首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Two lines of mice were selected for high post-weaning weight gain (3 to 6 weeks) adjusted for 3 week weight. One line (F) was grown on freely available food and the other (S) on a feeding scale set at the same level for all mice. Food intake of the S line averaged 80% of the F line. The realised heritabilities after 6 generations of selection were 0.38±0.06 and 0.33±0.07 for the F and S lines, respectively. In generation 7, mice from the F and S lines and from an unselected control line (C) were compared on both free and set levels of feeding from 3 weeks to 9 weeks of age. Measurements taken were growth rate, appetite, food conversion efficiency (weight gain/food intake) and body composition (fat, protein, ash, water). The F and S lines grew more rapidly and efficiently than the C line on both levels of feeding, each line performing best on the level of feeding on which it was selected. The average genetic correlation between growth rates of the same line on the two feeding levels was 0.54±0.10. The F line grew 19% faster and was 9% more efficient than the S line on free feeding but the S line grew 15% faster and was 15% more efficient than the F line on set feeding. Relative to the C line, food intake per day on free feeding was 4% higher in the F line and 6% lower in the S line. There was no difference between the lines in food intake/g body weight. The rate of deposition of all body components increased in both selection lines. In the F, S and C lines respectively, efficiencies of gains in body components (102x gain/food) were 1.79, 1.31 and 1.06 for fat, 1.53, 1.63 and 1.22 for protein and 5.88, 6.45 and 4.98 for protein + water. Apparently energy lost as heat was reduced in both the F and S lines. The partitioning of energy retained was altered in favour of more fat in the F line and more protein in the S line.  相似文献   

2.
Hypotheses on total body chemical composition were tested using data from 350 Suffolk sheep grown to a wide range of live weights, and fed in a non-limiting way, or with reduced amounts of feed, or ad libitum on feeds of reduced protein content. The sheep were from an experiment where selection used an index designed to increase the lean deposition rate while restricting the fat deposition rate. Ultrasound muscle and fat depths were the only composition measurements in the index. The animals were males and females from a selection (S) line and its unselected control (C). The protein content of the lipid-free dry matter was unaffected by live weight, sex or feeding treatment with only a very small effect of genetic line (0.762 kg/kg in S and 0.753 kg/kg in C; P < 0.05). The form of the relationship between water and protein was not affected by any of the factors; in the different kinds of sheep it was consistent with no effect other than through differences in mature protein weight. The water : protein ratio at maturity was estimated as 3.45. Over the whole dataset, lipid weight (L) increased with protein weight (P) according to L = 0.3135 × P1.850. Allowing for this scaling, fatness increased on low-protein feeds, was greater in females than in males and in C than in S (P < 0.001). Lipid content (g/kg fleece-free empty body weight) was reduced by restricted feeding only in males at the highest slaughter weight (114 kg). The lines differed in lipid content (P < 0.001) with means of 265.1 g/kg for C and 237.3 g/kg for S. Importantly, there was no interaction between line and feeding treatments. A higher proportion of total body protein was in the carcass in S than in C (0.627 v. 0.610; P < 0.001). For lipid, the difference was reversed (0.736 v. 0.744; P < 0.05). The total energy content increased quadratically with slaughter weight. At a particular weight, the energy content of gain was higher in females than in males and in C than in S. Genetic selection affected body composition at a weight favouring the distribution of protein to the carcass and lipid to the non-carcass. Once allowing for effects of genetic selection, sex and feeding treatment on fatness, simple rules can be used to generate the chemical composition of sheep.  相似文献   

3.
To investigate the net tissue fatty acid deposition in response to graded levels of energy restriction and modification of diet fatty acid composition, rats were randomly assigned into four dietary groups and fed for 10 weeks diets containing 40% as energy of either fish, safflower, or olive oil, or beef tallow, consumed ad libitum or energy restricted to 85% or 68% of ad libitum intake by reducing diet carbohydrate content. An additional eight rats were killed before the diet regimen, to provide baseline data from which fatty acid deposition rates were calculated. Body weight, and heart, liver and fat mass gains were decreased with energy restriction (P<0.001). Olive oil feeding resulted in higher body weight gain (P < 0.03) than tallow feeding, whereas fish oil feeding was associated with highest (P < 0.007) liver weight and lowest (P < 0.03) fat mass gains. Energy deficit-related differences in the deposition of stearic, linoleic, arachidonic, and docosahexaenoic acids in heart and palmitic and docosahexaenoic acids in liver were dependent on the dietary oil consumed (P < 0.03). Similarly, interactive effects of restricted food intake and dietary oil type were found in the gain of palmitic, stearic, oleic, and linoleic acids in adipose tissue (P < 0.01) when expressed in relation to the amount of each fatty acid consumed. These data suggest that energy intake level can influence the deposition pattern, as well as oxidation rate, of tissue fatty acids as a function of tissue type, fatty acid structure, and dietary fatty acid composition.  相似文献   

4.
Summary Direct and correlated responses in weight gain and body weights were assessed for nine generations of within-family selection. Four selection criteria were used: gain between 28 and 38 or 48 and 58 days of age, and under two feeding regimes, i.e. ad libitum consumption or 80% of the control line. Direct responses to selection and realized heritabilities in the ad libitum lines were greater in the first period. Weight gain under ad libitum feeding at later ages appeared to have a lower genetic variability. In the restricted lines the responses and realized heritabilities were higher in the second period. Selection under restricted feeding in both periods led to animals that had lower weight gains than the control line when compared under ad libitum feeding.  相似文献   

5.
Amylin infusion reduces food intake and slows body weight gain in rodents. In obese male rats, amylin (but not pair feeding) caused a preferential reduction of fat mass with protein preservation despite equal body weight loss in amylin-treated (fed ad libitum) and pair-fed rats. In the present study, the effect of prior or concurrent food restriction on the ability of amylin to cause weight loss was evaluated. Retired female breeder rats were maintained on a high-fat diet (40% fat) for 9 wk. Prior to drug treatment, rats were either fed ad libitum or food restricted for 10 days to lose 5% of their starting body weight. They were then subdivided into treatment groups that received either vehicle or amylin (100 microgxkg(-1)xday(-1) via subcutaneous minipump) and placed under either a restricted or ad libitum feeding schedule (for a total of 8 treatment arms). Amylin 1) significantly reduced body weight compared with vehicle under all treatment conditions, except in always restricted animals, 2) significantly decreased percent body fat in all groups, and 3) preserved lean mass in all groups. These results indicate that amylin's anorexigenic and fat-specific weight loss properties can be extended to a variety of nutritive states in female rats.  相似文献   

6.
The purpose of this study was to measure the growth and body composition of pigs during normal or compensatory growth from 60 to 100 kg, without (cont) or with ractopamine (rac) supplementation (20 mg/kg of diet). Thirty-four pigs were scanned by dual X-ray absorptiometry (DXA) for body composition analysis at a starting weight of 61.4 ± 0.3 kg and at a final weight of 100.4 ± 0.5 kg. Half the pigs were fed ad libitum throughout (8 cont and 9 rac). The other half were fed at maintenance for 8 weeks and then scanned again by DXA. Following the maintenance feeding, the pigs were fed ad libitum (9 cont and 8 rac) to the final weight. Compensatory growth resulted in a 30% increase in the rate of weight gain (1.23 v. 0.94 kg/day, P < 0.05), including a 44% increase in the rate of lean tissue deposition (0.90 v. 0.62 kg/day, P < 0.05), but no change in the rate of fat deposition (0.31 v. 0.30 kg/day, P > 0.05). Feeding rac resulted in a 13% increase in the rate of weight gain (1.15 v. 1.02 kg/day, P < 0.05), consisting of a 29% increase in the rate of lean tissue deposition (0.86 v. 0.67 kg/day, P < 0.05) and an 18% reduction in the rate of fat deposition (0.27 v. 0.33 kg/day, P < 0.05). The effects of ractopamine on the rates of fat and lean tissue deposition were similar for pigs continuously fed ad libitum and those experiencing compensatory growth. Both compensatory growth and the addition of ractopamine to the diet resulted in an improvement in efficiency of protein deposition; however, ractopamine also resulted in a reduction in the efficiency of energy deposition. For both growth rate and lean tissue deposition, there was an additive effect for ractopamine and compensatory growth. Thus, feeding ractopamine will enhance the growth and body composition during compensatory growth in swine.  相似文献   

7.
Natural diets with metabolizable energy levels of 8.5, 10.0, 11.5 or 13.0 MJ/kg and protein:energy ratios of 1:1, 1.33:1, 1.67:1 or 2:1 %:MJ/kg were fed ad libitum for 28 days to male and female weanling rats. Records of food intake and bodyweight were maintained weekly, and at post mortem examination body length, abdominal fat, liver and kidney weights were measured. Food intake was reduced when dietary energy level increased but this reduction was not sufficient to prevent energy intake increasing, especially in males. Female rats showed only small increases in energy intakes as dietary energy levels rose. The increase in energy intake at higher dietary energy levels increased food conversion efficiency, weight gain and abdominal fat deposition. The responses of male rats were greater than females. Protein intake had a smaller and less consistent effect than energy intake. Increased protein:energy ratio resulted in higher absolute and relative liver and kidney weights and greater body length. This reflected the increase of bodyweight gain at higher protein:energy ratios.  相似文献   

8.
Changes in body composition were studied in three groups of young adult female rats; the treatments were (1) ad libitum food intake to obtain normal growth, (2) restricted food intake to cause body weight loss, and (3) restricted followed by ad libitum food intake to obtain recovery of lost body weight. In each of the three groups of rats the percentage body water was linearly and negatively correlated with the percentage body fat, the weight of body water was linearly and positively correlated with the weight of body protein, and the ratio of the weight of body protein to water was relatively constant at 1:3.20 +/- 0.02 (mean +/- standard error). The percentage body water in the fat-free body was linearly and negatively correlated with fat-free body weight during normal growth between 109 and 334 g body weight but positively correlated during body weight loss and recovery. During recovery of body weight rats laid down more fat and less protein than during normal growth through the same body weight range and the percentage of digestible energy retained as body tissue was increased.  相似文献   

9.
Energy intake and expenditure is a highly conserved and well-controlled system with a bias toward energy intake. In times of abundant food supply, individuals tend to overeat and in consequence to increase body weight, sometimes to the point of clinical obesity. Obesity is a disease that is not only characterized by enormous body weight but also by rising morbidity for diabetes type II and cardiovascular complications. To better understand the critical factors contributing to obesity we performed the present study in which the effects of energy expenditure and energy intake were examined with respect to body weight, localization of fat and insulin resistance in normal Wistar rats. It was found that a diet rich in fat and carbohydrates similar to "fast food" (cafeteria diet) has pronounced implication in the development of obesity, leading to significant body weight gain, fat deposition and also insulin resistance. Furthermore, an irregularly presented cafeteria diet (yoyo diet) has similar effects on body weight and fat deposition. However, these rats were not resistant to insulin, but showed an increased insulin secretion in response to glucose. When rats were fed with a specified high fat/carbohydrate diet (10% fat, 56.7% carbohydrate) ad lib or at the beginning of their activity phase they were able to detect the energy content of the food and compensate this by a lower intake. They, however, failed to compensate when food was given in the resting phase and gained more body weight as controls. Exercise, even of short duration, was able to keep rats on lower body weight and reduced fat deposition. Thus, inappropriate food intake with different levels of energy content is able to induce obesity in normal rats with additional metabolic changes that can be also observed in humans.  相似文献   

10.
To investigate the nature of compenstory growth in fish, an 8 week study at 28°C was performed on juvenile gibel carp Carassius auratus gibelio weighing 6·6 g. Fish were starved for 0 (control), 1 (S1) or 2 (S2) weeks and then re-fed to satiation for 5 weeks. Weekly changes in weight gain, feed intake and body composition were monitored during re-feeding. No significant difference was found in final body weight between the three groups, indicating complete compensation in the deprived fish. The deprived groups caught up in body weight with that of the control after 2 weeks of re-feeding. Body fat: lean body mass ratio was restored to the control level within 1 week of re-feeding. In the re-feeding period, weekly gains in body weight, protein, lipid, ash and energy in the S1 group were significantly higher than in the controls for 1 week. For the S2 group, weekly gains in body weight, lipid, ash and energy were higher than in the controls for 2 weeks, and gain in protein was higher than in the controls for 3 weeks, though gain in body energy became elevated again during the last 2 weeks of the experiment. Feed intake remained higher than the control level for 3 weeks in the S1 group and 4 weeks in the S2 group. Growth efficiency was not significantly different among the three groups in any of the weeks during re-feeding. Compensatory responses in growth and especially feed intake tended to last longer than the recovery of body composition.  相似文献   

11.
The aims of this study were to determine in the marsupial Sminthopsis crassicaudata, the effects of leptin on food intake, body weight, tail width (a reflection of fat stores), and leptin mRNA, after caloric restriction followed by refeeding ad libitum with either a standard or high-fat preferred diet. S. crassicaudata (n = 32), were fed standard laboratory diet (LabD; 1.01 kcal/g, 20% fat) ad libitum fo 3 days. On days 4-10, animals received LabD at 75% of basal intake and then (days 11-25) were fed either LabD or a choice of LabD and mealworms (MW; 2.99 kcal/g, 30% fat); during this time, half the animals (n = 8) in each group received either leptin (2.5 mg/kg) or PBS intraperitoneally two times daily. On day 26, animals were killed and fat was removed for assay of leptin mRNA. At baseline, body weight, tail width, and food intake were similar in each group. After caloric restriction, body weight (P < 0.001) and tail width (P < 0.001) decreased. On return to ad libitum feeding in the PBS-treated animals, body weight and tail width returned to baseline in the LabD-fed animals (P < 0.001) and increased above baseline in the MW-fed animals (P < 0.001). In the LabD groups, tail width (P < 0.001) and body weight (P < 0.001) decreased after leptin compared with PBS. In the MW groups, the increase in tail width (P < 0.001) and body weight (P = 0.001) were attenuated after leptin compared with PBS. The expression of leptin mRNA in groups fed MW were greater in PBS than in leptin-treated animals (P < 0.05). Therefore, after diet-induced weight loss, leptin prevents a gain in fat mass in S. crassicaudata; this has potential implications for the therapeutic use of leptin.  相似文献   

12.
We evaluated the effects of difructose anhydride III (DFAIII) on body weights of ovariectomized rats, which are a good model for obesity by estrogen deficiency-induced overeating. Female rats (10 weeks old) were subjected to ovariectomy or sham operation and then fed with or without a diet containing 3% or 6% DFAIII for 33 days or pair-fed control diet during the same period. Rats fed DFAIII showed significantly decreased food intake, energy intake, body weight gain, body energy accumulation, and fat tissue weight than control group, regardless of ovariectomy. DFAIII may decrease body fat dependent of reduced food/energy intake. Compared with the respective pair feeding groups, rats fed DFAIII showed significantly decreased body energy and fat tissue weight, regardless of ovariectomy, suggesting its potential as a low-energy substitute for high-energy sweeteners. The low energy of DFAIII may contribute to decreased body fat, which may not be dependent on obesity.  相似文献   

13.
Male and female weanling rats were fed ad libitum for 28 days on purified diets with metabolizable energy levels of 8.0, 9.5, 11.0 or 12.5 MJ/kg and protein:energy ratios of 1:1, 1.33:1, 1.67:1 or 2:1 %:MJ/kg at each energy level. Major nutrients were balanced in proportion to energy and protein. The following parameters were measured: food intake, bodyweight, body length, abdominal fat, liver and kidney weights. Increasing dietary energy level reduced food intake but the reduction was not sufficient to prevent an increase in energy intake. This was reflected by increases in bodyweight, body length, abdominal fat, and relative liver and kidney weights, especially in male rats. Higher energy intake increased weight gain and food conversion efficiency to a greater extent than higher protein intake. The response to protein intake at different energy levels was not consistent. There was no common protein:energy ratio for overall good performance. It is concluded that rat growth and other features can be controlled by the alteration of dietary energy and protein levels.  相似文献   

14.
Food restriction (FR) is hypothesized to decrease body fat content of an animal and thus prevent obesity. However, the response of energy budget to a continuous (CFR) or discontinuous FR (DFR) remains inconsistent. In the present study, effects of CFR or DFR and refeeding on energy budget and behavior were examined in male Swiss mice. CFR significantly decreased the energy expenditure associated with basal metabolic rate (BMR) and activity behavior, but not sufficiently to compensate for energy deficit and thus resulted in lower body mass and fat content. DFR mice had a significantly higher food intake on ad libitum days and showed increases in BMR and activity after 4 weeks’ DFR, which might resulted in lower body mass and less body fat than controls. After being refed ad libitum, both CFR and DFR mice had similar body mass, BMR, and behavioral patterns to controls but had 95% and 75% higher fat content. This suggested that not only CFR but also DFR would be a significant factor in the process of obesity for animals that were refed ad libitum. It also indicated that food restriction interrupted many times by periods of ad libitum feeding had the same long-term effects like continuous underfeeding.  相似文献   

15.
Human epidemiological studies have supported the hypothesis that a dairy food-rich diet is associated with lower fat accumulation, although prospective studies and intervention trials are not so conclusive and contradictory data exist in animal models. The purpose of this study was to assess the effects on body weight and fat depots of dairy calcium (12 g/kg diet) in wild-type mice under ad libitum high-fat (43%) and normal-fat (12%) diets and to gain comprehension on the underlying mechanism of dairy calcium effects. Our results show that calcium intake decreases body weight and body fat depot gain under high-fat diet and accelerates weight loss under normal-fat diet, without differences in food intake. No differences in gene or protein expression of UCP1 in brown adipose tissue or UCP2 in white adipose tissue were found that could be related with calcium feeding, suggesting that calcium intake contributed to modulate body weight in wild-type mice by a mechanism that is not associated with activation of brown adipose tissue thermogenesis. UCP3 protein but not gene expression increased in muscle due to calcium feeding. In white adipose tissue there were effects of calcium intake decreasing the expression of proteins related to calcium signalling, in particular of stanniocalcin 2. CaSR levels could play a role in decreasing cytosolic calcium in adipocytes and, therefore, contribute to the diminution of fat accretion. Results support the anti-obesity effect of dietary calcium in male mice and indicate that, at least at the time-point studied, activation of thermogenesis is not involved.  相似文献   

16.
Summary Selection was practised for improved feed efficiency (gain/feed intake) of mice on two alternative feeding regimes. In one set of lines animals were fed ad libitum, in the other set they were individually fed a fixed amount of feed (about 10% below the control ad libitum intake) which was not changed over generations. For each treatment, a pair of replicate lines (E) were selected on efficiency from 3–5 weeks of age for 8 generations and another pair (L) from 5–7 weeks for 7 generations. A control line was maintained for both E and L lines. In terminal generations mice from each line were tested on each feeding regime, and carcasses of ad libitum fed mice were analysed.The realized heritability (within families) for efficiency averaged 13%, without much variation over treatments. In the E lines efficiency increased by about 18% of the control mean and in the L lines by about 60%, although absolute changes were small, and responses were similar on the two feeding regimes. Weights at the start of test decreased in the E lines and increased in the L lines; weights at the end of test increased in both.When tested on the alternative regimes, no interactions were detected for live weights, weight gains or efficiency; selection under fixed intake led to the same increase in appetite as did that under ad libitum.There were no interactions for carcass composition. Selection for efficiency led to an increase in fatness on both selection regimes and both weight ranges.  相似文献   

17.
18.
Previously we have found that recombinant human growth hormone (rhGH) (GH; 74 ng g body wt.(-1)) administration to weaned BALB/c male mice (fed 12% or 20% protein diet) induced a growth lag and subsequent repletion similar to the catch-up growth process. We studied the partitioning of feed and protein intakes between adipose and protein body stores through the linear relationships among them. The non-linear relationship of protein intake with body fat gain/protein gain (FG/PG) ratio was especially adequate in determining the partitioning of substrates. rhGH induced an increase in feed and protein intake utilization for body weight gain (50%) and fat gain (75-140%) over saline; macronutrient utilization was the greatest in rhGH-treated mice fed 20% protein. However, growth recovery of rhGH mice was anomalous and protein intake was derived primarily for fat gain. Mice fed 12% protein (treated and control) also derived protein intake in preference to fat stores. Treatment and diet had a cumulative effect with the result that rhGH-treated animals fed 12% protein showed the greatest FG/PG ratio (1.6), and therefore, the lowest efficiency to gain protein. Weaning is a critical stage in mice when treating with rhGH, as this could provoke a growth lag. The study showed that a high protein level is required to surpass the rhGH-induced lag, but it is not enough to obtain an enhanced protein deposition. Feeding a 12% protein diet was even worse as mice did not improve on the growth lag and substrates were directed mainly to body fat.  相似文献   

19.
Summary Body composition was studied in three lines of mice, one selected for high (H) and one for low (L) 8 week weight, and one maintained as an unselected control (C). After 25 generations 8 week weights were 41.2g, 30.6 g and 20.5g for the H, C and L lines. Mice were sampled from the lines and analysed for fat, protein, ash and water at generations 14 and 25. Apart from fat in the H line, there was little alteration due to selection in the relationships between individual body components and total body weight. In the H line, the contribution of fat to body weight gain was considerably increased. Although leaner than the C and L mice at low body weights, H line mice rapidly became fatter with increasing body weight. Selection appeared to reduce the body weight at which fat was deposited at its maximum rate in the H line. The H and C lines were equally fat at body weights of 29.0 g and 21.6 g at generations 14 and 25 respectively. Body weights at points of inflection of the growth curves of the H, C and L lines at generation 25 were 18.3 g, 14.3 g and 12.8 g. The implications of these findings for meat species slaughtered at set weights are discussed.  相似文献   

20.
The most rapid growth of the fat body, ovaries and residual body occurred only at the time of maximal feeding, which was the time of highest metabolic rate. Larvae ceased feeding before the next moult and lost weight. Adult females did not cease feeding and never lost weight. Mated females maintained a high feeding rate that corresponded to a constant oviposition rate with no gonotrophic cycles. Virgin females maintained a lower feeding rate and maintained fully mature eggs in a viable state for life.Growth during the last larval stadium was entirely somatic and characterized by a great accumulation of a lipid rich (65%) fat body. Net growth during the first 10 days of adult life was entirely gonodal, because the small amount of residual body growth was matched by the amount of fat body loss. However, since the residual body was 60% protein and the fat body was 60% lipid, some of the somatic protein growth had to come from the diet and some of the fat body lipid went for ovarial growth.The 20% dietary protein was more than sufficient for all somatic and ovarial growth, and some protein was catabolized for energy. The amount of uric acid in larval faeces accounted for almost all protein catabolism, but in adult females half of the catabolized protein nitrogen did not appear in the faeces. With only 5% dietary lipid both larvae and adults had to synthesize additional lipids from carbohydrates to supplement absorbed lipids for growth demands. Almost all absorbed and synthesized lipids were used for somatic growth in the larvae and for ovarial growth in the adults, because the per cent of food calories used for growth greatly exceeded the per cent dry weight of food used for growth. Based on the calories and dry weight of available fuel, almost all energy production was based on carbohydrate oxidation. Some carbohydrate was used for lipid synthesis but very little was used for growth.Probably the absorption efficiency (72%) and growth efficiency (28%) was the same for both the last instar larvae and virgin females because they ate exactly the same food. However, the larval metabolic efficiency (42%) was higher than that of females (37%), which indicated that more of the absorbed food was converted to tissue during larval growth (somatic) than during adult growth (ovarial).Of the dry weight of food eaten during the last larval stadium, 30% was egested, 32% was oxidized, 28% appeared as growth, and 10% was condensed to lipid and became part of the 28% growth. Of the dry weight of food eaten during the first 10 days of adult life, 27% was egested, 41% was oxidized, 25% appeared as growth, and 6% was condensed to lipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号