首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Two recombinant collagen-like proteins consisting of cell adhesion domains derived from native type I collagen were designed and synthesized by a genetic engineering method. The cross-linking sequence, GPPGPCCGGG, derived from collagen III was used to promote triple helix formation through the disulfide bonds formed among three chains by flanking the peptide at the C-terminal of the collagen-like proteins. SDS-PAGE and western-blotting data suggested possibility of the formation of a triple helix structure for both recombinant proteins. CD spectra and thermal stability analyses indicated that the triple-helix structure in the collagen-like proteins was pH-dependent and stabilized under acidic environmental condition. Moreover, the collagen-like protein flanked with the cross-linking sequence at the C-terminal showed the most stable triple-helical conformation under acidic conditions.  相似文献   

2.
Recombinant expression of collagens and fragments of collagens is often difficult, as their biosynthesis requires specific post-translational enzymes, in particular prolyl 4-hydroxylase. Although the use of hydroxyproline-deficient variants offers one possibility to overcome this difficulty, these proteins usually differ markedly in stability when compared with the hydroxyproline-containing analogs. Here, we report a method to stabilize collagen-like peptides by fusing them to the N terminus of the bacteriophage T4 fibritin foldon domain. The isolated foldon domain and the chimeric protein (GlyProPro)(10)foldon were expressed in a soluble form in Escherichia coli. The recombinant proteins and the synthetic (ProProGly)(10) peptide were characterized by circular dichroism (CD) spectroscopy, differential scanning calorimetry, and analytical ultracentrifugation. We show that the foldon domain, which comprises only 27 amino acid residues, forms an obligatory trimer with a high degree of thermal stability. The CD thermal unfolding profiles recorded from foldon are monophasic and completely reversible upon cooling. Similar Van't Hoff and calorimertic enthalpy values of trimer formation indicated a cooperative all-or-none transition. As reported previously, (ProProGly)(10) peptides form collagen triple helices of only moderate stability. When fused to the foldon domain, however, triple helix formation of (GlyProPro)(10) is concentration independent, and the midpoint temperature of the triple helix unfolding is significantly increased. The stabilizing function of the trimeric foldon domain is explained by the close vicinity of its N termini, which induce a high local concentration in the range of 1 M for the C termini of the collagen-like-peptide. Collagen-foldon fusion proteins should be potentially useful to study receptor-collagen interactions.  相似文献   

3.
In this work we describe the self-assembly of a collagen-like periodic mini-fibril from a recombinant triple helix. The triple helix, designated Col108, is expressed in Escherichia coli using an artificial gene and consists of a 378-residue triple helix domain organized into three pseudo-repeating sequence units. The peptide forms a stable triple helix with a melting temperature of 41 °C. Upon increases of pH and temperature, Col108 self-assembles in solution into smooth mini-fibrils with the cross-striated banding pattern typical of fibrillar collagens. The banding pattern is characterized by an axially repeating feature of ∼35 nm as observed by transmission electron microscopy and atomic force microscopy. Both the negatively stained and the positively stained transmission electron microscopy patterns of the Col108 mini-fibrils are consistent with a staggered arrangement of triple helices having a staggering value of 123 residues, a value closely connected to the size of one repeat sequence unit. A mechanism is proposed for the mini-fibril formation of Col108 in which the axial periodicity is instigated by the built-in sequence periodicity and stabilized by the optimized interactions between the triple helices in a 1-unit staggered arrangement. Lacking hydroxyproline residues and telopeptides, two factors implicated in the fibrillogenesis of native collagen, the Col108 mini-fibrils demonstrate that sequence features of the triple helical domain alone are sufficient to “code” for axially repeating periodicity of fibrils. To our knowledge, Col108 is the first designed triple helix to self-assemble into periodic fibrils and offers a unique opportunity to unravel the specific molecular interactions of collagen fibrillogenesis.  相似文献   

4.
Because of safety concerns and product consistency issues with the use of animal‐derived collagen, several recombinant protein expression hosts have been considered for recombinant collagen corn seed. Full length, triple‐helical, recombinant collagen (rCIα1) is expressed as a fusion with a foldon domain, which must later be removed. Here we have examined integration of purification and foldon removal by comparing advantages of removal before or after purification, using salt precipitation as the main purification step. Because expression levels in available maize lines are low, Pichia‐produced recombinant collagens, both with and without foldon, were added to corn seed germ at the extraction step. Salt precipitation of an acidic corn seed extract yielded 100% of the collagen without foldon at >70% purity without the pepsin pretreatment. With pepsin pretreatment, yield was 94.0% with purity of 76.5%. Analysis of the protein molecular weight distribution of the pre‐ and post‐treatment extracts showed that the corn proteins are largely resistant to pepsin proteolysis, explaining why little benefit was obtained by pepsin treatment. In the absence of pepsin treatment, the recovery of rCIα1 with foldon was still above 90% but the purity was only 44%. This still represented at about 13‐fold purification with a 2.7‐fold volume reduction which would reduce the pepsin requirement for post‐recovery foldon cleavage. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:98–107, 2016  相似文献   

5.
HSP47, a collagen-specific molecular chaperone, interacts with unfolded and folded procollagens. Binding of chicken HSP47 to native bovine type I collagen was studied by fluorescence quenching and cooperative binding with a collagen concentration at half saturation (K(half)) of 1.4 x 10(-7) m, and a Hill coefficient of 4.3 was observed. Similar results are observed for the binding of mouse HSP47 recombinantly expressed in Escherichia coli. Chicken HSP47 binds equally well to native type II and type III procollagen without the carboxyl-terminal propeptide (pN type III collagen), but binding to triple helical collagen-like peptides is much weaker. Weak binding occurred to both hydroxylated and nonhydroxylated collagen-like peptides, and a significant chain length dependence was observed. Binding of HSP47 to native type I collagen had no effect on the thermal stability of the triple helix. Refolding of type I collagen in the presence of HSP47 showed minor changes, but these are probably not biologically significant. Binding of HSP47 to bovine pN type III collagen has only minor effects on the thermal stability of the triple helix and does not influence the refolding kinetics of the triple helix.  相似文献   

6.
Recombinant collagens are attractive proteins for a number of biomedical applications. To date, significant progress was made in the large-scale production of nonmodified recombinant collagens; however, engineering of novel collagen-like proteins according to customized specifications has not been addressed. Herein we investigated the possibility of rational engineering of collagen-like proteins with specifically assigned characteristics. We have genetically engineered two DNA constructs encoding multi-D4 collagens defined as collagen-like proteins, consisting primarily of a tandem of the collagen II D4 periods that correspond to the biologically active region. We have also attempted to decrease enzymatic degradation of novel collagen by mutating a matrix metalloproteinase 1 cleavage site present in the D4 period. We demonstrated that the recombinant collagen alpha-chains consisting predominantly of the D4 period but lacking most of the other D periods found in native collagen fold into a typical collagen triple helix, and the novel procollagens are correctly processed by procollagen N-proteinase and procollagen C-proteinase. The nonmutated multi-D4 collagen had a normal melting point of 41 degrees C and a similar carbohydrate content as that of control. In contrast, the mutant multi-D4 collagen had a markedly lower thermostability of 36 degrees C and a significantly higher carbohydrate content. Both collagens were cleaved at multiple sites by matrix metalloproteinase 1, but the rate of hydrolysis of the mutant multi-D4 collagen was lower. These results provide a basis for the rational engineering of collagenous proteins and identifying any undesirable consequences of altering the collagenous amino acid sequences.  相似文献   

7.
The directional dependence of folding rates for rod-like macromolecules such as parallel alpha-helical coiled-coils, DNA double-helices, and collagen triple helices is largely unexplored. This is mainly due to technical difficulties in measuring rates in different directions. Folding of collagens is nucleated by trimeric non-collagenous domains. These are usually located at the COOH terminus, suggesting that triple helix folding proceeds from the COOH to the NH(2) terminus. Evidence is presented here that effective nucleation is possible at both ends of the collagen-like peptide (Gly-Pro-Pro)(10), using designed proteins in which this peptide is fused either NH(2)- or COOH-terminal to a nucleation domain, either T4-phage foldon or the disulfide knot of type III collagen. The location of the nucleation domain influences triple-helical stability, which might be explained by differences in the linker sequences and the presence or absence of repulsive charges at the carboxyl-terminal end of the triple helix. Triple helical folding rates are found to be independent of the site of nucleation and consistent with cis-trans isomerization being the rate-limiting step.  相似文献   

8.
Alpha-helical coiled-coils are widely occurring protein oligomerization motifs. Here we show that most members of the collagen superfamily contain short, repeating heptad sequences typical of coiled coils. Such sequences are found at the N-terminal ends of the C-propeptide domains in all fibrillar procollagens. When fused C-terminal to a reporter molecule containing a collagen-like sequence that does not spontaneously trimerize, the C-propeptide heptad repeats induced trimerization. C-terminal heptad repeats were also found in the oligomerization domains of the multiplexins (collagens XV and XVIII). N-terminal heptad repeats are known to drive trimerization in transmembrane collagens, whereas fibril-associated collagens with interrupted triple helices, as well as collagens VII, XIII, XXIII, and XXV, were found to contain heptad repeats between collagen domains. Finally, heptad repeats were found in the von Willebrand factor A domains known to be involved in trimerization of collagen VI, as well as in collagen VII. These observations suggest that coiled-coil oligomerization domains are widely used in the assembly of collagens and collagen-like proteins.  相似文献   

9.
A triple-helical conformation and stability at physiological temperature are critical for the mechanical and biological functions of the fibril-forming collagens. Here, we characterized the role of consecutive domains of collagen II in stabilizing the triple helix. Analysis of melting temperatures of genetically engineered collagen-like proteins consisting of tandem repeats of the D1, D2, D3 or D4 collagen II periods revealed the presence of a gradient of thermostability along the collagen molecule with thermolabile N-terminal domains and thermostable C-terminal domains. These results imply a multi-domain character of the collagen triple helix. Assays of thermostabilities of the Arg75Cys and Arg789Cys collagen II mutants suggest that, in contrast to the thermostable domains, the thermolabile domains are able to accommodate amino acid substitutions without altering the thermostability of the entire collagen molecule.  相似文献   

10.
A collagen-like peptide with the sequence (GER)(15) GPCCG was synthesized to study the formation of a triple helix in the absence of proline residues. This peptide can form a triple helix at acidic and basic pH, but is insoluble around neutral pH. The formation of a triple helix can be used to covalently oxidize the cysteine residues into a disulfide knot. Three disulfide bonds are formed between the three chains as has been found at the carboxyl-terminal end of the type III collagen triple helix. This is a new method to covalently link collagen-like peptides with a stereochemistry that occurs in nature. The peptide undergoes a reversible, cooperative triple helix coil transition with a transition midpoint (T(m)) of 17 to 20 degrees C at acidic pH and 32 to 37 degrees C at basic pH. At acidic pH there was little influence of the T(m) on the salt concentration of the buffer. At basic pH increasing the salt concentration reduced the T(m) to values comparable to the stability at acidic pH. These experiments show that the tripeptide unit GER which occurs frequently in collagen sequences can form a triple helical structure in the absence of more typical collagen-like tripeptide units and that charge-charge interactions play a role in the stabilization of the triple helix of this peptide.  相似文献   

11.
The collagens are a family of animal proteins containing segments of repeated Gly-Xaa-Yaa (GXY) motifs that form a characteristic triple-helical structure. Genes encoding proteins with repeated GXY motifs have also been reported in bacteria and phages; however, it is unclear whether these prokaryotic proteins can form a collagen-like triple-helical structure. Here we used two recently identified streptococcal proteins, Scl1 and Scl2, containing extended GXY sequence repeats as model proteins. First we observed that prior to heat denaturation recombinant Scl proteins migrated as homotrimers in gel electrophoresis with and without SDS. We next showed that the collagen-like domain of Scl is resistant to proteolysis by trypsin. We further showed that circular dichroism spectra of the Scl proteins contained features characteristic of collagen triple helices, including a positive maximum of ellipticity at 220 nm. Furthermore the triple helices of Scl1 and Scl2 showed a temperature-dependent unfolding with melting temperatures of 36.4 and 37.6 degrees C, respectively, which resembles those seen for collagens. We finally demonstrated by electron microscopy that the Scl proteins are organized into "lollipop-like" structures, similar to those seen in human proteins with collagenous domains. This implies that the repeated GXY tripeptide motif is a structural indicator of collagen-like triple helices in proteins from such phylogenetically distant sources as bacteria and humans.  相似文献   

12.
There is a confusion in the application of circular dichroism (CD) spectroscopy in analyzing collagen's structure for the overlapping of the spectral shapes and positions of the collagen triple helix and poly(proline-II)-like structure. The unique repetitive sequence of the collagen triple helix is susceptible to misalignment during the spontaneous assembly. Such misaligned structures are usually difficult to be characterized by CD or NMR spectroscopy. Here, RP-HPLC was developed as a conformational characterization technique for synthetic collagen-like peptides based on the different hydrophobicities exhibited by the triple-helical and unassembled peptides. RP-HPLC was also used to study thermal transitions and to measure melting point temperatures (Tm) of the collagen-like peptides.  相似文献   

13.
Proper folding of the (Gly‐Xaa‐Yaa)n sequence of animal collagens requires adjacent N‐ or C‐terminal noncollagenous trimerization domains which often contain coiled‐coil or beta sheet structure. Collagen‐like proteins have been found recently in a number of bacteria, but little is known about their folding mechanism. The Scl2 collagen‐like protein from Streptococcus pyogenes has an N‐terminal globular domain, designated Vsp, adjacent to its triple‐helix domain. The Vsp domain is required for proper refolding of the Scl2 protein in vitro. Here, recombinant Vsp domain alone is shown to form trimers with a significant α‐helix content and to have a thermal stability of Tm = 45°C. Examination of a new construct shows that the Vsp domain facilitates efficient in vitro refolding only when it is located N‐terminal to the triple‐helix domain but not when C‐terminal to the triple‐helix domain. Fusion of the Vsp domain N‐terminal to a heterologous (Gly‐Xaa‐Yaa)n sequence from Clostridium perfringens led to correct folding and refolding of this triple‐helix, which was unable to fold into a triple‐helical, soluble protein on its own. These results suggest that placement of a functional trimerization module adjacent to a heterologous Gly‐Xaa‐Yaa repeating sequence can lead to proper folding in some cases but also shows specificity in the relative location of the trimerization and triple‐helix domains. This information about their modular nature can be used in the production of novel types of bacterial collagen for biomaterial applications.  相似文献   

14.
Adenovirus fibres are trimeric proteins that consist of a globular C-terminal domain, a central fibrous shaft and an N-terminal part that attaches to the viral capsid. In the presence of the globular C-terminal domain, which is necessary for correct trimerisation, the shaft segment adopts a triple beta-spiral conformation. We have replaced the head of the fibre by the trimerisation domain of the bacteriophage T4 fibritin, the foldon. Two different fusion constructs were made and crystallised, one with an eight amino acid residue linker and one with a linker of only two residues. X-ray crystallographic studies of both fusion proteins shows that residues 319-391 of the adenovirus type 2 fibre shaft fold into a triple beta-spiral fold indistinguishable from the native structure, although this is now resolved at a higher resolution of 1.9 A. The foldon residues 458-483 also adopt their natural structure. The intervening linkers are not well ordered in the crystal structures. This work shows that the shaft sequences retain their capacity to fold into their native beta-spiral fibrous fold when fused to a foreign C-terminal trimerisation motif. It provides a structural basis to artificially trimerise longer adenovirus shaft segments and segments from other trimeric beta-structured fibre proteins. Such artificial fibrous constructs, amenable to crystallisation and solution studies, can offer tractable model systems for the study of beta-fibrous structure. They can also prove useful for gene therapy and fibre engineering applications.  相似文献   

15.
Collagens contain large numbers of Gly-Xaa-Yaa peptide repeats that form the characteristic triple helix, where the individual chains fold into a polyproline II helix and three of these helices form a right-handed triple helix. For the proper folding of the triple helix collagens contain trimerization domains. These domains ensure a single starting point for triple helix formation and are also responsible for the chain selection in heterotrimeric collagens. Trimerization domains are non-collagenous domains of very different structures. The size of trimerization domains varies from 35 residues in type IX collagen to around 250 residues for the fibrillar collagens. These domains are not only crucial for biological functions, but they are also attractive tools for generating recombinant collagen fragments of interest as well as for general use in protein engineering and biomaterial design. Here we review the current knowledge of the structure and function of these trimerization domains.  相似文献   

16.
Corn offers advantages as a transgenic host for producing recombinant proteins required at large volumes (1,000's of tons per year) and low cost (less than US$50/kg) by generating them as co‐products of biorefining. We describe the purification and characterization of a corn grain‐derived mammalian structural protein having such market characteristics: a full length recombinant collagen type I alpha 1 (rCIα1) chain. Material properties of interest are gelation behavior, which would depend on as yet unverified ability of corn to carry out post‐translational prolyl hydroxylation and formation of triple helical conformation. The starting material was grain where the expression of rCIα1 had been directed by an embryo‐specific promoter. Purification consisted of extraction at low pH followed by membrane and chromatographic steps to isolate rCIα1 for characterization. The amino acid composition and immunoreactivity of CIα1 was similar to that of an analogous native human CIα1 and to rCIα1 produced by the yeast Pichia pastoris. Tandem mass spectrometry confirmed the primary sequence of the corn‐derived rCIα1 with 46% coverage. Fragments of the rCIα1chains were also observed, possibly caused by endogenous plant proteases. The corn‐derived rCIα1 had a low level of prolyl hydroxylation (~1% versus 11%) relative to animal‐derived CIα1 and folded into its characteristic triple‐helical structure as indicated by its resistance to pepsin digestion below its melting temperature of 26oC. The 29 amino acid foldon fused to the C‐terminus to initiate triple helix formation was not cleaved from the rCIα1chains, but could be removed by pepsin treatment. © 2009 American Institute of Chemical Engineers Biotechnol. Prog. 2009  相似文献   

17.
18.
The collagen-like polytripeptide (hydroxyproline-proline-glycine)10 was synthesized with a solid-phase procedure. Analytical ultracentrifugation indicated that the peptide in aqueous solution at 6 °C had a molecular weight of 2550, the expected size of a single chain. The peptide had a relatively small negative optical rotation at 578 nm, and it did not show a thermal transition as is seen with collagen or collagen-like polytripeptides which form triple helices. At low temperatures in aqueous solution, the circular dichroism spectrum was similar to that of triple-helical collagen and collagen-like peptides in that there was a positive peak at 224 nm and a negative peak at 200 nm. The amplitudes of the peaks, however, were considerably less than the peaks obtained with triple-helix proteins and peptides. Since (proline-proline-glycine)10 was triple helical under the same conditions, the results demonstrated that hydroxyproline in the X-position of the repeating -glycine-X-Y- sequences decreases rather than increases, the thermal stability of the triple helix. This positional specificity cannot be explained by any of the current models for the structure of the triple helix or any of the current proposals for how hydroxyproline stabilizes the structure.  相似文献   

19.
To search for submolecular foldon units, the spontaneous reversible unfolding and refolding of staphylococcal nuclease under native conditions was studied by a kinetic native-state hydrogen exchange (HX) method. As for other proteins, it appears that staphylococcal nuclease is designed as an assembly of well-integrated foldon units that may define steps in its folding pathway and may regulate some other functional properties. The HX results identify 34 amide hydrogens that exchange with solvent hydrogens under native conditions by way of large transient unfolding reactions. The HX data for each hydrogen measure the equilibrium stability (ΔGHX) and the kinetic unfolding and refolding rates (kop and kcl) of the unfolding reaction that exposes it to exchange. These parameters separate the 34 identified residues into three distinct HX groupings. Two correspond to clearly defined structural units in the native protein, termed the blue and red foldons. The remaining HX grouping contains residues, not well separated by their HX parameters alone, that represent two other distinct structural units in the native protein, termed the green and yellow foldons. Among these four sets, a last unfolding foldon (blue) unfolds with a rate constant of 6 × 10− 6 s− 1 and free energy equal to the protein's global stability (10.0 kcal/mol). It represents part of the β-barrel, including mutually H-bonding residues in the β4 and β5 strands, a part of the β3 strand that H-bonds to β5, and residues at the N-terminus of the α2 helix that is capped by β5. A second foldon (green), which unfolds and refolds more rapidly and at slightly lower free energy, includes residues that define the rest of the native α2 helix and its C-terminal cap. A third foldon (yellow) defines the mutually H-bonded β1-β2-β3 meander, completing the native β-barrel, plus an adjacent part of the α1 helix. A final foldon (red) includes residues on remaining segments that are distant in sequence but nearly adjacent in the native protein. Although the structure of the partially unfolded forms closely mimics the native organization, four residues indicate the presence of some nonnative misfolding interactions. Because the unfolding parameters of many other residues are not determined, it seems likely that the concerted foldon units are more extensive than is shown by the 34 residues actually observed.  相似文献   

20.
Collagen triple helix, composed of the repeating Gly–Xaa–Yaa (GXY) sequence, is a structural element found in all multicellular animals and also in some prokaryotes. Long GXY polymers are highly regarded components used in food, cosmetic, biomedical, and pharmaceutical industries. In this study, we explore a new concept for the production of recombinant GXY polymers which are based on the sequence of “prokaryotic collagens”, the streptococcal collagen-like proteins Scl1 and Scl2. Analysis of 50 Scl variants identified the amino acid distribution and GXY-repeat usage that are involved in the stabilization of the triple helix in Scls. Using circular dichroism spectroscopy and electron microscopy, we show that significantly different recombinant rScl polypeptides form stable, unhydroxylated homotrimeric triple helices that can be produced both intra- and extracellularly in the Escherichia coli. These rScl constructs containing 20 to 129 GXY repeats had mid-point melting temperatures between 32 and 39°C. Altogether, Scl-derived collagens, which are different from the mammalian collagens, can form stable triple helices under physiological conditions and can be used for the production of recombinant GXY polymers with a wide variety of potential applications.Antoni Zwiefka is on leave from the Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Centre of Excellence, Wroclaw, Poland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号