may be overlooked when only focusing on overall responses and not considering finer spatially-explicit responses within a reserve network and its adjacent fishing grounds. Our results therefore call for future research on marine reserves that addresses this variability in order to help frame appropriate scenarios for the spatial management scales of interest.  相似文献   

6.
Predictions on the efficacy of marine reserves for benefiting fisheries differ in large part due to considerations of models of either intra- or inter-cohort population density regulating fish recruitment. Here, I consider both processes acting on recruitment and show using a bioeconomic model how for many fisheries density dependent recruitment dynamics interact with harvest costs to influence fishery profit with reserves. Reserves consolidate fishing effort, favoring fisheries that can profitably harvest low-density stocks of species where adult density mediates recruitment. Conversely, proportion coastline in reserves that maximizes profit, and relative improvement in profit from reserves over conventional management, decline with increasing harvest costs and the relative importance of intra-cohort density dependence. Reserves never increase profit when harvest cost is high, regardless of density dependent recruitment dynamics. I quantitatively synthesize diverse results in the literature, show disproportionate effects on the economic performance of reserves from considering only inter- or intra-cohort density dependence, and highlight fish population and fishery dynamics predicted to be complementary to reserve management. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Models for marine reserve design have been developed primarily with ‘reef fish’ life histories in mind: sedentary adults in patches connected by larval dispersal. However, many fished species undertake ontogenetic migrations, such as from nursery grounds to adult spawning habitats, and current theory does not fully address the range of reserve options posed by that situation. I modelled a generic species with ontogenetic migration to investigate the possible benefits of reserves under three alternative scenarios. First, the fishery targets adult habitat, and reserves can sustain yields under high exploitation, unless habitat patches are well connected. Second, the fishery targets the nursery, and reserves are highly effective, regardless of connectivity patterns. Third, the fishery targets both habitats, and reserves only succeed if paired on adjacent, well-connected nursery and adult patches. In all cases, reserves can buffer populations against overexploitation but would not enhance fishery yield beyond that achievable by management without reserves. These results summarize the general situations in which management using reserves could be useful for ontogenetically migrating species, and the type of connectivity data needed to inform reserve design.  相似文献   

8.
The concept of marine reserves as a method of improving management of fisheries is gaining momentum. While the list of benefits from reserves is frequently promoted, precise formulations of theory to support reserve design are not fully developed. To determine the size of reserves and the distances between reserves an understanding of the requirements for persistence of local populations is required. Unfortunately, conditions for persistence are poorly characterized, as are the larval dispersal patterns on which persistence depends. With the current paucity of information regarding meroplanktonic larval transport processes, understanding the robustness of theoretical results to larval dispersal is of key importance. From this formulation a broad range of dispersal patterns are analyzed. Larval dispersal is represented by a probability distribution that defines the fraction of successful settlers from an arbitrary location, the origin of the distribution, to any other location along the coast. While the effects of specific dispersal patterns have been investigated for invasion processes, critical habitat size and persistence issues have generally been addressed with only one or two dispersal types. To that end, we formulate models based on integrodifference equations that are spatially continuous and temporally discrete. We consider a range of dispersal distributions from leptokurtic to platykurtic. The effect of different dispersal patterns is considered for a single isolated reserve of varying size receiving no external larvae, as well as multiple reserves with varying degrees of connectivity. While different patterns result in quantitative differences in persistence, qualitatively similar effects across all patterns are seen in both single- and multiple reserve models. Persistence in an isolated reserve requires a size that is approximately twice the mean dispersal distance and regardless of the dispersal pattern the population in a patch is not persistent if the reserve size is reduced to just the mean dispersal distance. With an idealized coastline structure consisting of an infinite line of equally spaced reserves separated by regions of coastline in which reproduction is nil, the relative settlement as a function of the fraction of coastline and size of reserve is qualitatively very similar over a broad range of dispersal patterns. The upper limit for the minimum fraction of coastline held in reserve is about 40%. As the fraction of coastline is reduced, the minimum size of reserve becomes no more than 1.25 times the mean dispersal distance.  相似文献   

9.
Dispersal has been proposed as an important mechanism in the broad‐scale synchronisation of insect outbreaks by linking spatially disjunct populations. Evidence suggests that dispersal is influenced by landscape structure, phenology, temperature, and air currents; however, the details remain unclear due to the difficulty of quantifying dispersal. In this study, we used data on the abundance and distribution of spruce budworm Choristoneura fumiferana larvae (potential dispersers) and adult male moths (dispersers) to make inference on the effects of air currents and host‐species abundance on dispersal. Hierarchical‐Bayesian and inverse modeling was used to explore 4 dispersal models: 1) isotropic dispersal; 2) directional‐dispersal; 3) directional‐and‐host‐species dispersal; and 4) host‐species dispersal. Despite their strong dependence on balsam fir Abies balsamea and spruce species Picea spp., the mapped basal area of these host species did not influence the pattern of dispersed moths. The model that best fit the data was the directional‐dispersal model, which showed that the prevailing dispersal direction was from the northwest (328°). We infer that the strong pattern of directional dispersal was due to a prevailing wind from the same direction. Our interpretation was corroborated by independent wind data during the period of active adult male budworm flight, particularly in the region with high larval abundance. Our results indicate that there was a relatively high probability of individuals flying at least 48 km with the wind where larvae abundance at source locations was also high. Such findings emphasize the importance of long‐distance dispersal on spatial distribution of adult male spruce budworms. Insight into the population‐level consequences of such dispersal patterns requires additional research.  相似文献   

10.
In this study, we use a spatially implicit, stage-structured model to evaluate marine reserve effectiveness for a fish population exhibiting depensatory (strong Allee) effects in its dynamics. We examine the stability and sensitivity of the equilibria of the modelled system with regards to key system parameters and find that for a reasonable set of parameters, populations can be protected from a collapse if a small percentage of the total area is set aside in reserves. Furthermore, the overall abundance of the population is predicted to achieve a maximum at a certain ratio \(A\) of reserve area to fished area, which depends heavily on the other system parameters such as the net export rate of fish from the marine reserves to the fished areas. This finding runs contrary to the contested “equivalence at best” result when comparing fishery management through traditional catch or effort control and management through marine reserves. Lastly, we analyse the problem from a bioeconomics perspective by computing the optimal harvesting policy using Pontryagin’s Maximum Principle, which suggests that the value for \(A\) which maximizes the optimal equilibrium fishery yield also maximizes population abundance when the cost per unit harvest is constant, but can increase substantially when the cost per unit harvest increases with the area being harvested.  相似文献   

11.
We found evidence for a critical population bottleneck at a developmental‐stage transition in larvae of the zebra mussel Dreissena polymorpha Pallas from field estimates of mortality. Identification of this critical period in the field was made possible by closely tracking cohorts of larvae over 5 days of development as they dispersed 128 km in a river system. The presence of a survival bottleneck during development was confirmed in laboratory studies of zebra mussel larvae. Development‐specific mortality has important implications for spatial population dynamics of the zebra mussel in particular, and all species with indirect development in general. Marine reserves that do not take development‐specific mortality into account may dramatically underestimate reserve size needed to protect rare and/or exploited marine populations. Conversely, for the zebra mussel, the lower contribution of dispersing individuals to population growth downstream of reserves can lead to more feasible control through the blocking of dispersal.  相似文献   

12.
Two approaches for describing density dependence in demographic rates of stage‐structured populations are compared in this study. Time‐series data from laboratory blowfly populations (Lucilia sericata) have been analysed in a separate study, with a statistical modelling approach that incorporated density dependences as unspecified (non‐parametric) functions. In this study, we assessed density‐dependent structures by manipulating densities of larvae and adults in cohorts of blowflies and measuring the demographic rates. We here compare the density‐dependent structures revealed by the cohort experiments with those estimated by the non‐parametric model. This model estimates the demographic rates to have the following density‐dependent structures: (i) larval survival was non‐linearly density‐dependent (a ‘humped’ function), (ii) adult survival was density‐independent, and (iii) reproductive rate decreased with adult density. In the cohort experiments reported here, (i) juvenile survival exhibited a positive density dependence in low densities (facilitation), which became negative at higher densities (competition). Pupal and adult size decreased with initial larval density. (ii) Adult survival was reduced by high initial larval density, but it was independent of adult density. (iii) Reproductive rate was reduced by high initial larval density, and by high adult density in populations of large individuals (from low larval density). Hence, the results from these experiments support the non‐parametric model estimates regarding density‐dependent structures of demographic rates in the blowfly populations. The mean demographic rates, however, were apparently underestimated by the model. We conclude that non‐parametric modelling is a useful first approach for exploratory analysis of ecological time‐series data.  相似文献   

13.
Detailed studies of the mechanisms driving life history effects of food availability are of prime importance to understand the evolution of phenotypic plasticity and the capacity of organisms to produce better adapted phenotypes. Food availability may influence life history trajectories through three nonexclusive mechanisms: (i) immediate and long‐lasting effects on individual quality, and indirect delayed effects on (ii) intracohort and (iii) intercohort interactions. Using the common lizard (Zootoca vivipara), we tested whether a food deprivation during the two‐first months of life influence life history (growth, survival, reproduction) and performance traits (immunocompetence, locomotor performances) until adulthood. We investigated the underlying mechanisms and their possible interactions by manipulating jointly food availability in a birth cohort and in cohorts of older conspecifics. Food deprivation had direct immediate negative effects on growth but positive long‐lasting effects on immunocompetence. Food deprivation had also indirect delayed effects on growth, body size, early survival and reproduction mediated by an interaction between its direct effects on individual quality and its delayed effects on the intensity of intercohort social interactions combined with density dependence on body size. These results demonstrate that interactions between direct and socially mediated effects of past environments influence life history evolution in size‐structured and stage‐structured populations.  相似文献   

14.
The responses of species and populations to changes in the environment (e.g. changes in climate and land use) are often complex and difficult to predict. We have created the SpatialDemography model (R package: spatialdemography). The model is a spatially explicit, stage‐structured, matrix‐based metacommunity model, with the potential for modeling species’ and populations’ potential responses to environmental heterogeneity and change. The SpatialDemography model assumes a cellular landscape populated by organisms with four life stages: a mobile dispersing stage, two sessile non‐reproductive stages, and a reproductive adult stage. Individuals are assumed to originate at the center of a given cell and disperse according to a specified dispersal kernel (e.g. log‐normal). All adult individuals are capable of producing offspring. The model approach and framework are described in the context of a hypothetical example with multiple competing species in a four cell landscape. In this example simulation, both spatial location and species interactions were important for understanding population dynamics. SpatialDemography can be applied to questions where an understanding of transient and long‐term demographic responses to spatiotemporal changes is desired. It is primarily applicable to metapopulations and metacommunities of organisms with early dispersal and sessile adults (i.e. modular organisms such as plants and some marine organisms). SpatialDemography differs from other population models in that it is spatially explicit, can incorporate biotic interactions, and is implemented in R.  相似文献   

15.
There is a growing body of evidence that suggests the effective functioning of marine reserves is dependent on the dispersal and recruitment of larvae. Enhanced production inside reserves is predicted to lead to a net larval export and increased settlement and recruitment outside reserve boundaries. However, larval retention in bays is also well documented. Since bays are increasingly being used as reserve areas, planktonic larvae of benthic marine invertebrates were sampled from two semi-enclosed marine reserves during flood and ebb tides to determine whether these bays are acting as net exporters of larvae. Neither reserve was a net importer or exporter of species richness, larval abundance or diversity, although one reserve showed a small export of species richness during the hours of darkness. Both reserves balanced the net import of some species with a net export of others, which was generally related to adult or larval abundance, although exceptions were found in one reserve. Significant effects of light were found, with the net import or export of some species occurring exclusively during either the hours of daylight or darkness. An increased understanding of larval sink-source dynamics in bays is essential for ensuring their effective use as marine reserves to meet specific conservation needs. Guest editors: J. Davenport, G. Burnell, T. Cross, M. Emmerson, R. McAllen, R. Ramsay & E. Rogan Challenges to Marine Ecosystems  相似文献   

16.
Marine reserves hold promise for maintaining biodiversity and sustainable fishery management, but studies supporting them have not addressed a crucial aspect of sustainability: the reduction in viability of populations with planktonic larvae dispersing along a coastal habitat with noncontiguous marine reserves. We show how sustainability depends on the fraction of natural larval settlement (FNLS) remaining after reserves are implemented, which in turn depends on reserve configuration and larval dispersal distance. Sustainability requires FNLS to be greater than an empir-ically determined minimum. Maintaining an adequate value for all species requires either a large, unlikely fraction (> 35%) of coastline in reserves, or reserves that are larger than the mean larval dispersal distance of the target species. FNLS is greater for species dispersing shorter distances, which implies reserves can lead to: (1) changes in community composition and (2) genetic selection for shorter dispersal distance. Dependence of sustainability on dispersal distance is a new source of uncertainty.  相似文献   

17.
The goals of ecosystem‐based management (EBM) include protecting ecological resilience, the magnitude of a perturbation that a community can withstand and remain in a given state. As a tool to achieve this goal, no‐take marine reserves may enhance resilience by protecting source populations or reduce it by concentrating fishing in harvested areas. Here, we test whether spatial management with marine reserves can increase ecological resilience compared to non‐spatial (conventional) management using a dynamic model of a simplified fish community with structured predation and competition that causes alternative stable states. Relative to non‐spatial management, reserves increase the resilience of the desired (predator‐dominated) equilibrium state in both stochastic and deterministic environments, especially under intensive fishing. As a result, spatial management also increases the feasibility of restoring degraded (competitor‐dominated) systems, particularly if combined with culling of competitors or stock enhancement of adult predators.  相似文献   

18.
Matching marine reserve design to reserve objectives   总被引:1,自引:0,他引:1  
Recent interest in using marine reserves for marine resource management and conservation has largely been driven by the hope that reserves might counteract declines in fish populations and protect the biodiversity of the seas. However, the creation of reserves has led to dissension from some interested groups, such as fishermen, who fear that reserves will do more harm than good. These perceived differences in the effect of marine reserves on various stakeholder interests has led to a contentious debate over their merit. We argue here that recent findings in marine ecology suggest that this debate is largely unnecessary, and that a single general design of a network of reserves of moderate size and variable spacing can meet the needs and goals of most stakeholders interested in marine resources. Given the high fecundity of most marine organisms and recent evidence for limited distance of larval dispersal, it is likely that reserves can both maintain their own biodiversity and service nearby non-reserve areas. In particular, spillover of larger organisms and dispersal of larvae to areas outside reserves can lead to reserves sustaining or even increasing local fisheries. Ultimately, the success of any reserve network requires attention to the uncertainty and variability in dispersal patterns of marine organisms, clear statements of goals by all stakeholder groups and proper evaluation of reserve performance.  相似文献   

19.
Well‐designed and effectively managed networks of marine reserves can be effective tools for both fisheries management and biodiversity conservation. Connectivity, the demographic linking of local populations through the dispersal of individuals as larvae, juveniles or adults, is a key ecological factor to consider in marine reserve design, since it has important implications for the persistence of metapopulations and their recovery from disturbance. For marine reserves to protect biodiversity and enhance populations of species in fished areas, they must be able to sustain focal species (particularly fishery species) within their boundaries, and be spaced such that they can function as mutually replenishing networks whilst providing recruitment subsidies to fished areas. Thus the configuration (size, spacing and location) of individual reserves within a network should be informed by larval dispersal and movement patterns of the species for which protection is required. In the past, empirical data regarding larval dispersal and movement patterns of adults and juveniles of many tropical marine species have been unavailable or inaccessible to practitioners responsible for marine reserve design. Recent empirical studies using new technologies have also provided fresh insights into movement patterns of many species and redefined our understanding of connectivity among populations through larval dispersal. Our review of movement patterns of 34 families (210 species) of coral reef fishes demonstrates that movement patterns (home ranges, ontogenetic shifts and spawning migrations) vary among and within species, and are influenced by a range of factors (e.g. size, sex, behaviour, density, habitat characteristics, season, tide and time of day). Some species move <0.1–0.5 km (e.g. damselfishes, butterflyfishes and angelfishes), <0.5–3 km (e.g. most parrotfishes, goatfishes and surgeonfishes) or 3–10 km (e.g. large parrotfishes and wrasses), while others move tens to hundreds (e.g. some groupers, emperors, snappers and jacks) or thousands of kilometres (e.g. some sharks and tuna). Larval dispersal distances tend to be <5–15 km, and self‐recruitment is common. Synthesising this information allows us, for the first time, to provide species, specific advice on the size, spacing and location of marine reserves in tropical marine ecosystems to maximise benefits for conservation and fisheries management for a range of taxa. We recommend that: (i) marine reserves should be more than twice the size of the home range of focal species (in all directions), thus marine reserves of various sizes will be required depending on which species require protection, how far they move, and if other effective protection is in place outside reserves; (ii) reserve spacing should be <15 km, with smaller reserves spaced more closely; and (iii) marine reserves should include habitats that are critical to the life history of focal species (e.g. home ranges, nursery grounds, migration corridors and spawning aggregations), and be located to accommodate movement patterns among these. We also provide practical advice for practitioners on how to use this information to design, evaluate and monitor the effectiveness of marine reserve networks within broader ecological, socioeconomic and management contexts.  相似文献   

20.
Marine reserves and optimal harvesting   总被引:6,自引:1,他引:6  
Advocates of no‐take marine reserves emphasize their conservation benefits. Critics counter that reserves would decrease fisheries yield. Analysis of a spatially explicit harvesting model, however, shows that no‐take marine reserves are always part of an optimal harvest designed to maximize yield. The optimal harvest generates a spatial source–sink structure with source populations placed in reserves. The sizes and locations of the optimal reserves depend on a dimensionless length parameter. For small values of this parameter, the maximum yield is obtained by placing a large reserve in the centre of the habitat. For large values of this parameter, the optimal harvesting strategy is a spatial ‘chattering control’ with infinite sequences of reserves alternating with areas of intense fishing. Such a chattering strategy would be impossible to actually implement, but in these cases an approximate yet practicable policy, utilizing a small number of reserves, can be constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号