首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidizing and/or reducing agents inversely influence the alterations in the speed of mass changes (dw/dt) due to osmotic perturbations: an oxidizing agent increases while a reducing agent decreases it. The values for isotonic concentration (Ciso) increased for all of the tested non-electrolytes in the presence of an oxidizing agent, while decreased in the presence of a reducing one. The Staverman's reflection coefficient values (sigma) showed changes opposite in direction, so that the direct correlation between the size of test molecules and sigma values remained unchanged. An oxidizing agent increases and a reducing agent decreases the equivalent pore radius (EPR).  相似文献   

2.
A KCl-soluble protein fraction can be extracted from the water-insoluble residue of the homogenate of sea urchin eggs which contains three major components separable by ultracentrifugation. When the extract is stirred in acetone or distilled water, a fibrous precipitate appears which has a strong birefringence positive in the direction of the long axis. When the fraction is squirted through a slender tubing, it precipitates in the form of a thread. The thread model contracts vigorously under the action of di-, tri-, and tetravalent metal ions; the contraction can be reversed by EDTA. The contraction and the elongation of the thread model can be repeated many times. The thread model contracts also in the presence of dehydroascorbic acid, cystine, oxidized glutathione, or other oxidizing agents, and this contraction is reversed by reducing agents such as cysteine or ascorbic acid. When —SH groups of the thread model are blocked by various —SH reagents, the contraction by metal ions is inhibited to some extent. As mechanisms of the contraction, electrostatic forces between metal ions and negative charges of the thread model are essential for metal ion-induced contraction and oxidation of —SH groups of the thread model for the contraction by oxidizing reagents.  相似文献   

3.
AIMS: To determine if treatment of Bacillus subtilis spores with a variety of oxidizing agents causes damage to the spore's inner membrane. METHODS AND RESULTS: Spores of B. subtilis were killed 80-99% with wet heat or a variety of oxidizing agents, including betadine, chlorine dioxide, cumene hydroperoxide, hydrogen peroxide, Oxone, ozone, sodium hypochlorite and t-butylhydroperoxide, and the agents neutralized and/or removed. Survivors of spores pretreated with oxidizing agents exhibited increased sensitivity to killing by a normally minimal lethal heat treatment, while spores pretreated with wet heat did not. In addition, spores treated with wet heat or the oxidizing agents, except sodium hypochlorite, were more sensitive to high NaCl in plating media than were untreated spores. The core region of spores treated with at least two oxidizing agents was also penetrated much more readily by methylamine than was the core of untreated spores, and spores treated with oxidizing agents but not wet heat germinated faster with dodecylamine than did untreated spores. Spores of strains with very different levels of unsaturated fatty acids in their inner membrane exhibited essentially identical resistance to oxidizing agents. CONCLUSIONS: Treatment of spores with oxidizing agents has been suggested to cause damage to the spore's inner membrane, a membrane whose integrity is essential for spore viability. The sensitization of spores to killing by heat and to high salt after pretreatment with oxidizing agents is consistent with and supports this suggestion. Presumably mild pretreatment with oxidizing agents causes some damage to the spore's inner membrane. While this damage may not be lethal under normal conditions, the damaged inner membrane may be less able to maintain its integrity, when dormant spores are exposed to high temperature or when germinated spores are faced with osmotic stress. Triggering of spore germination by dodecylamine likely involves action by this agent on the spore's inner membrane allowing release of the spore core's depot of dipicolinic acid. Presumably dodecylamine more readily alters the permeability of a damaged inner membrane and thus more readily triggers germination of spores pretreated with oxidizing agents. Damage to the inner spore membrane by oxidizing agents is also consistent with the more rapid penetration of methylamine into the core of treated spores, as the inner membrane is likely the crucial permeability barrier to methylamine entry into the spore core. As spores of strains with very different levels of unsaturated fatty acids in their inner membrane exhibited essentially identical resistance to oxidizing agents, it is not through oxidation of unsaturated fatty acids that oxidizing agents kill and/or damage spores. Perhaps these agents work by causing oxidative damage to key proteins in the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: The more rapid heat killing and germination with dodecylamine, the greater permeability of the spore core and the osmotic stress sensitivity in outgrowth of spores pretreated with oxidizing agents is consistent with such agents causing damage to the spore's inner membrane, even if this damage is not lethal under normal conditions. It may be possible to take advantage of this phenomenon to devise improved, less costly regimens for spore inactivation.  相似文献   

4.
The effects of reducing agents, such as 2-mercaptoethanol, dithiothreitol, L-ascorbic acid, or sodium borohydride, and oxidizing agents, such as hydrogen peroxide or dehydroascorbic acid, on the in vitro action of bleomycin were investigated. After the incubation of DNA with a low concentration of bleomycin and a reducing or oxidizing agent, single strand breaks were mainly caused in the DNA molecules. The degradation of DNA was largely prevented by the removal of oxygen, or by the addition of divalent cations or of S-(2-aminoethyl)isothiuronium bromide hydrobromide, a radical scavenger, to the incubation mixture. Preincubation of bleomycin with these reducing or oxidizing agents reduced the DNA-degrading activity of the antibiotic. However, this reduction in activity was observed even in the absence of oxygen, or in preincubation mixture supplemented with radical scavenger.  相似文献   

5.
We have investigated the sensitivity to DNA-damaging agents of a strain of Saccharomyces cerevisiae containing a deletion of the RAD27 gene. The mutant strain is sensitive to a number of alkylating agents that modify DNA at a variety of positions, including one that produces primarily phosphotriesters. In contrast, the mutant strain is not sensitive to the oxidizing agent hydrogen peroxide. The introduction of a plasmid containing the FEN-1 gene (the human ortholog of the RAD27 gene) can substantially complement the sensitivity to alkylating agents observed in the mutant strain.  相似文献   

6.
In isolated frog heart it was established that methylene-blue (MB, an oxidizing agent) decreased, while ascorbate (ASC, a reducing agent) increased the frequency of autorhythmic heart contractions. After MB treatment, in parallel with this phenomenon, the extracellular K+ concentration [K+]o showed a slow increase, but following ASC application a slow decrease occurred. Since these correlations are in good accordance with the idea that the pacemaking ability of heart, among other properties, depends on the voltage and time-dependent decrease in potassium conductance following the spike, changes in [K+]o might be one mechanism by which oxidizing and reducing agents modulate heart frequencies. On the basis of the effect of insulin (INS) and K-strophantoside (STR) on these modulatory influences, it is presumed that the changes in slow delta [K+]o transients might result, at least partly, from the effect of redox agents on the active transport system. In light of the increase in passive K+ fluxes after oxidant treatment and the decrease in this parameter following reductant treatment an effect of redox agents on the characteristics of the K+-channel is also postulated.  相似文献   

7.
A F Coulson  T Yonetani 《Biochemistry》1975,14(11):2389-2396
A number of reagents, some of which are electronic analogs of hydrogen peroxide, will replace it in the reactions of cytochrome c peroxidase. These compounds include N-bromosuccinimide, sodium hypochlorite, and the novel oxidizing agent O-benzoylhydroxylamine. If fragments of the oxidant played a functional role in the structure of the oxidized form of the enzyme, it would be expected that the product formed from O-benzoylhydroxylamine would differ from that formed from hydrogen peroxide. The products formed on reaction of the two oxidizing agents with cytochrome c peroxidase are indistinguishable. This results carries implications for the structure of the so-called ES compound. The extension in the range of specific substrates for cytochrome c peroxidase allows identification of the structure which compounds must possess to be oxidizing substrates for the enzyme. A mechanism for the first step of the reaction is suggested. O-Benzoylhydroxylamine is also a reducing agent, and its reaction with the enzyme is analogous to that of hydrogen peroxide with catalase. The final product of the reaction is the inert nitric oxide complex of ferrous cytochrome c peroxidase.  相似文献   

8.
Cancer chemopreventive agents block the transformation of normal cells and/or suppress the promotion of premalignant cells to malignant cells. Certain agents may achieve these objectives by modulating xenobiotic biotransformation, protecting cellular elements from oxidative damage, or promoting a more differentiated phenotype in target cells. Conversely, various cancer chemopreventive agents can encourage apoptosis in premalignant and malignant cells in vivo and/or in vitro, which is conceivably another anticancer mechanism. Furthermore, it is evident that many of these apoptogenic agents function as prooxidants in vitro. The constitutive intracellular redox environment dictates a cell's response to an agent that alters this environment. Thus, it is highly probable that normal cells, through adaption, could acquire resistance to transformation via exposure to a chemopreventive agent that promotes oxidative stress or disrupts the normal redox tone of these cells. In contrast, transformed cells, which typically endure an oxidizing intracellular environment, would ultimately succumb to apoptosis due to an uncontrollable production of reactive oxygen species caused by the same agent. Here, we provide evidence to support the hypothesis that reactive oxygen species and cellular redox tone are exploitable targets in cancer chemoprevention via the stimulation of cytoprotection in normal cells and/or the induction of apoptosis in transformed cells.  相似文献   

9.
Iodo-Gen-mediated radioiodination of nucleic acids   总被引:2,自引:0,他引:2  
Iodo-Gen (1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril), widely used as an oxidizing agent for iodination of proteins, can also be used for iodination of nucleic acids. Optimal conditions were determined for efficient labeling of RNA and DNA with 125I. The proposed procedure for radioiodination of nucleic acids is more beneficial than the methods utilizing TlCl3 because of the milder reaction conditions, the simplicity and completeness of separation of reaction products from the oxidizing agents, and the absence of a toxic catalyst. Using the standard procedure for Iodo-Gen-mediated iodination a specific radioactivity of up to 1.3 X 10(9) dpm/micrograms RNA can be achieved. The proposed procedure is also suitable for radioiodination of DNA.  相似文献   

10.
Alzheimer disease (AD) is an age-related neurodegenerative disorder. Many observations indicate that impaired redox regulation is implicated in AD with synaptic failure. The aim of the current investigation was to characterize the role of redox-active agents on long-term potentiation (LTP) in the CA1 region of rat hippocampal slices and to elucidate the molecular sequence of events leading to these changes. The results presented here indicate that the membrane-permeable oxidizing agent chloramine-T (CH-T) inhibits the induction of LTP, whereas the membrane-permeable reducing agent dithiothreitol (DTT) enhances the induction of LTP. In contrast, neither the membrane-impermeable oxidizing agent 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB) nor the membrane-impermeable reducing agent tris-(2-carboxyethyl) phosphine (TCEP) can affect the induction of LTP. The inhibition of LTP by CH-T can be restored by pretreatment with DTT but not with TCEP, whereas the enhancement of LTP by DTT can be reversed by pretreatment with CH-T but not with DTNB. We also provide evidence that the CH-T-evoked inhibition of LTP is mediated via activation of glycogen synthase kinase-3beta (GSK-3beta), whereas the DTT-evoked enhancement of LTP is mediated via inactivation of GSK-3beta. These findings will benefit the understanding of the redox contribution to the mechanisms underlying synaptic plasticity and AD pathogenesis.  相似文献   

11.
Redox modulation of T-type calcium channels in rat peripheral nociceptors   总被引:7,自引:0,他引:7  
Although T-type calcium channels were first described in sensory neurons, their function in sensory processing remains unclear. In isolated rat sensory neurons, we show that redox agents modulate T currents but not other voltage- and ligand-gated channels thought to mediate pain sensitivity. Similarly, redox agents modulate currents through Ca(v)3.2 recombinant channels. When injected into peripheral receptive fields, reducing agents, including the endogenous amino acid L-cysteine, induce thermal hyperalgesia. This hyperalgesia is blocked by the oxidizing agent 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB) and the T channel antagonist mibefradil. DTNB alone and in combination with mibefradil induces thermal analgesia. Likewise, L-cysteine induces mechanical DTNB-sensitive hyperalgesia in peripheral receptive fields. These data strongly suggest a role for T channels in peripheral nociception. Redox sites on T channels in peripheral nociceptors could be important targets for agents that modify pain perception.  相似文献   

12.
The proportion of pyruvate dehydrogenase existing in the active form (PDHA) in suspensions of unstimulated cardiac myocytes oxidizing glucose is approx. 30%. Depolarization of the cells with concentrations of K+ above physiological values leads to an increase in the content of PDHA. Overloading of the cells with Na+ by treatment with veratridine and ouabain gives the same result. Each of these interventions is shown in experiments with Quin 2-loaded myocytes to lead to an increase in cytosolic free Ca2+ concentration ([Ca2+]c). Treatment of the cells with Ruthenium Red, an inhibitor of Ca2+ transport into mitochondria, largely prevents an increase in PDHA in response to addition of KCl or of veratridine plus ouabain. Ruthenium Red does not attenuate the increase in [Ca2+]c that occurs under these conditions. By contrast, treatment of the cells with ryanodine, an inhibitor of sarcoplasmic-reticulum Ca2+ transport and therefore of contraction, does not diminish the response of PDHA content to agents which raise [Ca2+]c; nor does loading of the cells with the Ca2+-chelating agent Quin 2, which also prevents contraction, at appropriate concentrations. It is concluded that an increase in [Ca2+]c causes an increase in PDHA content of cardiac myocytes independently of an increase in mechanical work. In the normal physiological situation the activation of dehydrogenases by Ca2+ is thought to help to maintain the balance of energy supply and demand during periods of increased work-load, which are associated with an increased myoplasmic [Ca2+]c.  相似文献   

13.
Cardiac contractile activity is usually controlled by intracellular Ca2+, but it can also be modified by oxidizing agents. Incubation of guinea pig heart myofibrils with diamide (3 mM, 1 h) increased basal (no Ca2+) ATPase activity by 580% and abolished Ca2+ dependence. The effect was proportional to diamide concentration (0.01-1 mM) and duration of preincubation (up to 2 h). Dithiothreitol (5 mM, 1 h) reversed most of the basal ATPase activation and restored Ca2+ sensitivity. Other sulfhydryl reagents produced a similar effect but also produced inhibition of total ATPase. In intact cell preparations, diamide produced a slow tonic contraction, consistent with myofibril activation. In the perfused rat heart, 1 mM diamide slowly increased diastolic ventricular pressure; this increase was partially reversed by dithioerythritol. In isolated rat heart myocytes, 1 mM diamide produced a slow tonic contraction, increased contractility in response to stimulation. Cardiocytes superfused for 1 h with buffer containing EGTA to deplete Ca2+ did not contract in response to stimulation but showed a slow tonic contraction with diamide. This contraction could be slowly and only partially reversed by dithioerythritol. Response to stimulation was restored by addition of Ca2+. The results show that diamide can produce contraction in viable cells. This contraction does not require extracellular Ca2+ and is unlikely to involve intracellular Ca2+. The direct activation of myofibrillar ATPase may contribute to the increased myocardial stiffness seen in ischemia and to ischemic contracture.  相似文献   

14.
Target cell recognition structures in LDCC and ODCC   总被引:2,自引:0,他引:2  
Cytotoxic T lymphocyte effector cells specific for a defined class I antigen can kill target cells displaying a wide range of different class I proteins in the presence of certain lectins and oxidizing agents. However, optimal lysis of the target cell (TC) still requires interaction of the CTL with the TC class I proteins. This raises the question of how the lectin or oxidizing agent alters the system in such a way that an "inappropriate" CTL-TC interaction takes place, in a class I-dependent manner. In this study we show that if papain-sensitive molecules are cleared from the TC surface and are allowed to regenerate in the presence of tunicamycin, the cells still serve as targets in direct, class I antigen-specific CTL killing, but not in LDCC or ODCC. Target cells treated in this way display N-linked carbohydrate-less class I proteins, and presumably other N-linked carbohydrate-less, papain-sensitive molecules as well. We present data showing that both types of molecules are important in nonspecific lytic reactions.  相似文献   

15.
Human femoral, internal mammary, and gastroepiploic arteries and saphenous veins are used as bypass grafts for coronary surgery or for reconstruction in arterial occlusive disease. We have characterized the contractile responses of these vessels to various agents that are liberated during cardiac or vascular surgery. In organ baths, U46619 (a stable thromboxane A2 mimetic), norepinephrine, endothelin-1, angiotensin II, and KCl caused concentration-dependent contractions in all vessels tested. Leukotriene C4 did not induce any contraction in the arteries, whereas a contraction was obtained in the saphenous vein rings. U46619 induced the most powerful contraction in all vessels tested. The pD2 values for each agent did not differ among the different vessels. When responses were expressed as a percentage of KCl-induced contraction, the contraction of endothelin-1 (151+/-5%) and leukotriene C4 (43+/-5%) was more significant on saphenous veins than on arteries. In conclusion, thromboxane A2 appears to be the most potent endogenous constricting agent on different human vascular beds. Our second finding is that saphenous veins are more sensitive to contract to leukotriene C4 and endothelin-1 than arteries. These properties may influence early and (or) long-term vein graft patency.  相似文献   

16.
Fifty-five reagents were studied as to their ability to replace iodine in the Gram stain. None gave results as good as iodine. Eight gave usable Gram preparations, and forty-seven gave negative results. Omission of the counterstain resulted in increasing to thirty-three the number of reagents giving differentiation, but this, was not considered a true Gram differentiation. Many oxidizing agents were shown not to be substitutes for iodine; therefore the function of iodine must be more than to serve as an oxidizing agent. Many reagents which formed precipitates with the dye could not replace iodine; therefore factors other than precipitate formation must be involved. However, all agents which were good substitutes for iodine were both good oxidizing and dye precipitating agents. Experiments involving the study of cell membrane permeability showed that Gram-positive cells were less permeable to iodine in alcoholic solution than Gram-negative cells. This difference could not be demonstrated for iodine in aqueous solution. It was concluded that iodine served to form a dye-iodine precipitate (or complex) in the cell. Since Gram-positive cells were less permeable to iodine in alcohol than Gram-negative cells, this resulted in a slower dissolving out of this complex from Gram-positive cells during de-colorization and hence a slower decolorization time. The relative solubilities of dye precipitates in alcohol and in aqueous safranin solution were also indicated as an important factor influencing decolorization. Dyes which formed highly soluble precipitates with iodine could not be used in the Gram stain. It is not proposed that the mechanism of the Gram stain is entirely one of membrane permeability; chemical factors are undoubtedly important and will be discussed in a later paper. However, it is proposed that the chemical and physical factors are closely interrelated in the Gram stain mechanism.  相似文献   

17.
Manganese, Mn-dependent peroxidases, and the biodegradation of lignin   总被引:8,自引:0,他引:8  
Manganese and Mn-dependent peroxidases have been implicated in the enzymatic degradation of lignin. However, the specific role of manganese is uncertain. We report here the novel observation that in the absence of enzyme, suitably chelated Mn3+ is a ligninolytic agent capable of oxidizing veratryl alcohol, lignin model compounds, and lignin. We also demonstrate the unexpected effect of reducing agents which stimulate the oxidations by Mn3+. The stimulation is apparently through the production of a reduced oxygen species likely to be superoxide. These observations provide a fresh insight into the process of lignin biodegradation.  相似文献   

18.
Aims: To determine if pretreatment with oxidizing agents sensitizes Bacillus subtilis spores to dry heat or desiccation. Methods: Bacillus subtilis spores were killed approx. 90% by oxidizing agents, and the sensitivity of treated and untreated spores to dry heat and desiccation was determined. The effects of pyruvate on spore recovery after oxidizing agent pretreatment and then dry heat or desiccation were also determined. Conclusions: Spores pretreated with Oxone? or hypochlorite were not sensitized to dry heat or freeze‐drying. However, hydrogen peroxide or t‐butylhydroperoxide pretreatment sensitized spores to dry heat or desiccation, and the desiccation caused mutagenesis in the survivors. Pyruvate increased recovery of spores treated with hydrogen peroxide alone or plus dry heat or desiccation, and with t‐butylhydroperoxide and desiccation, but not with t‐butylhydroperoxide alone or plus dry heat. Significance and Impact of the Study: Pretreatment with peroxides sensitizes bacterial spores to subsequent stress. This finding may suggest improved regimens for spore inactivation.  相似文献   

19.
M Tomono  T Urayama 《Human cell》1990,3(3):241-247
Certain oxidizing agents such as vitaminK(VK) and lipid peroxides were found to suppress an increase in cytoplasmic Ca2+ concentration by growth factors, and inhibit on cell proliferation. These oxidizing agents induced a marked change in cell shape. In a detailed analysis of each phase in the cell cycle, the inhibition of an increase in cytoplasmic Ca2+ and cell division occurred only when the agents were added at G0/G1 phase. The addition to S or M phase cells did not influence in cytoplasmic Ca2+ and cell division. These experimental results suggest that these oxidizing agents may inhibit the transfer of stimulation signals from growth factors by acting on cell membrane sites and suppress subsequent DNA replication and mitotic division.  相似文献   

20.
Thermotolerance and synthesis of heat shock proteins are induced in cells in response to a variety of environmental stresses. We examined the suggestion of Hightower (1980) that modifications of intracellular proteins may be the triggering event that induces heat shock protein synthesis and thermotolerance. We did so by modifying cellular proteins, using diamide, a sulfhydryl oxidizing agent, and dithio-bis (succinimidyl propionate), an agent that cross-links bifunctional amino groups. Both of these agents induced heat shock proteins and thermotolerance in CHO (HA-1) cells. Furthermore, we observed cross-resistance and self-tolerance with three seemingly unrelated stimuli (diamide, heat, and sodium arsenite). This observation suggests that the induction of protective responses to these stimuli is mediated by a common mechanism. The results support the hypothesis that production of abnormal proteins by various stresses induces the stress responses as well as tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号