首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three compounds known to inhibit ethylene synthesis and/or action were compared for their ability to delay senescence and abscission of bean explants (Phaseolus vulgaris L. cv Contender). Aminoethoxyvinyl-glycine (AVG), AgNO3, and sodium benzoate were infiltrated into the petiole explants. Their effect on abscission was monitored by measuring the force required to break the abscission zone, and their effect on senescence was followed by measuring chlorophyll and soluble protein in the distal (pulvinus) sections. AVG at concentrations between 1 and 100 micromolar inhibited ethylene synthesis by about 80 to 90% compared to the control during sampling periods of 24 and 48 hours after treatment. This compound also delayed the development of abscission and senescence. Treatment with AgNO3 at concentrations between 1 and 100 micromolar progressively reduced ethylene production, but to a lesser extent than AVG. The effects of AgNO3 on senescence and abscission were quite similar to those of AVG. Sodium benzoate at 50 micromolar to 5 millimolar did not inhibit ethylene synthesis during the first 24 hours, but appreciably inhibited ethylene synthesis 48 hours after treatment. It also delayed the development of abscission and senescence. The effects of AVG, Ag+, and sodium benzoate suggest that ethylene could play a major role in both the senescence induction phase and the separation phase in bean explants.  相似文献   

2.
The physiology and anatomy of abscission has been studied in considerable detail; however, information on the regulation of gene expression in abscission has been limited because of a lack of probes for specific genes. We have identified and sequenced a 595 nucleotide bean (Phaseolus vulgaris cv Red Kidney) abscission cellulase cDNA clone (pBACl). The bean cellulase cDNA has extensive nucleic and amino acid sequence identity with the avocado cellulase cDNA pAV363. The 2.0 kilobase bean mRNA complementary to pBACl codes for a polypeptide of approximately 51 kilodalton (shown by hybrid-selection followed by in vitro translation). Bean cellulase antiserum is shown to immunoprecipitate a 51 kilodalton polypeptide from the in vitro translation products of abscission zone poly(A)+ RNA. Ethylene initiates bean leaf abscission and tissue-specific expression of cellulase mRNA. If ethylene treatment of bean explants was discontinued after 31 h and then 2,5-norbornadiene given to inhibit responses resulting from endogenously synthesized ethylene, polysomal cellulase mRNA hybridizing to pBACl decreased. Thus, ethylene is required not only to initiate abscission and cellulase gene expression but also to maintain continued accumulation of cellulase mRNA. Explants treated with auxin 4 hours prior to a 48 hour treatment with ethylene showed no substantial accumulation of RNA hybridizing to pBACl or expression of cellulase activity.  相似文献   

3.
Abscission: the role of RNA synthesis   总被引:10,自引:10,他引:0       下载免费PDF全文
Holm RE  Abeles FB 《Plant physiology》1967,42(8):1094-1102
Ethylene stimulated the incorporation of 32P into RNA in the abscission zone of bean explants (Phaseolus vulgaris L. var. Red Kidney). The enhancement was observed in all fractions separated by methylated albumin kieselguhr column chromatography, although the magnitude of the increase was not the same for each fraction. Differential extraction of the nucleic acids indicated that the ethylene stimulation was confined to the fraction extracted with sodium lauryl sulfate, with the increase mainly in Fraction III (Ribosomal RNA) and Fraction IV (Messenger RNA). Actinomycin D, which blocks ethylene-stimulated abscission, inhibited 32P incorporation into all column fractions. 5-Fluorouracil, which blocked 50% of the ethylene-enhanced 32P incorporation, did not inhibit ethylene-enhanced abscission. The results indicate that ethylene may regulate abscission through control of specific RNA's.  相似文献   

4.
Abscission: role of abscisic Acid   总被引:12,自引:9,他引:3       下载免费PDF全文
The effect of abscisic acid on cotton (Gossypium hirsutum L. cv. Acala 4-42) and bean (Phaseolus vulgaris L. cv. Red Kidney) explants was 2-fold. It increased ethylene production from the explants, which was found to account for some of its ability to accelerate abscission. Absci is acid also increased the activity of cellulase. Increased synthesis of cellulase was not du to an increase in aging of the explants but rather was an effect of abscisic acid on the processes that lead to cellulase synthesis or activity.  相似文献   

5.
Sacher JA  Salminen SO 《Plant physiology》1969,44(10):1371-1377
The effects of ethylene on permeability and RNA and protein synthesis were assayed over a 6 to 26 hr period in tissue sections from avocado (Persea gratissima Gaertn. F., var. Fuerte), both pulp and peel of banana (Musa sapientum L., var. Gros Michel), bean endocarp (Phaseolus vulgaris L., var. Kentucky Wonder Pole beans) and leaves of Rhoeo discolor. Ethylene had no effect on permeability in 4 of the 5 tissues, but sometimes enhanced solute uptake in banana peel; it had either no effect or an inhibitory effect on synthesis of RNA and protein in sections from fruits of avocado and banana. Auxin (α-naphthalene acetic acid) stimulated synthesis of RNA and protein in bean endocarp and Rhoeo leaf sections, whereas ethylene inhibited both basal and auxin-induced synthesis. It is concluded that in these tissues the auxin effect is not an ethylene effect.  相似文献   

6.
Ethylene increased the peroxidase activity of nine out of ten varieties of sweet potato (Ipomoea batatas (L.) Lam.) root disks tested. The increase which was observed four hours after ethylene treatment was partially overcome by carbon dioxide. The increase was inhibited by actinomycin D and cycloheximide, indicating de novo protein synthesis. Electrophoretic separation on polyacrylamide gels indicated the appearance of two new peroxidase bands. Peroxidase activity in bean petiole explants was localized around the separation layer. Ethylene caused a small increase in peroxidase activity in the petiolar portion of the explant. Phenolic substances had no effect on abscission consistent with their proposed roles as cofactors for auxinoxidase, indicating that auxin-oxidase does not play a role in abscission of Coleus blumei Benth. abscission zone explants.  相似文献   

7.
Abscission: the phytogerontological effects of ethylene   总被引:10,自引:10,他引:0       下载免费PDF全文
The role of ethylene in the aging of bean (Phaseolus vulgaris L. cv. Red Kidney) petiole abscission zone explants was examined. The data indicate that ethylene does accelerate aging in addition to inducing changes in break strength. Application of ethylene during the aging stage (stage 1) promoted abscission when followed by a second ethylene treatment during the cell separating stage (stage 2). The half-maximal effective concentration of ethylene to induce aging was around 0.3 microliter per liter; 10 microliters per liter was a saturating dose. CO2 reversal of ethylene action during stage 1 was incomplete and gave ambiguous results. CO2 (10%) reversed the effect of 10 microliters per liter ethylene but not 1 microliter per liter ethylene. The possibility that ethylene not only accelerated aging but was also a requirement for it was tested, and experimental evidence in favor of this idea was obtained. It was concluded that ethylene plays a dual role in the abscission of bean petiole explants: a phytogerontological effect and a cellulase-inducing effect.  相似文献   

8.
Role of polygalacturonase in bean leaf abscission   总被引:2,自引:0,他引:2       下载免费PDF全文
Berger RK  Reid PD 《Plant physiology》1979,63(6):1133-1137
The role of polygalacturonase in leaf abscission was studied in explants of Phaseolus vulgaris L. cv. Red Kidney. Bean polygalacturonase was partially characterized and comparisons were made between the bean enzyme and previously reported higher plant polygalacturonases. Polygalacturonase isolated from bean leaf abscission zones has a pH optimum between 4.5 and 5.0 and hydrolyzed polygalacturonides in an exo-fashion. Activity was found to be higher with a deesterified substrate than with an esterified pectin. No correlation between polygalacturonase activity and abscission was observed. Activity remained virtually constant over the course of abscission in explants aged either in air or in ethylene. The enzyme was primarily localized in the abscission zone, however, indicating a possible involvement in the abscission process. A theoretical model which could explain the relationship between polygalacturonase and bean leaf abscission is discussed.  相似文献   

9.
不同浓度的壳梭孢素(Fc)对菜豆叶枕外植体的脱落效应不同,低浓度促进、高浓度抑制。高浓度FC对脱落酸(ABA)、赤霉酸(GA_3)和乙烯利(CEPA)促进脱落效应有拮抗作用。由乙烯和纤维素酶活力测定结果表明,FC对脱落的影响与纤维素酶有关,而与乙烯产生无关。 用~(32)P示踪试验,高浓度FC抑制脱落的同时能强烈调配~(32)P向处理部位积累,表明FC对脱落的影响还与物质调配有关。  相似文献   

10.
Burt GW  Muzik TJ 《Plant physiology》1971,47(6):795-798
The influence of indoleacetic acid, cacodylic acid (hydroxy-dimethylarsine oxide), and amitrole (3-amino-1,2,4-triazole) on the petiole explant abscission rate was studied in three species. Indoleacetic acid increased the abscission rate in both bean (Phaseolus vulgaris L. var. Red Kidney) and Coleus (Coleus blumei Benth) at 10−3 and 10−4m but had no effect on abscission in privet (Ligustrum ovalifolium). Cacodylic acid was found to stimulate abscission in explants of beans and privet, but not in Coleus. Amitrole did not stimulate abscission under any circumstance tested. In no case was the abscission rate dependent on the time at which any of the chemicals was applied. These data do not support the two-phase response of explants to applied auxin.  相似文献   

11.
Abscission: role of cellulase   总被引:30,自引:25,他引:5       下载免费PDF全文
Abeles FB 《Plant physiology》1969,44(3):447-452
Cellulase (β-1,4-glucan-glucanohydrolase EC 3.2.1.4) activity increased during abscission and was localized in the cell separation layer of Phaseolus vulgaris L. cv. Red Kidney (bean), Gossypium hirsutum L. cv. Acala 4-42 (Cotton) and Coleus blumei Benth. Princeton strain (Coleus) abscission zone explants. Cellulase activity was optimum at pH 7, was reduced by one-half after heating to 55° for 10 min, and was associated with the soluble components of the cell. Explants treated with aging retardants (indoleacetic acid, 6N-benzyladenine, and coumarin), CO2, actinomycin D or cycloheximide had less cellulase activity than untreated controls. Ethylene increased cellulase activity of aged explants after a 3-hr lag period but had no effect on cellulase activity of freshly excised explants. It was concluded that 1 of the roles of ethylene in abscission is to regulate the production of cellulase which in turn is required for cell separation.  相似文献   

12.
Three types of whole plant experiments are presented to substantiate the concept that an important function of ethylene in abscission is to reduce the transport of auxin from the leaf to the abscission zone. (a) The inhibitory effect of ethylene on auxin transport, like ethylene-stimulated abscission, persists only as long as the gas is continuously present. Cotton (Gossypium hirsutum L. cv. Stoneville 213) and bean (Phaseolus vulgaris L. cv. Resistant Black Valentine) plants placed in 14 μl/l of ethylene for 24 or 48 hours showed an increase in leaf abscission and a reduced capacity to transport auxin; but when returned to air, auxin transport gradually increased and abscission ceased. (b) Ethylene-induced abscission and auxin transport inhibition show similar sensitivities to temperature. A 24-hour exposure of cotton plants to 14 μl/l of ethylene at 8 C resulted in no abscission and no significant inhibition of auxin transport. Increasing the temperature during ethylene treatment resulted in a progressively greater reduction in auxin transport with abscission occurring at [unk]27 C where auxin transport was inhibited over 70%. (c) Auxin pretreatment reduced both ethylene-induced abscission and auxin transport inhibition. No abscission occurred, and auxin transport was inhibited only 18% in cotton plants which were pretreated with 250 mg/l of naphthalene acetic acid and then placed in 14 μl/l of ethylene for 24 hours. In contrast, over 30% abscission occurred, and auxin transport was inhibited 58% in the corresponding control plants.  相似文献   

13.
McManus MT 《Annals of botany》2008,101(2):285-292
BACKGROUND AND AIMS: Two aspects of the competence of abscission zone cells as a specific class of hormone target cell are examined. The first is the competence of these target cells to respond to a remote stele-generated signal, and whether ethylene acts in concert with this signal to initiate abscission of the primary leaf in Phaseolus vulgaris. The second is to extend the concept of dual control of abscission cell competence. Can the concept of developmental memory that is retained by abscission cell of Phaseolus vulgaris post-separation in terms of the inductive/repressive control of beta-1,4-glucan endohydrolase (cellulase) activity exerted by ethylene/auxin be extended to the rachis abscission zone cells of Sambucus nigra? METHODS: Abscission assays were performed using the leaf petiole-pulvinus explants of P. vulgaris with the distal pulvinus stele removed. These (-stele) explants do not separate when treated with ethylene and require a stele-generated signal from the distal pulvinus for separation at the leaf petiole-pulvinis abscission zone. Using these explants, the role of ethylene was examined, using the ethylene action blocker, 1-methyl cyclopropene, as well as the significance of the tissue from which the stele signal originates. Further, leaf rachis abscission explants were excised from the compound leaves of S. nigra, and changes in the activity of cellulase in response to added ethylene and auxin post-separation was examined. KEY RESULTS: The use of (-stele) explants has confirmed that ethylene, with the stele-generated signal, is essential for abscission. Neither ethylene alone nor the stelar signal alone is sufficient. Further, in addition to the leaf pulvinus distal to the abscission zone, mid-rib tissue that is excised from senescent or green mid-rib tissue can also generate a competent stelar signal. Experiments with rachis abscission explants of S. nigra have shown that auxin, when added to cells post-separation can retard cellulase activity, with activity re-established with subsequent ethylene treatment. CONCLUSIONS: The triggers that initiate and regulate the separation process are complex with, in bean leaves at least, the generation of a signal (or signals) from remote tissues, in concert with ethylene, a requisite part of the process. Once evoked, abscission cells maintain a developmental memory such that the induction/repression mediated by ethylene/auxin that is observed prior to separation is also retained by the cells post-separation.  相似文献   

14.
Abscission: the role of aging   总被引:15,自引:15,他引:0       下载免费PDF全文
Abeles FB  Holm RE  Gahagan HE 《Plant physiology》1967,42(10):1351-1356
Excision of Phaseolus vulgaris L. c.v. Red Kidney abscission zone explants results in senescence, mobilization, and abscission. Because these processes take place at about the same time, there has been some question as to whether they are causally related or are occurring in an independent but simultaneous fashion. Data presented here suggest that the latter interpretation is correct. After abscission zone explants are isolated from the leaf an aging process is set into motion and a degradation of metabolites in the pulvinus takes place. During the aging process the explants also become increasingly sensitive to ethylene which in turn promotes cell separation. Indoleacetic acid, cytokinins, and coumarin appear to retard aging since both degradative processes and abscission are inhibited. However, ethylene increased abscission without increasing degradative processes indicating that abscission and senescence are independent processes occurring at the same time.  相似文献   

15.
Experiments were conducted on developing fruitlet explants of two mango (Mangifera indica L.) cultivars to establish the source and dynamics of ethylene production prior to and during fruitlet abscission. Abscission of all fruits in the samples occurred at approximately 86 and 74 hours postharvest in `Keitt' and `Tommy Atkins,' respectively. Increased abscission began 26 hours from harvest and was preceded by enhanced ethylene synthesis. Enhanced ethylene production initiated approximately 48 hours prior to abscission and increased to a maximum near the time of fruitlet abscission. The seed produced the highest amount of ethylene on a per gram fresh weight basis. The pericarp, however, was the main source of ethylene on an absolute basis, since it represented more than 85% of total fruitlet weight. Pedicels containing the abscission zone produced no detectable ethylene prior to or at the moment of abscission. Fumigation of `Tommy Atkins' fruitlets with 1, 15, or 100 microliters per liter ethylene accelerated abscission by 24 to 36 hours in comparison with unfumigated controls. Diffusion of ethylene from distal fruitlet tissues to the abscission zone triggers the events leading to separation of the fruit from the tree.  相似文献   

16.
Abscission: ethylene and light control   总被引:1,自引:0,他引:1       下载免费PDF全文
The role of ethylene in light control of leaf abscission im mung bean, Vigna radiata (L.) Wilczek cv Jumbo, cuttings was examined. While red light inhibits and far-red light promotes loss of break strength in abscission zones as compared with dark controls, changes in the rate of abscission could not be associated with changes in the rate of ethylene production. Reducing ethylene synthesis in tissue with aminoethoxyvinylglycine did not alter the effects of red or far-red light on abscission. Far-red light appeared to increase and red light appeared to decrease tissue sensitivity to ethylene.  相似文献   

17.
Kinetics of abscission in the bean petiole explant   总被引:6,自引:6,他引:0       下载免费PDF全文
The progress of bean petiole abscission has been followed using quantitative measurements of the mechanical force required to break explants at the separation zone. It is found that the shortest time for a measurable effect of ethylene (1 ppm) in stimulating the development of frangibility is about 1 hr. Removal of the ethylene is followed by a return to the endogenous rate of weakening, the slower rate being established in 1 hr. Application of the inhibitor cycloheximide leads to a cessation of abscission development within one-half hr. As in the stimulations of certain plant processes with auxins, gibberellins, and cytokinins. ethylene stimulation of abscission requires the continuous presence of the regulator.  相似文献   

18.
The stylar abscission bioassay was used to identify five stimulators of lemon (Citrus limon cv. Lisbon) abscission in pistil explants. The stimulators (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea, N6-benzyladenine, kinetin, zeatin, and N6-isopentenyladenine), which are all cytokinins, accelerated the timing of expiant abscission when they were added as supplements (100 μM) to the test medium. To study possible relationships between cytokinins, ethylene, and abscission, we measured accumulating ethylene concentrations in sealed cultures and endogenous 1 -aminocyclopropane-1-carboxylic aicd (ACC) in explants incubated on test medium plus or minus 100 μM N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (thidiazuron), 100 μM N6-benzyladenine (bzl6Ade), or 2 μM picloram, an inhibitor of stylar abscission. Although ethylene accumulated to similar levels in all treatments, the concentrations obtained with picloram and thidiazuron were, respectively, higher and lower than those obtained in control cultures. The accumulation of ethylene in cultures with bzl6Ade, on the other hand, was not significantly different from controls. ACC concentrations in explants remained fairly constant in all treatments during the incubations, except in explants on thidiazuron, in which case the ACC concentration declined slightly. We conclude that cytokinins can stimulateCitrus abscissionin vitro and that this stimulation is not accompanied by marked effects on either measurable ethylene or ACC concentrations. Our finding that 100 μM aminoethoxyvinylglycine, an ethylene biosynthesis inhibitor, counteracts the stimulation of abscission by bzl6Ade suggests that a minimum level of ethylene production is required for the cytokinin effect. The possibility that cytokinins affect other aspects related to ethylene, such as biosynthetic rates, metabolism, or tissue retention, is not excluded by our results.  相似文献   

19.
Suttle JC 《Plant physiology》1985,78(2):272-276
The effect of the defoliant thidiazuron (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea) on endogenous ethylene evolution and the role of endogenous ethylene in thidiazuron-mediated leaf abscission were examined in cotton (Gossypium hirsutum L. cv Stoneville 519) seedlings. Treatment of 20- to 30-day-old seedlings with thidiazuron at concentrations equal to or greater than 10 micromolar resulted in leaf abscission. At a treatment concentration of 100 micromolar, nearly total abscission of the youngest leaves was observed. Following treatment, abscission of the younger leaves commenced within 48 hours and was complete by 120 hours. A large increase in ethylene evolution from leaf blades and abscission zone explants was readily detectable within 24 hours of treatment and persisted until leaf fall. Ethylene evolution from treated leaf blades was greatest 1 day posttreatment and reached levels in excess of 600 nanoliters per gram fresh weight per hour (26.7 nanomoles per gram fresh weight per hour). The increase in ethylene evolution occurred in the absence of increased ethane evolution, altered leaf water potential, or decreased chlorophyll levels. Treatment of seedlings with inhibitors of ethylene action (silver thiosulfate, hypobaric pressure) or ethylene synthesis (aminoethoxyvinylglycine) resulted in an inhibition of thidiazuron-induced defoliation. Application of exogenous ethylene or 1-aminocyclopropane-1-carboxylic acid largely restored the thidiazuron response. The results indicate that thidiazuron-induced leaf abscission is mediated, at least in part, by an increase in endogenous ethylene evolution. However, alterations of other phytohormone systems thought to be involved in regulating leaf abscission are not excluded by these studies.  相似文献   

20.
The abscission-promoting effects of C18-unsaturated fatty acidswere studied in bean (Phaseolus vulgaris L. cv. Masterpiece)petiole explants with the junction between the petiole and thepulvinus in the primary leaves in the light. Linolenic, linoleicand oleic acids promoted the abscission of the explants in thelight. Linolenic acid was the most effective among the compoundstested and its promotive effect was evident without any accompanyingincrease in the production of ethylene from the explants, ascompared with non-treated explants. Linolenic acid is easilyconverted to its hydroperoxide during the incubation with explants,as indicated by the formation of the conjugated diene and thegeneration of ethane. The production of ethylene from the explantstreated with linolenic acid was completely inhibited by theaddition of aminoethoxyvi-nylglycine (AVG), but large amountsof ethane were still generated. The promotive effect of linolenicacid was almost eliminated by the addition of scavengers offree radicals. Hydrogen peroxide and tert-butyl hydroperoxidepromoted abscission in the light. From these results, we concludedthat the abscission-promoting effect of linolenic acid are notmediated by the effect of ethylene but by the effect of itshydroperoxide, while the well-established pathway for the biosynthesisof ethylene from S-adenosylmethionine to ethylene, via 1-aminocyclopropane-l-carboxylicacid (ACC), was apparently operative. (Received May 1, 1991; Accepted July 10, 1991)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号