首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of RAPD-PCR and comparative analysis of the PCR fingerprinting profiles similarity was used to characterize interspecific diversity of natural isolates of the lactic acid bacteria Streptococcus thermophilus. The strain genetic diversity was demonstrated using three primer variants, designed for different bacterial genome regions. The resolution of RAPD-PCR technique with different primers for identification at the species level and for certification at the strain level, was examined relative to the commercially important cultures of S. thermophilus. The results provided conclusion on preferable usage of RAPD-PCR with the primer ERIC-1 for specific identification of S. thermophilus, and with the primer M13 for certification of natural isolates of this species at the strain level.  相似文献   

2.
Streptococcus dysgalactiae subsp. equisimilis (SDSE), belonging to the group C and G streptococci, are human pathogens reported to cause clinical manifestations similar to infections caused by Streptococcus pyogenes. To scrutinize the distribution of gene coding for S. pyogenes virulence factors in SDSE, 255 isolates were collected from humans infected with SDSE in Vellore, a region in southern India, with high incidence of SDSE infections. Initial evaluation indicated SDSE isolates comprising of 82.35% group G and 17.64% group C. A multiplex PCR system was used to detect 21 gene encoding virulence-associated factors of S. pyogenes, like superantigens, DNases, proteinases, and other immune modulatory toxins. As validated by DNA sequencing of the PCR products, sequences homologous to speC, speG, speH, speI, speL, ssa and smeZ of the family of superantigen coding genes and for DNases like sdaD and sdc were detected in the SDSE collection. Furthermore, there was high abundance (48.12% in group G and 86.6% in group C SDSE) of scpA, the gene coding for C5a peptidase in these isolates. Higher abundance of S. pyogenes virulence factor genes was observed in SDSE of Lancefield group C as compared to group G, even though the incidence rates in former were lower. This study not only substantiates detection of S. pyogenes virulence factor genes in whole genome sequenced SDSE but also makes significant contribution towards the understanding of SDSE and its increasing virulence potential.  相似文献   

3.
Overall, 72 strains of lactic acid thermophilic streptococci isolated from sour milk products manufactured in various regions of Russia and European countries were analyzed using classical microbiological and molecular biological methods. Physiological and biochemical properties and genetic diversity of these Streptococcus thermophilus strains were studied, and a comparative analysis of the nucleotide sequences of the 16S rRNA gene was conducted. It has been demonstrated that the homology of proximal parts of the 16S rRNA gene of all the strains studied towards one another and towards the reference strain ATCC19258 amounts to 100%. As for the sugar fermentation, some strains display the characteristics untypical of the S. thermophilus members. The data obtained suggest that it is preferable to use gene 16S rRNA sequencing data for identification of natural isolates of closely related lactic acid bacterial species; moreover, this method is recommended for a precise species identification of industrial bacterial strains used in the food industry.  相似文献   

4.
Bacterial–bacteriophage interactions are a well-studied and ecologically-important aspect of microbiology. Many commercial fermentation processes are susceptible to bacteriophage infections due to the use of high-density, clonal cell populations. Lytic infections of bacterial cells in these fermentations are especially problematic due to their negative impacts on product quality, asset utilization, and fouling of downstream equipment. Here, we report the isolation and characterization of a novel lytic bacteriophage, referred to as bacteriophage DTL that is capable of rapid lytic infections of an Escherichia coli K12 strain used for commercial production of 1,3-propanediol (PDO). The bacteriophage genome was sequenced and annotated, which identified 67 potential open-reading frames (ORF). The tail fiber ORF, the largest in the genome, was most closely related to bacteriophage RTP, a T1-like bacteriophage reported from a commercial E. coli fermentation process in Germany. To eliminate virulence, both a fully functional Streptococcus thermophilus CRISPR3 plasmid and a customized S. thermophilus CRISPR3 plasmid with disabled spacer acquisition elements and seven spacers targeting the bacteriophage DTL genome were constructed. Both plasmids were separately integrated into a PDO production strain, which was subsequently infected with bacteriophage DTL. The native S. thermophilus CRISPR3 operon was shown to decrease phage susceptibility by approximately 96%, while the customized CRISPR3 operon provided complete resistance to bacteriophage DTL. The results indicate that the heterologous bacteriophage-resistance system described herein is useful in eliminating lytic infections of bacteriophage DTL, which was prevalent in environment surrounding the manufacturing facility.  相似文献   

5.
In this study, a method combining Raman spectroscopy with chemometric analysis was developed for detection of phage presence in raw milk and discrimination of Streptococcus thermophilus and Lactobacillus bulgaricus phages which are among the main phages causing problems in dairy industry. For this purpose, S. thermophilus and L. bulgaricus phages were added into raw milk separately, and then some pretreatments such as fat separation, removal of casein, and filtration were applied to the raw milk samples. Raman spectra of the samples were collected and then analyzed using principal component analysis in order to discriminate these phages in raw milk. In the next step, dilutions of S. thermophilus phages in pretreated raw milk were prepared, and Raman spectra were collected. These spectra were analyzed by using partial least squares method to quantify phages in low titer. Consequently, it has been demonstrated that S. thermophilus and L. bulgaricus phages, which have titers sufficient to fail the fermentation (~?107 pfu/mL) and have lower titers (102–103 pfu/mL), could be discriminated from antibiotic and each other. Additionally, low concentrations of S. thermophilus phages (102 pfu/mL) could be detected through Raman spectroscopy with a short analysis time (60 min) and high coefficient of determination (R2) values for both calibration (0.985) and validation (0.906) with a root mean square error of calibration of 70.54 and root mean square error of prediction of 165.47. However, a lower success was achieved with L. bulgaricus phages and the obtained coefficient of determination values were not sufficiently high (0.649).  相似文献   

6.
Comparative genomics-based synteny analysis has proved to be an effective strategy to understand evolution of genomic regions spanning a single gene (micro-unit) to large segments encompassing hundreds of kilobases to megabases. Brassicaceae is in a unique position to contribute to understanding genome and trait evolution through comparative genomics because whole genome sequences from as many as nine species have been completed and are available for analysis. In the present work, we compared genomic loci surrounding the KCS17-KCS18 cluster across these nine genomes. KCS18 or FAE 1 gene encodes beta-ketoacyl synthase, (β-KCS) a membrane-bound enzyme that catalyses the key rate-limiting step during synthesis of VLCFAs such as erucic acid (C22) present in seed oil in Brassicaceae by elongating carbon chain from C18 to C22; knowledge on role of KCS17 in plant development is however lacking. Synteny across the genomic segments harbouring FAE1 showed variable levels of gene retention ranging between 26% (Arabidopsis thaliana and Brassica napus C03) and 89% (between A. thaliana and Brassica rapa A01), and gene density ranged between 1 gene/2.86 kb and 1 gene/4.88 kb. Interestingly, in diploid Brassica species, FAE1 was retained in only one of the sub-genomes in spite of the presence of three sub-genomes created as a result of genome triplication; in contrast, FAE1 was present at three loci, with four copies in Camellina sativa which is also known to have experienced a recent genome triplication revealing contrasting fates upon duplication. The organization of KCS17 and KCS18 as head-to-tail cluster was conserved across most of the species, except the C genome containing Brassicas, namely B. oleracea and B. napus, where disruptions because of other genes were observed. Even in the conserved blocks, the distance between KCS17 and KCS18 varied; the functional implication of the organization of KCS17-KCS18 as a cluster vis-à-vis fatty acid biosynthesis needs to be dissected, as the cis-regulatory region is expected to be present in the intergenic space. Phylogenetic analysis of KCS gene family along with KCS17-KCS18 from members of Brassicaceae reveals their ancestral relationship with KCS8-KCS9 block. Further comparative functional analysis between KCS8, KCS9, KCS16, KCS17 and KCS18 across evolutionary time-scale will be required to understand the conservation or diversification of roles of these members of KCS family in fatty acid biosynthesis during course of evolution.  相似文献   

7.
The conserved two-domain ribosomal protein (r-protein) L1 is a structural part of the L1 stalk of the large ribosomal subunit and regulates the translation of the operon that comprises its own gene. The regulatory properties of the bacterial r-protein L1 have only been studied in detail for Escherichia coli; however, there were no such studies for other bacteria, in particular, Thermus thermophilus and Thermotoga maritima, which are more evolutionarily ancient. It is known that domain I of the r-protein L1 might have regulatory properties of the whole protein. The aim of this study was to identify regulatory sites on the mRNA of T. thermophilus and T. maritima that interact with r-proteins L1, as well as with their domains I from the same organisms. An analysis of the mRNA of the L11 operon T. thermophilus showed the presence of one potential binding site of the L1 r-protein, two such regions were found also in the mRNA sequence of the L11 operon of T. maritima. The dissociation constants for the L1 proteins from T. thermophilus and T. maritima and their domains I with mRNA fragments from the same organisms that contain the supposed L1-binding sites were determined by surface plasmon resonance. It has been shown that the ribosomal proteins L1 as their domains I bind specific fragments of mRNA from the same organisms that may suggest regulatory activity of the L1 protein in the T. thermophilus and T. maritima and conservatism of the principles of L1-RNA interactions.  相似文献   

8.
Coffea arabica (the Arabica coffee) is an allotetraploid species originating from a recent hybridization between two diploid species: C. canephora and C. eugenioides. Transposable elements can drive structural and functional variation during the process of hybridization and allopolyploid formation in plants. To learn more about the evolution of the C. arabica genome, we characterized and studied a new Copia LTR-Retrotransposon (LTR-RT) family in diploid and allotetraploid Coffea genomes called Divo. It is a complete and relatively compact LTR-RT element (~5 kb), carrying typical Gag and Pol Copia type domains. Reverse Trancriptase (RT) domain-based phylogeny demonstrated that Divo is a new and well-supported family in the Bianca lineage, but strictly restricted to dicotyledonous species. In C. canephora, Divo is expressed and showed a genomic distribution along gene rich and gene poor regions. The copy number, the molecular estimation of insertion time and the analysis at orthologous locations of insertions in diploid and allotetraploid coffee genomes suggest that Divo underwent a different and recent transposition activity in C. arabica and C. canephora when compared to C. eugenioides. The analysis of this novel LTR-RT family represents an important step toward uncovering the genome structure and evolution of C. arabica allotetraploid genome.  相似文献   

9.
RFLP analysis of the omp1 gene was used to characterize 51 avian Chlamydophila psittaci isolates. The analysis confirmed the predominance of genotype A in parrot C. psittaci isolates and revealed new omp1 genotypes in corvid C. psittaci isolates. The corvid isolates proved to lack an extrachromosomal plasmid. The omp1 and rRNA IGS sequences were determined for the new isolates. Phylogenetic analysis showed that isolate 1V, obtained from a crow, is intermediate in several characters between C. abortus and C. psittaci. The results were compared with data on the phylogenetic relationships of earlier chlamydium isolates.  相似文献   

10.
FLOWERING LOCUS T (FT), a major effect gene, regulates flowering time in Arabidopsis. We analyzed evolutionary changes distinguishing two FT homeologous loci in B. rapa, described genetic variation in homologs isolated and reported expression pattern of FT in B. juncea. Synteny analysis confirmed presence of two FT genomic copies in B. rapa ssp. pekinensis and resolved pre-existing anomalies regarding copy number in “AA” genome. Synteny analysis of B. rapa homeologous regions CR1 (129 kb) and CR2 (232 kb) revealed differential gene fractionation and wide-spread re-arrangements. Seven genomic DNA (gDNA) variants (2.1–2.2 kb) and 10 complementary DNA (cDNA) variants (528 bp) were isolated from 6 Brassica species. The gDNA variants shared 72–99 % similarity within Brassica and 58–60 % between Arabidopsis and Brassica. FT cDNA variants shared 92–100 % similarity within Brassica and 87 % between Arabidopsis and Brassica. Phylogenetic analysis of FT gDNA, cDNA and protein sequences revealed two major clades, differentiating homologs derived from species containing shared “BB” and “CC” genomes. Phylogram based on Brassica FT gDNA differentiated homeologs derived from AA-LF (Least fractioned) and AA-MF1 (Moderately fractioned) sub-genomes. Analysis of FT expression pattern in B. juncea revealed increasing levels correlating with attainment of physiological maturity; highest levels were detected in older leaves implying conservation in spatio-temporal expression pattern vis-à-vis Arabidopsis. In conclusion, our study reveals that polyploidy in Brassicas resulted in expansion of FT gene copies with homologs charting independent evolutionary course through accumulation of mutations. However, expression domains of FT remained conserved across Brassicaceae to preserve the critical function of FT in controlling flowering time.  相似文献   

11.

Background

In recent years, New Delhi metallo-beta-lactamases 1 (bla NDM-1) has been reported with increasing frequency and become prevalent. The present study was undertaken to investigate the epidemiological dissemination of the bla NDM-1 gene in Enterobacter cloacae isolates at a teaching hospital in Yunnan, China.

Methods

Antimicrobial susceptibility testing was performed using VITEK 2 system and E test gradient strips. The presence of integrons and insertion sequence common region 1 were examined by PCR and sequencing. Clonal relatedness was assessed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. Conjugation experiments and Southern blot hybridization were performed to determine the transferability of plasmids.

Results

Ten E. cloacae isolates and their Escherichia coli transconjugants were exhibited similar resistant patterns to carbapenems, cephalosporins and penicillins. 8 (80%) of E. cloacae isolates carried class 1 integron and 1 (12.5%) carried class 2 integron. Integron variable regions harbored the genes which encoded resistance to aminoglycosides (aadA1, aadA2, aadA5, aadB, aac(6′)-Ib-cr), sulfamethoxazole/trimethoprim (dfrA17, dfrA12, dfrA15) and Streptozotocin (sat2). Six E. cloacae isolates belonged to ST74 and exhibited highly similar PFGE patterns. Each isolate shared an identical plasmid with ~33.3 kb size that carried the bla NDM-1 gene, except T3 strain, of which the bla NDM-1 gene was located on a ~50 kb plasmid.

Conclusions

Our findings suggested that plasmid was able to contribute to the dissemination of bla NDM-1. Hence, more attention should be devoted to monitor the dissemination of the bla NDM-1 gene due to its horizontal transfer via plasmid. In addition, nosocomial surveillance system should actively monitor the potential endemic clone of ST74 to prevent their further spread.
  相似文献   

12.
Despite being a unique marker trait, white flower inheritance in Brassica juncea remains poorly understood at the gene level. In this study, we investigated a B. juncea landrace with white petal in China. The white petal phenotype possessed defective chromoplasts with less plastoglobuli than the yellow petal phenotype. Genetic analysis confirmed that two independent recessive genes (Bjpc1 and Bjpc2) controlled the white flower trait. We then mapped the BjPC1 gene in a BC4 population comprising 2295 individuals. We identified seven AFLP (amplified fragment length polymorphism) markers closely linked to the white flower gene. BLAST search revealed the sequence of AFLP fragments were highly homologous with the Scaffold000085 and Scaffold000031 sequences on the A02 chromosome in the Brassica rapa genome. Based on this sequence homology, we developed simple sequence repeat (SSR) primer pairs and identified 13 SSRs linked to the BjPC1 gene, including two that were co-segregated (SSR9 and SSR10). The two closest markers (SSR4 and SSR11) were respectively 0.9 and 0.4 cM on either side of BjPC1. BLAST analysis revealed that these marker sequences corresponded highly to A02 in B. juncea. They were mapped within a 33 kb genomic region on B. rapa A02 (corresponds to a 40 kb genomic region on B. juncea A02) that included three genes. Sequence BjuA008406, homologous to AtPES2 in Arabidopsis thaliana and Bra032956 in B. rapa, was the most likely candidate for BjPC1. These results should accelerate BjPC1 cloning and facilitate our understanding of the molecular mechanisms controlling B. juncea petal color.  相似文献   

13.
Cronobacter spp. has caused life-threatening neonatal infections mainly resulted from consumption of contaminated powdered infant formula. A total of 102 vegetable samples from retail markets were evaluated for the presence of Cronobacter spp. Thirty-five presumptive Cronobacter isolates were isolated and identified using API 20E and 16S rDNA sequencing analyses. All isolates and type strains were characterized using enterobacterial repetitive intergenic consensus sequence PCR (ERIC–PCR), and genetic profiles of cluster analysis from this molecular typing test clearly showed that there were differences among isolates from different vegetables. A polymerase chain reaction restriction fragment length polymorphism (PCR–RFLP) based on the amplification of the gyrB gene (1258 bp) was developed to differentiate among Cronobacter species. A new PCR–RFLP assay based on the amplification of the gyrB gene using Alu I and Hinf I endonuclease combination is established and it has been confirmed an accurate and rapid subtyping method to differentiate Cronobacter species. Sequence analysis of the gyrB gene was proven to be suitable for the phylogenetic analysis of the Cronobacter strains, which has much better resolution based on SNPs in the identification of Cronobacter species specificity than PCR–RFLP and ERIC–PCR. Our study further confirmed that vegetables are one of the most common habitats or sources of Cronobacter spp. contamination in the middle-east coastline of China.  相似文献   

14.
Clustered regularly interspaced short palindromic repeats (CRISPR) together with CRISPR-associated (cas) genes form an adaptive prokaryotic immune system which provides acquired resistance against viruses and plasmids. Bacillus subtilis presently is the best-characterized laboratory model for Gram-positive bacteria and also widely used for industrial production of enzymes, vitamins and antibiotics. In this study, we show that type II-A CRISPR-Cas system from Streptococcus thermophilus can be transferred into B. subtilis and provides heterologous protection against phage infection. We engineered a heterologous host by cloning S. thermophilus Cas9 and a spacer targeting bacteriophage SPP1 into the chromosome of B. subtilis, which does not harbor its own CRISPR-Cas systems. We found that the heterologous CRISPR-Cas system is functionally active in B. subtilis and provides resistance against bacteriophage SPP1 infection. The high efficiency of the acquired immunity against phage could be useful in generation of biotechnologically important B. subtilis strains with engineered chromosomes.  相似文献   

15.
We present an overview of the gene content and organization of the mitochondrial genome of Dictyostelium discoideum. The mitochondria genome consists of 55,564?bp with an A + T content of 72.6%. The identified genes include those for two ribosomal RNAs (rnl and rns), 18 tRNAs, ten subunits of the NADH dehydrogenase complex (nad1, 2, 3, 4, 4L, 5, 6, 7, 9 and 11), apocytochrome b (cytb), three subunits of the cytochrome oxidase (cox1/2 and 3), four subunits of the ATP synthase complex (atp1, 6, 8 and 9), 15 ribosomal proteins, and five other ORFs, excluding intronic ORFs. Notable features of D. discoideum mtDNA include the following. (1) All genes are encoded on the same strand of the DNA and a universal genetic code is used. (2) The cox1 gene has no termination codon and is fused to the downstream cox2 gene. The 13 genes for ribosomal proteins and four ORF genes form a cluster 15.4?kb long with several gene overlaps. (3) The number of tRNAs encoded in the genome is not sufficient to support the synthesis of mitochondrial protein. (4) In total, five group I introns reside in rnl and cox1/2, and three of those in cox1/2 contain four free-standing ORFs. We compare the genome to other sequenced mitochondrial genomes, particularly that of Acanthamoeba castellanii.  相似文献   

16.
Flax (Linum usitatissimum L.), the richest crop source of omega-3 fatty acids (FAs), is a diploid plant with an estimated genome size of ~370 Mb and is well suited for studying genomic organization of agronomically important traits. In this study, 12 bacterial artificial chromosome clones harbouring the six FA desaturase loci sad1, sad2, fad2a, fad2b, fad3a and fad3b from the conventional variety CDC Bethune and the high linolenic acid line M5791 were sequenced, analysed and compared to determine the structural organization of these loci and to gain insights into the genetic mechanisms underlying FA composition in flax. With one gene every 3.2–4.6 kb, the desaturase loci have a higher gene density than the genome’s average of one gene per 7.8–8.2 kb. The gene order and orientation across the two genotypes were generally conserved with the exception of the sad1 locus that was predicted to have additional genes in CDC Bethune. High sequence conservation in both genic and intergenic regions of the sad and fad2b loci contrasted with the significant level of variation of the fad2a and fad3 loci, with SNPs being the most frequently observed mutation type. The fad2a locus had 297 SNPs and 36 indels over ~95 kb contrasting with the fad2b locus that had a mere seven SNPs and four indels in ~110 kb. Annotation of the gene-rich loci revealed other genes of known role in lipid or carbohydrate metabolic/catabolic pathways. The organization of the fad2b locus was particularly complex with seven copies of the fad2b gene in both genotypes. The presence of Gypsy, Copia, MITE, Mutator, hAT and other novel repeat elements at the desaturase loci was similar to that of the whole genome. This structural genomic analysis provided some insights into the genomic organization and composition of the main desaturase loci of linseed and of their complex evolution through both tandem and whole genome duplications.  相似文献   

17.
A comparative study of Lachancea kluyveri strains isolated in Europe, North America, Japan, and the Russian Far East was performed using restriction analysis, sequencing of non-coding rDNA regions, molecular karyotyping, and the phylogenetic analysis of the α-galactosidase MEL genes. This study showed a close genetic relatedness of these L. kluyveri strains. The chromosomal DNAs of the L. kluyveri strains were found to range in size from 980 to 3100 kb. The haploid number of chromosomes is equal to eight. The IGS2 restriction patterns and single nucleotide substitutions in the ITS1/ITS2 rDNA region correlate neither with geographic origin nor with the source of the strains. The L. kluyveri strains isolated from different sources have a high degree of homology (79–100%) of their MEL genes. The phylogenetic analysis of all of the known α-galactosidases in the “Saccharomyces” clade showed that the MEL genes of the yeasts L. kluyveri, L. cidri, Saccharomyces cerevisiae, S. paradoxus, S. bayanus, and S. mikatae are species specific.  相似文献   

18.

Key message

We identified, fine mapped, and physically anchored a dominant spot blotch susceptibility gene Scs6 to a 125 kb genomic region containing the Mla locus on barley chromosome 1H.

Abstract

Spot blotch caused by Cochliobolus sativus is an important disease of barley, but the molecular mechanisms underlying resistance and susceptibility to the disease are not well understood. In this study, we identified and mapped a gene conferring susceptibility to spot blotch caused by the pathotype 2 isolate (ND90Pr) of C. sativus in barley cultivar Bowman. Genetic analysis of F1 and F2 progeny as well as F3 families from a cross between Bowman and ND 5883 indicated that a single dominant gene (designated as Scs6) conferred spot blotch susceptibility in Bowman. Using a doubled haploid (DH) population derived from a cross between Calicuchima-sib (resistant) and Bowman-BC (susceptible), we confirmed that Scs6, contributed by Bowman-BC, was localized at the same locus as the previously identified spot blotch resistance allele Rcs6, which was contributed by Calicuchima-sib and mapped on the short arm of chromosome 1H. Using a genome-wide putative linear gene index of barley (Genome Zipper), 13 cleaved amplified polymorphism markers were developed from 11 flcDNA and two EST sequences and mapped to the Scs6/Rcs6 region on a linkage map constructed with the DH population. Further fine mapping with markers developed from barley genome sequences and F2 recombinants derived from Bowman?×?ND 5883 and Bowman?×?ND B112 crosses delimited Scs6 in a 125 kb genomic interval harboring the Mla locus on the reference genome of barley cv. Morex. This study provides a foundational step for further cloning of Scs6 using a map-based approach.
  相似文献   

19.
Streptococcus iniae causes severe mortalities among cultured marine species, especially in the olive flounder (Paralichthys olivaceus), which is economically important in Korea and Japan. Recently, there has been growing concern regarding the emergence of S. iniae as a zoonotic pathogen. Here, 89 S. iniae isolates obtained from diseased olive flounders collected from 2003 to 2008 in Jeju Island, South Korea, were characterized using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The results were aligned both with the available Bruker Daltonics data-base and with a new set of S. iniae data entries developed in our laboratory, and the results were compared. When we used the Bruker Daltonics database, the 89 isolates yielded either “no reliable identification” or were incorrectly identified as Streptococcus pyogenes at the genus level. When we used the new data entries from our laboratory, in contrast, all of the isolates were correctly identified as S. iniae at the genus (100%) and species (96.6%) levels. We performed proteomic analysis, divided the 89 isolates into cluster I (51.7%), cluster II (20.2%), and cluster III (28.1%), and then used the MALDI Biotyper software to identify specific mass peaks that enabled discrimination between clusters and between Streptococcus species. Our results suggest that the use of MALDI TOF MS could outperform the conventional methods, proving easier, faster, cheaper and more efficient in properly identifying S. iniae. This strategy could facilitate the epidemiological and taxonomical study of this important fish pathogen.  相似文献   

20.
BcMF11 is a long non-coding RNA that has been identified in Brassica rapa and shown to be involved in pollen development. Here, when re-cloned the gene sequence, multiple paralogous copies of BcMF11 were identified in B. rapa (A genome). Multiple paralogous copies of BcMF11 were also found in B. nigra (B genome) and Brassica oleracea (C genome), the other two primary diploids of Brassica U triangle. While in the early diverging Brassicaceae lineage including Arabidopsis thaliana, no BcMF11 homolog was found. Phylogenetic analysis showed that the BcMF11 homologous sequences cloned from A genome or C genome could be clustered into a separate branch, respectively. However, there was no distinct cluster defined for BcMF11 homologous sequences cloned from B genome. The expression of BcMF11 in B. rapa was investigated and revealed a different result in the previous study. In addition, 12 expressed sequence tags from B. napus and B. rapa showing high similarities with BcMF11 were identified in the NCBI database, which further verified that rather than the useless repeat fragments in the genome, the BcMF11 homologous genes could transcribe. It is possible that BcMF11 and its homologous sequences may form a large gene family which might be originated in the recent ancestral lineage of Brassica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号