首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We hypothesize that the tritrophic interaction between ants, the aphid Aphis jacobaeae, the moth Tyria jacobaeae, and the plant Senecio jacobaea can explain the genetic variation observed in pyrrolizidine alkaloid concentration in natural populations of S. jacobaea. The ant Lasius niger effectively defends S. jacobaea plants infested with A. jacobaeae against larvae of T. jacobaeae. S. jacobaea plants with A. jacobaeae which are defended by ants escape regular defoliation by T. jacobaeae. Plants with aphids and ants have a lower pyrrolizidine alkaloid concentration than plants without aphids and ants. When these data are fitted to an existing theoretical model for temporal variation in fitness it is shown that varying herbivore pressure by T. jacobaeae in interaction with ants defending aphid-infested plants with a low pyrrolizidine alkaloid concentration can lead to a stable polymorphism in pyrrolizidine alkaloid concentration. Costs of the production and maintenance of pyrrolizidine alkaloids are not accounted for in the model.Publication of the Meijendel-comité, new series no. 114  相似文献   

2.
The N-oxides of pyrrolizidine alkaloids such as senecionine or monocrotaline are rapidly taken up and accumulated by cell suspension cultures obtained from plants known to produce pyrrolizidines, i.e. Senecio vernalis, vulgaris, viscosus (Asteraceae) and Symphytum officinale (Boraginaceae). The transport of the N-oxides into the cells is a specific and selective process. Other alkaloid N-oxides such as sparteine N-oxide are not taken up. Cell cultures from plant species which do not synthesize pyrrolizidine alkaloids are unable to accumulate pyrrolizidine N-oxides. The suitability of the pyrrolizidine N-oxides in alkaloid storage and accumulation is emphasized.  相似文献   

3.
Ants are widely employed by plants as an antiherbivore defence. A single host plant can associate with multiple, symbiotic ant species, although usually only a single ant species at a time. Different plant‐ant species may vary in the degree to which they defend their host plant. In Kenya, ant–acacia interactions are well studied, but less is known about systems elsewhere in Africa. A southern African species, Vachellia erioloba, is occupied by thorn‐dwelling ants from three different genera. Unusually, multiple colonies of all these ants simultaneously and stably inhabit trees. We investigated if the ants on V. erioloba (i) deter insect herbivores; (ii) differ in their effectiveness depending on the identity of the herbivore; and (iii) protect the tree against an important herbivore, the larvae of the lepidopteran Gonometa postica. We show that experimental exclusion of ants leads to greater levels of herbivory on trees. The ants inhabiting V. erioloba are an effective deterrent against hemipteran and coleopteran, but not lepidopteran herbivores. Defensive services do not vary among ant species, but only Crematogaster ants exhibit aggression towards G. postica. This highlights the potential of the V. erioloba–ant mutualism for studying ant–plant interactions that involve multiple, simultaneously resident thorn‐dwelling ant species.  相似文献   

4.
Exploiters of protection mutualisms are assumed to represent an important threat for the stability of those mutualisms, but empirical evidence for the commonness or relevance of exploiters is limited. Here, I describe results from a manipulative study showing that an orb‐weaver spider, Eustala oblonga, inhabits an ant‐acacia for protection from predators. This spider is unique in the orb‐weaver family in that it associates closely with both a specific host plant and ants. I tested the protective effect of acacia ants on E. oblonga by comparing spider abundance over time on acacias with ants and on acacias from which entire ant colonies were experimentally removed. Both juvenile and adult spider abundance significantly decreased over time on acacias without ants. Concomitantly, the combined abundance of potential spider predators increased over time on acacias without ants. These results suggest that ant protection of the ant‐acacia Acacia melanocerus also protects the spiders, thus supporting the hypothesis that E. oblonga exploits the ant–acacia mutualism for enemy‐free space. Although E. oblonga takes advantage of the protection services of ants, it likely exacts little to no cost and should not threaten the stability of the ant–acacia mutualism. Indeed, the potential threat of exploiter species to protection mutualisms in general may be limited to species that exploit the material rewards traded in such mutualisms rather than the protection services.  相似文献   

5.
Lee A. Dyer  Ted Floyd 《Oecologia》1993,96(4):575-582
To evaluate the role of predation in the evolution of diet specialization and to determine the effectiveness of various larval defenses, we offered lepidopteran larvae to colonies of the tropical ant Paraponera clavata. We recorded behavioral and physical characteristics of prey items and used log-linear models to analyze their importance as deterrents to predation by P. clavata. The most important determinant of probability of prey rejection by P. clavata was a prey's diet breadth; specialists were rejected by the ants significantly more than generalists. Other less important, but significant, predictors of prey rejection included ontogeny, morphology and chemistry. Late instar caterpillars were rejected more frequently than early instars, hairy caterpillars were rejected more frequently than caterpillars with other morphologies, and one caterpillar species with an unpalatable extract was rejected more frequently than two species with palatable extracts.  相似文献   

6.
Subterranean termites provide a major potential food source for forest-dwelling ants, yet the interactions between ants and termites are seldom investigated largely due to the cryptic nature of both the predator and the prey. We used protein marking (rabbit immunoglobin protein, IgG) and double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) to examine the trophic interactions between the woodland ant, Aphaenogaster rudis (Emery) and the eastern subterranean termite, Reticulitermes flavipes (Kollar). We marked the prey by feeding the termites paper treated with a solution of rabbit immunoglobin protein (IgG). Subsequently, we offered live, IgG-fed termites to ant colonies and monitored the intracolony distribution of IgG-marked prey. Laboratory experiments on the distribution of protein-marked termite prey in colonies of A. rudis revealed that all castes and developmental stages receive termite prey within 24 h. In field experiments, live, protein-marked termites were offered to foraging ants. Following predation, the marker was recovered from the ants, demonstrating that A. rudis preys on R. flavipes under field conditions. Our results provide a unique picture of the trophic-level interactions between predatory ants and subterranean termites. Furthermore, we show that protein markers are highly suitable to track trophic interactions between predators and prey, especially when observing elusive animals with cryptic food-web ecology. Received 19 January 2007; revised 23 March 2007; accepted 26 March 2007.  相似文献   

7.
14C-Labelled alkaloid precursors (arginine, putrescine, spermidine) fed to Senecio vulgaris plants via the root system were rapidly taken up and efficiently incorporated into the pyrrolizidine alkaloid senecionine N-oxide (sen-Nox) with total incorporations of 3–6%. Considerable amounts of labelled sen-Nox were translocated into the shoot and were directed mainly into the inflorescences, the major sites of pyrrolizidine-alkaloid accumulation. Detached shoots of S. vulgaris were unable to synthesize pyrrolizidine alkaloids, indicating that the roots are the site of their biosynthesis. Further evidence was obtained from studies with in-vitro systems established from S. vulgaris: root cultures were found to synthesize pyrrolizidine alkaloids but not cell-suspension cultures, tumor cultures or shoot-like teratomas obtained by transformation with Agrobacterium tumefaciens. Studies on transport of [14C]sen-Nox, which was fed either to detached shoots or to the root system of intact plants, indicate that the alkaloid N-oxide does not simply follow the transpiration stream but is specifically channelled to the target tissues such as epidermal stem tissue and flower heads. Exogenously applied [14C]senecionine is rapidly N-oxidized. If the phloem path along the stem is blocked by a steam girdle translocation of labelled sen-Nox is blocked as well. Root-derived sen-Nox accumulated below the girdle and only trace amounts were found in the tissues above. It is most likely that the root-to-shoot transport of sen-Nox occurs mainly if not exclusively via the phloem. In accordance with previous studies the polar, salt-like N-oxides, which are often considered to be artifacts, were found to be the real products of pyrrolizidine-alkaloid biosynthesis as well as the physiological forms for long-distance transport, tissue-specific distribution and cellular accumulation.Abbreviations FW fresh weight - sen senecionine - sen-Nox senecionine N-oxide  相似文献   

8.
《Animal behaviour》1997,54(4):985-991
Pyrrolizidine alkaloids are considered the primary defence mechanism in aposematic ithomiine butterflies and arctiid moths. Despite evidence that pyrrolizidine alkaloids are effective against some invertebrate predators, proof for a protective function of pyrrolizidine alkaloids against vertebrate predators is fragmented. The present work shows that the pyrrolizidine alkaloid monocrot-aline is unpalatable to the pileated finch,Coryphospingus pileatusand that the unpalatability is learned through association with a specific colour pattern (blue stripes). In a series of trials, using mealworms as model prey, birds rejected those to which pyrrolizidine alkaloid solution had been applied topically but accepted prey devoid of the alkaloid. Subsequent offerings of prey with pyrrolizidine alkaloid and a painted blue-striped pattern led to consistent rejections by the experimental birds. Birds were then offered blue-striped painted larvae without pyrrolizidine alkaloids (‘mimics’), which were rejected at levels similar to the previous trial. The predators learned to recognize the prey as unpalatable items based on their experience in the previous encounters. These results provide evidence for the protective capacity of the pyrrolizidine alkaloid against a vertebrate predator and supports the role of these chemicals in aposematism in the Lepidoptera.  相似文献   

9.
10.
Abstract.  1. Insect predators often aggregrate to patches of high prey density and use prey chemicals as cues for oviposition. If prey have mutualistic guardians such as ants, however, then these patches may be less suitable for predators.
2. Ants often tend aphids and defend them against predators such as ladybirds. Here, we show that ants can reduce ladybird performance by destroying eggs and physically attacking larvae and adults.
3. Unless ladybirds are able to defend against ant attacks they are likely to have adaptations to avoid ants. We show that Adalia bipunctata ladybirds not only move away from patches with Lasius niger ants, but also avoid laying eggs in these patches. Furthermore, ladybirds not only respond to ant presence, but also detect ant semiochemicals and alter oviposition strategy accordingly.
4. Ant semiochemicals may signal the extent of ant territories allowing aphid predators to effectively navigate a mosaic landscape of sub-optimal patches in search of less well-defended prey. Such avoidance probably benefits both ants and ladybirds, and the semiochemicals could be regarded as a means of cooperative communication between enemies.
5. Overall, ladybirds respond to a wide range of positive and negative oviposition cues that may trade-off with each other and internal motivation to determine the overall oviposition strategy.  相似文献   

11.
Jason P. Harmon  D. A. Andow 《Oikos》2007,116(6):1030-1036
Density-dependent mutualisms have been well documented, but the behavioral mechanisms that can produce such interactions are not as well understood. We investigated interactions between predatory ladybirds and the ant Lasius neoniger, which engages in a facultative association with the aphid Aphis fabae . We found that ants disrupted predator aggregation and deterred foraging, but that this effect varied with aphid density. In the field, smaller aphid colonies had higher numbers of ants per aphid (higher relative ant density), whereas plants with larger aphid colonies had lower relative ant density. Ants deterred ladybird foraging when relative ant density was high, but when relative ant density was low, ladybirds aggregated to aphids and foraged more successfully. This difference in ladybird foraging success appeared to be driven by variation in the ants' distribution on the plant and the ladybirds' reaction to ants. When relative ant density was high, ants moved around the perimeter of the aphid colonies, which resulted in faster detection of predators and a greater likelihood of ladybirds leaving. However, when relative ant density was low, ants moved only in the midst of the aphid colonies and rarely around the perimeter, which allowed predators to approach the aphid colony from the perimeter and feed without detection. Such predators were less likely to leave the aphid colony when subsequently detected by ants. We suggest that differences in relative ant numbers, ant distribution, and predator reaction to detection by ants could lead to complex population-level consequences including density-dependent mutualisms and the possibility that predators act as prudent predators.  相似文献   

12.
Root cultures of Senecio vulgaris, S. vernalis, S. erucifolius and S. squalidus were established. The patterns of pyrrolizidine alkaloids found in these root cultures were analyzed by high-resolution GC and GC-MS and compared with the alkaloids present in the respective plants. In vitro cultured roots produce alkaloid patterns and accumulate quantities which are comparable to those found in soil grown plants. With the exception of the otonecine derivative senkirkine all pyrrolizidines accumulate as N-oxides. Only senkirkine is partially released into the medium. The cultures incorporate biosynthetic precursors, e.g. 14C-labelled putrescine or spermidine with high efficiency into the alkaloids. Senecionine N-oxide was found to be the main product of biosynthesis. Evidence is presented that senecionine N-oxide is directly transformed into senkirkine, the main alkaloid of S. vernalis root cultures.Abbreviations GC Gas chromatography - MS Mass spectroscopy - PND Phosphorous-Nitrogen-Detector - FID Flame Ionization Detector - fr.wt Fresh weight  相似文献   

13.
Electrophysiological recordings from taste sensilla of the caterpillar Estigmene acrea with the pyrrolizidine alkaloid, seneciphylline N-oxide, demonstrated that prior feeding on plants with pyrrolizidine alkaloids caused an increase in responsiveness of the PA-sensitive cells in two sensilla, relative to feeding on plants without such chemicals. Rearing on synthetic diet without pyrrolizidine alkaloids for up to seven generations caused a continuous decline in responsiveness, that could be reversed by experience with powdered Crotalaria pumila in the diet or by pure pyrrolizidine alkaloid, monocrotaline, in the diet. Response to the cardiac glycoside, ouabain, that stimulates one of the two pyrrolizidine alkaloid-sensitive cells, showed a similar decline. Pyrrolizidine alkaloids had no measurable effect on growth and development. Responses in all other taste cells were unaffected. The data are discussed in relation to the possible adaptive significance and the possible mechanisms involved.R.F. Chapman has died since this article was written  相似文献   

14.
Attine ants are well known for their mutualistic symbiosis with fungus gardens, but many other symbionts and commensals have been described. Here, we report the discovery of two clusters of large snake eggs in neighboring fungus gardens of a mature Atta colombica colony. The eggs were completely embedded within the fungus garden and were ignored by the host ants, even when we placed them into another, freshly excavated fungus garden of the same colony. All five eggs contained embryos and two snakes eventually hatched, which we identified as being banded cat eyed snakes Leptodeira annulata L. Ant fungus gardens are likely to provide ideal climatic conditions for developing snake eggs and almost complete protection from egg predation. Our observations therefore indicate that mature banded cat eyed snakes are able to enter and oviposit in large and well defended Atta colonies without being attacked by ant soldiers and that also newly hatched snakes manage to avoid ant attacks when they leaving their host colony. We speculate that L. annulata might use Atta and Acromyrmex leafcutter ant colonies as egg nurseries by some form of chemical insignificance, but more work is needed to understand the details of this interaction. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Coffee is a globally important crop that is subject to numerous pest problems, many of which are partially controlled by predatory ants. Yet several studies have proposed that these ecosystem services may be reduced where agricultural systems are more intensively managed. Here we investigate the predatory ability of twig-nesting ants on the main pest of coffee, the coffee berry borer (Hypothenemus hampei) under different management systems in southwest Chiapas, Mexico. We conducted both laboratory and field experiments to examine which twig-nesting ant species, if any, can prey on free-living borers or can remove borers embedded in coffee fruits and whether the effects of the twig-nesting ant community differ with habitat type. Results indicate that several species of twig-nesting ants are effective predators of both free-living borers and those embedded in coffee fruits. In the lab, Pseudomyrmex ejectus, Pseudomyrmex simplex, and Pseudomyrmex PSW-53 effectively removed free-living and embedded borers. In the field, abundance, but not diversity, of twig-nesting ant colonies was influenced by shade management techniques, with the highest colony abundance present in the sites where shade trees were recently pruned. However, borer removal rates in the field were significant only in the shadiest site, but not in more intensively managed sites. This study provides evidence that twig-nesting ants can act as predators of the coffee berry borer and that the presence of twig-nesting ants may not be strongly linked to shade management intensity, as has been suggested for other arthropod predators of the borer.  相似文献   

16.
The defensive effects of ants against aphid predators have been well documented in the mutualistic relationship of aphids and their attending ants. However, it is not clear whether ant attendance has any direct effect on the aphids' growth and reproduction. Through field experiments, this study evaluates the benefits and, in particular, the costs of ant attendance to aphid colonies, focusing on the drepanosiphid aphid Tuberculatus quercicola which is associated with the Daimyo oak, Quercus dentata , and which is always attended by the red wood ant Formica yessensis . Ant attendance was clearly beneficial to the aphid; the exclusion of ants led to a significant increase in the extinction rate of aphid colonies. However, MANOVA and randomized block ANOVA indicated that in colonies continuously attended by ants, aphids had significantly smaller body size and produced a smaller number of embryos than in colonies isolated from ants when they were reared under homogeneous host conditions free from natural enemies. Thus, ant attendance had a negative influence on the growth and reproduction of the aphids, even though it contributed to the greater longevity of the aphid colonies. We hypothesize that ant-attended aphids are under intense selective pressures that act against aphid clones which fail to attract many ants, so that aphids have developed an adaptive mechanism to allocate a larger fraction of resources to the honeydew when they are requested to do so by the ants in order to ensure the ants' consistent visitation.  相似文献   

17.
Frölich C  Hartmann T  Ober D 《Phytochemistry》2006,67(14):1493-1502
Phalaenopsis hybrids contain two 1,2-saturated pyrrolizidine monoesters, T-phalaenopsine (necine base trachelanthamidine) and its stereoisomer Is-phalaenopsine (necine base isoretronecanol). T-Phalaenopsine is the major alkaloid accounting for more than 90% of total alkaloid. About equal amounts of alkaloid were genuinely present as free base and its N-oxide. The structures were confirmed by GC-MS. The quantitative distribution of phalaenopsine in various organs and tissues of vegetative rosette plants and flowering plants revealed alkaloid in all tissues. The highest concentrations were found in young and developing tissues (e.g., root tips and young leaves), peripheral tissues (e.g., of flower stalks) and reproductive organs (flower buds and flowers). Within flowers, parts that usually attract insect visitors (e.g., labellum with colorful crests as well as column and pollinia) show the highest alkaloid levels. Tracer feeding experiments with (14)C-labeled putrecine revealed that in rosette plants the aerial roots were the sites of phalaenopsine biosynthesis. However active biosynthesis was only observed in roots still attached to the plant but not in excised roots. There is a slow but substantial translocation of newly synthesized alkaloid from the roots to other plant organs. A long-term tracer experiment revealed that phalaenopsine shows neither turnover nor degradation. The results are discussed in the context of a polyphyletic molecular origin of the biosynthetic pathways of pyrrolizidine alkaloids in various scattered angiosperm taxa. The ecological role of the so called non-toxic 1,2-saturated pyrrolizidine alkaloids is discussed in comparison to the pro-toxic 1,2-unsaturated pyrrolizidine alkaloids. Evidence from the plant-insect interphase is presented indicating a substantial role of the 1,2-saturated alkaloids in plant and insect defense.  相似文献   

18.
1. Although potentially vulnerable to predators, the offspring of subsocial insects are effectively protected by their parent(s). The female giant water bug Kirkaldyia deyrolli lays its egg masses on the vegetation above the water surface in aquatic environments and the males supply the eggs with water and guard them against cannibalistic females until hatchling dispersal. Field observations showed that egg masses are attacked by ants if the attending males are not present. 2. Laboratory experiments were conducted to evaluate the effects of paternal care by K. deyrolli against the ant Tetramorium tsushimae by means of four treatments: attending male with ant approach (WM‐WA); no attending male with ant approach (NoM‐WA); attending male without ant approach (WM‐NoA); and no attending male without ant approach (NoM‐NoA). 3. The rate of offspring survival was lower in the NoM‐WA group (45.3%) than in any other group, which showed similar offspring survival (WM‐WA = 80.4%, WM‐NoA = 75.1%, NoM‐NoA = 80.3%). Moreover, there were a total of 44 interactions between the attending male and ants in WM‐WA, and of these, a chemical compound was released by the attending male four times; this probably deterred ants from attacking because the ants went back to their colony. 4. In conclusion, the attending male can protect its eggs from ant predators and its care has an important role. To the best of the authors' knowledge, this is the first report of Lethocerinae males protecting their egg masses from ants by means of physical and chemical defence.  相似文献   

19.
The alkaloidal fraction of Heliotropium ovalifolium yielded retronecine and the new pyrrolizidine alkaloid helifoline. Helifoline was formulated as 1α-angelyloxymethyl-8α-pyrrolizidine-2β,7β-diol on the basis of spectroscopic measurements and hydrolysis to the necine base which appears to be identical with croalbinecine.  相似文献   

20.
Larvae of the sawfly Athalia rosae ruficornis Jakovlev (Hymenoptera: Tenthredinidae) feed on several glucosinolate-containing plants and have been shown to sequester the main glucosinolates of different hosts, namely sinalbin (p-hydroxybenzylglucosinolate) from Sinapis alba L., sinigrin (allylglucosinolate) from Brassica nigra (L.) Koch, and glucobarbarin ((S)-2-hydroxy-2-phenylethylglucosinolate) from Barbarea stricta Andrz. (Brassicaceae). These plant metabolites are stored in the haemolymph, which is readily released when larvae are attacked by predators. In a dual-choice bioassay the bio-activity of sawfly haemolymph collected from larvae reared on different host plants (S. alba, B. nigra, and B. stricta) was tested against the ant Myrmica rubra L. (Hymenoptera: Formicidae). The haemolymph had a stronger deterrence effect when the corresponding sawfly larvae were reared on S. alba than when reared on B. nigra and B. stricta. Haemolymph of caterpillars of Pieris rapae L. (Lepidoptera: Pieridae) that had fed on S. alba was not deterrent to the ants. No sinalbin could be detected in their haemolymph. The glucosinolates sinalbin and sinigrin, offered in a concentration comparable to that in the sawfly haemolymph, were deterrent to the ants, but not as strongly as the corresponding haemolymph samples. This suggests, that glucosinolates are not the only compounds involved in the chemical defence of A. rosae. However, the presence of sequestered glucosinolates is already a sufficient defence towards predators such as ants, and their effectiveness is modulated by the host plant chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号