首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对20世纪80年代以来有关植物群落演替的生理生态学机制研究的主要结果进行了综述.演替早期和演替后期各种植物所处环境常有很大差别.演替早期的生境具有开放性和光照充足等特点,各环境因子富于变化;演替后期的生境由于植被的缓冲作用,一般较为封闭和稳定,各环境因子在空间尺度上的异质性较强.演替早期和演替后期群落不仅物种组成不同,而且在演替不同阶段中出现的物种的生理生态特性以及对环境的适应性也有很大差别,这些物种的生理生态差异使得物种更替现象经常发生, 也使得演替能够顺利进行.在全球气候变化影响下,生态系统将会出现更多的次生演替和长时间停留于演替早期阶段的情况.  相似文献   

2.
为探明不同演替阶段土壤碳吸存潜力,选取演替时间为15a(演替初期)、47a(演替中期)、110a(演替后期)3个中亚热带常绿阔叶林,分析了各演替阶段的土壤有机碳(SOC)含量以及土壤微生物量碳(MBC)、可溶性碳(DOC)和微生物熵(SMQ)的季节变化。结果表明:演替中、后期不同土层的土壤SOC、MBC、DOC含量和SMQ均显著高于演替初期(P<0.05);与演替中期相比,演替后期土壤MBC、DOC含量有所降低,SOC含量和SMQ无显著差异。土壤SOC、MBC和DOC含量随土层加深而显著性降低(演替初、中期DOC除外),并随演替进行逐渐向腐殖质层富集。不同演替阶段MBC、DOC和SMQ均有显著季节变化,最低值出现在秋季,最高值随演替进程由冬季逐步转向夏季。相关分析表明,不同演替阶段土壤活性有机碳含量与土壤有机碳含量极显著相关(P<0.01),且土壤活性有机碳(MBC、DOC)和SMQ对土壤碳库变化更为敏感。  相似文献   

3.
Phytoplankton succession in Lake Valencia,Venezuela   总被引:4,自引:4,他引:0  
Phytoplankton counts and supporting physical and chemical data were taken on Lake Valencia, Venezuela, over a five-year interval. The data are used to test the validity of a successional paradigm for class-level taxa. According to the paradigm, formulated from previous studies of Lake Lanao, Philippines, and from data on temperate lakes, the order of taxa from early to late succession is: diatoms, chlorophytes, blue-green algae, dinoflagellates. A successional episode is considered to begin when stability of a water column is restored after deep mixing. As the episode progresses, there is a steady decrease in concentration of the limiting macronutrient (in this case, N). In a test of the validity of the paradigm for Lake Valencia, dates of exceptional population increase or decrease were obtained for each taxon. Since nitrate concentration declines steadily as succession progresses, the entry of a given taxon into the successional sequence is indicated quantitatively by the mean nitrate concentration on dates of exceptional increase in population density, and exit from the successional sequence is indicated by mean nitrate concentration on dates of exceptional population declines. The successional position of each major taxon, bounded by its entry and exit in the sequence, can be mapped on the complete spectrum of nitrate concentrations observed in the lake. For Lake Valencia, the nitrate mapping procedure agrees exactly with the predictions based on the successional paradigm. Conformance of Lake Valencia phytoplankton with predictions made a priori suggests that there is a generalized pattern in the phytoplankton succession of the mixed layers of temperate and tropical lakes.  相似文献   

4.
Plant interactions with soil biota could have a significant impact on plant successional trajectory by benefiting plants in a particular successional stage over others. The influence of soil mutualists such as mycorrhizal fungi is thought to be an important feedback component, yet they have shown benefits to both early and late successional plants that could either retard or accelerate succession. Here we first determine if arbuscular mycorrhizal (AM) fungi differ among three stages of primary sand dune succession and then if they alter growth of plants from particular successional stages. We isolated AM fungal inoculum from early, intermediate or late stages of a primary dune succession and compared them using cloning and sequencing. We then grew eight plant species that dominate within each of these successional stages with each AM fungal inoculum. We measured fungal growth to assess potential AM functional differences and plant growth to determine if AM fungi positively or negatively affect plants. AM fungi isolated from early succession were more phylogenetically diverse relative to intermediate and late succession while late successional fungi consistently produced more soil hyphae and arbuscules. Despite these differences, inocula from different successional stages had similar effects on the growth of all plant species. Host plant biomass was not affected by mycorrhizal inoculation relative to un‐inoculated controls. Although mycorrhizal communities differ among primary dune successional stages and formed different fungal structures, these differences did not directly affect the growth of plants from different dune successional stages in our experiment and therefore may be less likely to directly contribute to plant succession in sand dunes.  相似文献   

5.
Question: Are changes in plant species composition, functional group composition and rates of species turnover consistent among early successional wetlands, and what is the role of landscape context in determining the rate of succession? Location: Twenty‐four restored wetlands in Illinois, USA. Methods: We use 4 years of vegetation sampling data from each site to describe successional trends and rates of species turnover in wetlands. We quantify: (1) the rate at which composition changes from early‐successional to late‐successional species and functional groups, as indicated by site movement in ordination space over time, and (2) the rate of change in the colonization and local extinction of individual species. We correlate the pace of succession to site area, isolation and surrounding land cover. Results: Some commonalities in successional trends were evident among sites. Annual species were replaced by clonal perennials, and colonization rates declined over time. However, differences among sites outweighed site age in determining species composition, and the pace of succession was influenced by a site's landscape setting. Rates of species turnover were higher in smaller wetlands. In addition, wetlands in agricultural landscapes underwent succession more rapidly, as indicated by a rapid increase in dominance by late‐successional plants. Conclusions: Although the outcome of plant community succession in restored wetlands was somewhat predictable, species composition and the pace of succession varied among sites. The ability of restoration practitioners to accelerate succession through active manipulation may be contingent upon landscape context.  相似文献   

6.
Succession is a fundamental concept in ecology because it indicates how species populations, communities, and ecosystems change over time on new substrate or after a disturbance. A mechanistic understanding of succession is needed to predict how ecosystems will respond to land-use change and to design effective ecosystem restoration strategies. Yet, despite a century of conceptual advances a comprehensive successional theory is lacking. Here we provide an overview of 19 successional theories (‘models’) and their key points, group them based on conceptual similarity, explain conceptual development in successional ideas and provide suggestions how to move forward. Four groups of models can be recognised. The first group (patch & plants) focuses on plants at the patch level and consists of three subgroups that originated in the early 20th century. One subgroup focuses on the processes (dispersal, establishment, and performance) that operate sequentially during succession. Another subgroup emphasises individualistic species responses during succession, and how this is driven by species traits. A last subgroup focuses on how vegetation structure and underlying demographic processes change during succession. A second group of models (ecosystems) provides a more holistic view of succession by considering the ecosystem, its biota, interactions, diversity, and ecosystem structure and processes. The third group (landscape) considers a larger spatial scale and includes the effect of the surrounding landscape matrix on succession as the distance to neighbouring vegetation patches determines the potential for seed dispersal, and the quality of the neighbouring patches determines the abundance and composition of seed sources and biotic dispersal vectors. A fourth group (socio-ecological systems) includes the human component by focusing on socio-ecological systems where management practices have long-lasting legacies on successional pathways and where regrowing vegetations deliver a range of ecosystem services to local and global stakeholders. The four groups of models differ in spatial scale (patch, landscape) or organisational level (plant species, ecosystem, socio-ecological system), increase in scale and scope, and reflect the increasingly broader perspective on succession over time. They coincide approximately with four periods that reflect the prevailing view of succession of that time, although all views still coexist. The four successional views are: succession of plants (from 1910 onwards) where succession was seen through the lens of species replacement; succession of communities and ecosystems (from 1965 onwards) when there was a more holistic view of succession; succession in landscapes (from 2000 onwards) when it was realised that the structure and composition of landscapes strongly impact successional pathways, and increased remote-sensing technology allowed for a better quantification of the landscape context; and succession with people (from 2015 onwards) when it was realised that people and societal drivers have strong effects on successional pathways, that ecosystem processes and services are important for human well-being, and that restoration is most successful when it is done by and for local people. Our review suggests that the hierarchical successional framework of Pickett is the best starting point to move forward as this framework already includes several factors, and because it is flexible, enabling application to different systems. The framework focuses mainly on species replacement and could be improved by focusing on succession occurring at different hierarchical scales (population, community, ecosystem, socio-ecological system), and by integrating it with more recent developments and other successional models: by considering different spatial scales (landscape, region), temporal scales (ecosystem processes occurring over centuries, and evolution), and by taking the effects of the surrounding landscape (landscape integrity and composition, the disperser community) and societal factors (previous and current land-use intensity) into account. Such a new, comprehensive framework could be tested using a combination of empirical research, experiments, process-based modelling and novel tools. Applying the framework to seres across broadscale environmental and disturbance gradients allows a better insight into what successional processes matter and under what conditions.  相似文献   

7.
Glacier chronosequences are important sites for primary succession studies and have yielded well‐defined primary succession models for plants that identify environmental resistance as an important determinant of the successional trajectory. Whether plant‐associated fungal communities follow those same successional trajectories and also respond to environmental resistance is an open question. In this study, 454 amplicon pyrosequencing was used to compare the root‐associated fungal communities of the ectomycorrhizal (ECM) herb Bistorta vivipara along two primary succession gradients with different environmental resistance (alpine versus arctic) and different successional trajectories in the vascular plant communities (directional replacement versus directional non‐replacement). At both sites, the root‐associated fungal communities were dominated by ECM basidiomycetes and community composition shifted with increasing time since deglaciation. However, the fungal community's successional trajectory mirrored the pattern observed in the surrounding plant community at both sites: the alpine site displayed a directional‐replacement successional trajectory, and the arctic site displayed a directional‐non‐replacement successional trajectory. This suggests that, like in plant communities, environmental resistance is key in determining succession patterns in root‐associated fungi. The need for further replicated study, including in other host species, is emphasized.  相似文献   

8.
Rachel T. King 《Biotropica》2003,35(4):462-471
I investigated the effects of successional stage and micro‐elevation on seedling establishment of Calophyllum brasiliense (Clusiaceae), a common canopy tree of seasonally flooded lowland forest along the Manú River meander zone in southeastern Peru. To compare seedling establishment between microhabitat types, I planted C. brasiliense seeds in a fully crossed experimental design of three successional stages (early, mid, and mature) and two micro‐elevations (levees and backwaters). Seedling establishment success in this study was affected by both successional stage and micro‐elevation, but micro‐elevation was most important in mid‐successional habitats. In general, seedlings in early succession experienced better conditions than in mature forest; light levels were higher, herbivory lower, and seedling growth higher. In mid‐successional forest, micro‐elevation determined habitat quality; backwaters had higher light levels, lower herbivory, and higher seedling growth and survival than levees. Mid‐successional backwaters were similar in quality to early successional forest for seedling establishment, while levees in that same successional stage were the poorest microhabitats for establishment. Although mid‐successional backwaters are similar to early succession for seedling establishment, in the long run, seedlings that establish in mid‐succession have a lower chance of reaching reproductive size before their habitat ages to mature forest than members of their cohort that established in early succession. I hypothesize that successful recruitment for C. brasiliense in the Manú River meander system requires dispersal to early successional habitat.  相似文献   

9.

Background

Natural forest succession often affects soil physical and chemical properties. Selected physical and chemical soil properties were studied in an old-growth forest across a forest successional series in Dinghushan Nature Reserve, Southern China.

Methodology/Principal Findings

The aim was to assess the effects of forest succession change on soil properties. Soil samples (0–20 cm depth) were collected from three forest types at different succession stages, namely pine (Pinus massoniana) forest (PMF), mixed pine and broadleaf forest (PBMF) and monsoon evergreen broadleaf forest (MEBF), representing early, middle and advanced successional stages respectively. The soil samples were analyzed for soil water storage (SWS), soil organic matter (SOM), soil microbial biomass carbon (SMBC), pH, NH4 +-N, available potassium (K), available phosphorus (P) and microelements (available copper (Cu), available zinc (Zn), available iron (Fe) and available boron (B)) between 1999 and 2009. The results showed that SWS, SOM, SMBC, Cu, Zn, Fe and B concentrations were higher in the advanced successional stage (MEBF stage). Conversely, P and pH were lower in the MEBF but higher in the PMF (early successional stage). pH, NH4 +-N, P and K declined while SOM, Zn, Cu, Fe and B increased with increasing forest age. Soil pH was lower than 4.5 in the three forest types, indicating that the surface soil was acidic, a stable trend in Dinghushan.

Conclusion/Significance

These findings demonstrated significant impacts of natural succession in an old-growth forest on the surface soil nutrient properties and organic matter. Changes in soil properties along the forest succession gradient may be a useful index for evaluating the successional stages of the subtropical forests. We caution that our inferences are drawn from a pseudo-replicated chronosequence, as true replicates were difficult to find. Further studies are needed to draw rigorous conclusions regarding on nutrient dynamics in different successional stages of forest.  相似文献   

10.
The generality of increasing diversity of fungi and bacteria across arctic sand dune succession was tested. Microbial communities were examined by high‐throughput sequencing of 16S rRNA genes (bacteria) and internal transcribed spacer (ITS) regions (fungi). We studied four microbial compartments (inside leaf, inside root, rhizosphere and bulk soil) and characterized microbes associated with a single plant species (Deschampsia flexuosa) across two sand dune successional stages (early and late). Bacterial richness increased across succession in bulk soil and leaf endosphere. In contrast, soil fungal richness remained constant while root endosphere fungal richness increased across succession. There was, however, no significant difference in Shannon diversity indices between early and late successional stage in any compartment. There was a significant difference in the composition of microbial communities between early and late successional stage in all compartments, although the major microbial OTUs were shared between early and late successional stage. Co‐occurrence network analysis revealed successional stage‐specific microbial groups. There were more co‐occurring modules in early successional stage than in late stage. Altogether, these results emphasize that succession strongly affects distribution of microbial species, but not microbial diversity in arctic sand dune ecosystem and that fungi and bacteria may not follow the same successional trajectories.  相似文献   

11.
In the past insufficient attention has been paid to quantitative measurements of resource fluxes in ecosystems that undergo successional change. In this study, simultaneous changes in seven plant resources (photosynthetically active radiation (PAR), water, nitrogen, phosphorus, calcium, magnesium and potassium) are quantified by a chronosequence approach for a 300-yr-long secondary succession on poor soil from Calluna vulgaris heathland to Fagus sylvatica-Quercus petraea late-successional forest (heathland-to-forest succession).Above-ground net primary production increases sevenfold, and total above-ground phytomass about fortyfold during heathland-to-forest succession. Plant organs that capture resources increase much more slowly (leaf area index: threefold; fine root biomass: 1.3-fold). The increase in productivity is based both on higher absorptivity and conversion efficiency of PAR by the canopies of the successional plants.Accumulation of organic material on the forest floor significantly improves soil water availability. Evapotranspiration losses increase early in succession as the growing vegetation increases in both height and leaf area but tend to decrease again in the late-successional community. Drainage losses are at their minimum at the conifer-dominated pioneer forest stage.Accumulation of available nutrients in the soil is a key process in heathland-to-forest succession that significantly improves plant nutrient availability but leads to only minor changes in carbon/nutrient ratios and humus quality. Litter decomposition rates increase and result in a more rapid nutrient turnover in late successional stages. External nutrient inputs (from the atmosphere and soil weathering) significantly contribute to plant nutrient supply early in succession, whereas the internal cycling of nutrients through litter fall and nutrient mineralisation by far exceeds external inputs at the late stages.Vitousek & Reiners' (1975) ecosystem nutrient loss hypothesis is supported by the heathland-to-forest succession data. Odum's (1969) hypotheses on how nutrient cycles change during the course of succession is, in one part, rejected, in part supported. Tilman's (1988) hypothesis on nutrient limitation early, and light limitation late in primary succession is rejected.  相似文献   

12.
Abstract Many grassland restoration projects on former arable land face problems because early successional grassland species establish vigorously and persistently but late successional grassland species fail to establish. Differences in establishment characteristics of early and late successional species might provide an explanation for the failure of many late successional species to colonize grasslands on ex‐arable land. I examined whether early and late successional species had different establishment rates in the initial years of a grassland succession, whether a specific establishment stage (seedling emergence, mortality or growth) could be identified as the key process controlling establishment, and what management would enhance the establishment of late successional grassland species. Seeds of three early and three late successional species were sown separately in ex‐arable plots with bare soil, 1‐year‐old vegetation, and 2‐year‐old vegetation. Emergence, mortality, and seedling growth were monitored for 1 year. Early successional species established successfully in the bare soil plots but failed to establish in plots with 1‐ and 2‐year‐old vegetation. Late successional species showed either lower establishment rates in the younger succession stages or decreased establishment with succession that nevertheless resulted in significant establishment in the oldest plots. Seedling emergence proved to be the key factor determining the establishment pattern of early and late successional species. In absolute numbers, emergence of late successional species was, however, similar or higher than that of early successional species, even in the earliest succession stage. The poor establishment of late successional species on former arable land could therefore not be explained solely by differences in establishment characteristics between early and late successional grassland species. Competitive processes between early and late successional species later in the life cycle probably play an important role. The results do point out that establishment of late successional species can be promoted by creating vegetative cover from the start of the restoration effort.  相似文献   

13.
Forest succession following fire in a forest mosaic of northwestern Quebec has been studied in order to: (1) describe the successional pathways using communities of different ages and (2) evaluate convergence of successional pathways and possible effect of fire suppression on the establishment of steady-state communities. As a first step, ordination and classification techniques were used in order to remove changes in forest composition which are related to abiotic conditions. Then, ordinations based on tree diameter distributions were used to study shifts in species composition in relation to time since the last fire.Even under similar abiotic conditions, successional pathways are numerous. However, regardless of forest composition after fire, most stands show convergence toward dominance of Thuja occidentalis and Picea mariana on xeric sites and dominance of Abies balsamea and Thuja occidentalis on more mesic sites. Stable communities of >300 yr occur on xeric sites while on mesic sites directional succession still occurs after 224 yr. Nearly all species involved in succession are present in the first 50 yr following fire. Only Abies balsamea and Thuja occidentalis increase significantly in frequency during succession. Following initial establishment, successional processes can generally be explained by species longevity and shade tolerance. Early successional species may be abundant in the canopy for more than 200 yr while the rapid decrease of Picea glauca, a late successional species could be related to spruce budworm outbreaks. Considering the short fire rotation observed (about 150 yr), a steady-state forest is unlikely to occur under natural conditions, though it may be possible if fire is controlled.  相似文献   

14.
Nutrient Addition Dramatically Accelerates Microbial Community Succession   总被引:1,自引:0,他引:1  
The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients – important drivers of plant succession – affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession.  相似文献   

15.
The development of forest succession theory has been based on studies in temperate and tropical wet forests. As rates and pathways of succession vary with the environment, advances in successional theory and study approaches are challenged by controversies derived from such variation and by the scarcity of studies in other ecosystems. During five years, we studied development pathways and dynamics in a chronosequence spanning from very early to late successional stages (ca. 1–60 years) in a tropical dry forest of Mexico. We (1) contrasted dynamic pathways of change in structure, diversity, and species composition with static, chronosequence-based trends, (2) examined how structure and successional dynamics of guilds of trees shape community change, and (3) assessed the predictability of succession in this system. Forest diversity and structure increased with time but tree density stabilized early in succession. Dynamic pathways matched chronosequence trends. Succession consisted of two tree-dominated phases characterized by the development and dynamics of a pioneer and a mature forest species guild, respectively. Pioneer species dominated early recruitment (until ca. 10 years after abandonment), and declined before slower growing mature-forest species became dominant or reached maximum development rates (after 40–45 years). Pioneers promoted their replacement early in succession, while mature-forest species recruited and grew constantly throughout the process, with their lowest mortality coinciding with the peak of pioneer abundance. In contrast to prevailing stochastic views, we observed an orderly, community driven series of changes in this dry forest secondary succession. Chronosequences thus represent a valuable approach for revealing system-specific successional pathways, formulating hypotheses on causes and mechanisms and, in combination with repeated sampling, evaluating the effects of vegetation dynamics in pathway variation.  相似文献   

16.
Bacterial community succession corresponds to changes in the phylogenetic identity, growth-response time and rRNA operon (rrn) copy number of culturable populations. To test this hypothesis, we compared the bacterial fractions culturable from the oxic zone of flooded, unplanted paddy soil microcosms after 1-day (early succession) and 70-day (late succession) incubation periods. The proportion of bacteria that was cultivable on solid media corresponded for early and late succession to 37-40% and 31-35% of total DAPI cell counts, which were 7.40 (+/-0.36) x 10(8) and 5.54 (+/-0.28) x 10(8) cells per gram of dry soil, respectively. In colony-forming curve analysis, late successional bacteria showed a significant delay in their growth response compared with those from early succession. A total of 59 early successional isolates grouped into 16 species-level clusters (SLC) plus three Bacilli-like SLC, while 66 late successional isolates formed 25 SLC plus five Bacilli-like SLC. Except Bacilli-like spp., isolates from early succession always belonged to different SLC than those from late succession. Betaproteobacteria and Gammaproteobacteria were typical of the early stage, while Alphaproteobacteria and Actinobacteria prevailed in late succession. Considering all SLC except those assigned to Bacilli, growth-response time and rrn copy number were significantly correlated with successional stage. Isolates of most early successional SLC (14 of 16) formed visible colonies within 1 (11 SLC) or 2 days (three SLC) and contained >or= 4 rrn copies. In contrast, isolates of late successional SLC (23 of 25) formed visible colonies within 2 days (four SLC) or, in most cases, only within 3-15 days (19 SLC) and contained 相似文献   

17.
地表凋落物在森林物质循环中起着重要作用, 但是目前缺乏对其不同分解层次中碳(C)、氮(N)、磷(P)演替动态的研究。该文以浙江天童常绿阔叶林为研究对象, 用空间代替时间序列的方法, 通过测定5个演替阶段地表凋落物不同分解层次的凋落物量、有机碳库和氮磷养分库的储量及C:N:P化学计量特征, 探讨地表凋落物特征的演替动态。结果表明: 1)随着演替的进行, 地表凋落物量和有机碳储量呈现下降的趋势。2)在各演替阶段, 有机碳含量在各分解层表现出未分解层(L) > 半分解层(F) > 已分解层(Y)的趋势; 有机碳储量均表现为Y < F。3)演替前期群落氮含量和储量显著低于演替中后期群落; 不同分解层的氮含量在各演替阶段皆表现为: Y > F > L, 且各层氮含量随着演替的进行均趋于升高。4)磷含量在演替中期群落最低, 各演替阶段不同分解层的磷含量皆表现为Y > F > L。磷储量的演替趋势不明显。L层磷储量随着演替进行趋于降低。5)随着演替进行, 凋落物C:N、C:P和N:P皆趋于下降(p < 0.05)。在各分解层之间, C:N和C:P皆表现为Y < F < L, N:P差异不显著。总之, 随着演替进行, 天童常绿阔叶林地表凋落物量降低, 有机碳库及氮磷养分库的含量趋于升高, 储量趋向降低, C:N:P趋于下降, 体现了生态系统碳和养分循环随着演替进行在不断优化。  相似文献   

18.
不同演替阶段鼢鼠土丘群落植物多样性变化研究   总被引:14,自引:2,他引:14  
用空间序列代替时间序列的方法对高寒草甸不同演替阶段高原鼢鼠土丘植物群落的物种组成和多样性变化进行了研究.结果表明,不同演替阶段鼠丘植物群落的物种组成及外貌特征与原生植被(对照)之间存在较大差异.在演替的早期阶段,r对策者如萼果香薷、灰绿藜、鹅绒委陵菜、细叶亚菊等演替先锋种在群落中占相对重要地位.随着演替的进展,k对策者如长毛风毛菊、垂穗披碱草、甘肃嵩草、线叶嵩草等在群落中的比例增加.α多样性分析表明,随着演替的进展,群落物种丰富度指数(O)显著增加,其排列顺序为:阶段1<阶段2<阶段3<阶段4<原生植被;均匀度指数(Pielou均匀度指数)的变化趋势与丰富度指数相同;多样性指数(Simpson指数D和Shannon-.Wiener指数H’)按群落的演替梯度呈增加趋势.卢多样性分析表明,阶段1与原生植被及阶段1与阶段4植物群落物种组成的相似系数最小,为0.18;阶段1与阶段2植物群落物种组成的相似系数最大,为0.62.同时,群落生活型功能群组成也随鼠丘的演替进展而发生变化,反映出不同演替阶段的鼠丘植物群落和微生境都发生了改变.  相似文献   

19.
The concept of ecological memory provides a new perspective for research on forest succession by including historical factors and the initial state of ecological processes. However, there are still significant gaps between the concept and its application. We selected nine proxy indicators (plant species, soil seed banks, soil microbes, soil animals, birds, soil age, soil pollen, soil mineral distribution, and light environment) and developed a method to quantify ecological memory and succession in a subtropical forest succession in South China. Taking the climax-monsoon evergreen broad-leaved forest as the reference ecosystem, we found that ecological memory increased nonlinearly and accumulated following a specific assembly rule during succession. Memory concerning major soil microbes and soil animals, which improve the soil substrate, mainly accumulated from the initial to the early successional stage. Memory concerning the number of bird species and the availability of light, which ensure a source of regenerative seeds and the survival of understory seedlings, mainly accumulated from the early to middle successional stages. Memory concerning vegetation and soil seed banks mainly accumulated late in succession, guaranteeing that the ecosystem would reach the regional climax stage. Prospective memory was greater than retrospective memory in every successional stage except the late stage, which indicated that all stages but the late stage were undergoing progressive succession. Our study demonstrates that the concept of ecological memory and the proposed evaluation framework are useful for guiding research on succession and restoration, and especially for assessing how “far” a restored ecosystem is from a reference ecosystem or how far a restored ecosystem has deviated from its natural succession trajectory.  相似文献   

20.
In order to determine if red maple dispersal potential or seed size change during secondary succession, samaras were collected from five populations located in early successional environments and five populations located in late successional environments. Wing loading ratios (samara mass—mg/samara area—cm2), which are inversely proportional to dispersal ability, were computed for all samaras, and seeds were excised from each samara and weighed. Samaras from the early successional red maples showed slightly but significantly lower wing loading ratios than those from the late successional environments. This result corresponds with the conclusions reached by several theoretical investigations of seed dispersal evolution that predict that recently founded populations will show greater dispersal abilities than more established populations. The earlier successional populations had slightly heavier seeds than the later successional populations, which suggests that the changes in community composition and dynamics that occur during this successional sequence do not select for heavier seeds in older red maple populations. Coefficients of variation for wing loading and seed size showed no consistent trends with successional stage, which indicates that variation in these characters does not decrease as succession proceeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号