首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterogeneous and ever‐changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolutionary adaptive potential of natural species. In this study, we tested for mechanistic evidence of evolutionary thermal adaptation among ecologically divergent redband trout populations (Oncorhynchus mykiss gairdneri) in cardiorespiratory function, cellular response and genomic variation. In a common garden environment, fish from an extreme desert climate had significantly higher critical thermal maximum (< .05) and broader optimum thermal window for aerobic scope (>3°C) than fish from cooler montane climate. In addition, the desert population had the highest maximum heart rate during warming (20% greater than montane populations), indicating improved capacity to deliver oxygen to internal tissues. In response to acute heat stress, distinct sets of cardiac genes were induced among ecotypes, which helps to explain the differences in cardiorespiratory function. Candidate genomic markers and genes underlying these physiological adaptations were also pinpointed, such as genes involved in stress response and metabolic activity (hsp40, ldh‐b and camkk2). These markers were developed into a multivariate model that not only accurately predicted critical thermal maxima, but also evolutionary limit of thermal adaptation in these specific redband trout populations relative to the expected limit for the species. This study demonstrates mechanisms and limitations of an aquatic species to evolve under changing environments that can be incorporated into advanced models to predict ecological consequences of climate change for natural organisms.  相似文献   

2.
Forecasting the effects of climate change on species and populations is a fundamental goal of conservation biology, especially for montane endemics which seemingly are under the greatest threat of extinction given their association with cool, high elevation habitats. Species distribution models (also known as niche models) predict where on the landscape there is suitable habitat for a species of interest. Correlative niche modeling, the most commonly employed approach to predict species' distributions, relies on correlations between species' localities and current environmental data. This type of model could spuriously forecast less future suitable habitat because species' current distributions may not adequately represent their thermal tolerance, and future climate conditions may not be analogous to current conditions. We compared the predicted distributions for three montane species of Plethodon salamanders in the southern Appalachian Mountains of North America using a correlative modeling approach and a mechanistic model. The mechanistic model incorporates species-specific physiology, morphology and behavior to predict an annual energy budget on the landscape. Both modeling approaches performed well at predicting the species' current distributions and predicted that all species could persist in habitats at higher elevation through 2085. The mechanistic model predicted more future suitable habitat than the correlative model. We attribute these differences to the mechanistic approach being able to model shifts in key range-limiting biological processes (changes in surface activity time and energy costs) that the correlative approach cannot. Choice of global circulation model (GCM) contributed significantly to distribution predictions, with a tenfold difference in future suitability based on GCM, indicating that GCM variability should be either directly included in models of species distributions or, indirectly, through the use of multi-model ensemble averages. Our results indicate that correlative models are over-predicting habitat loss for montane species, suggesting a critical need to incorporate mechanisms into forecasts of species' range dynamics.  相似文献   

3.
Climate warming has been proposed as the main cause of the recent range shifts seen in many species. Although species' thermal tolerances are thought to play a key role in determining responses to climate change, especially in ectotherms, empirical evidence is still limited. We investigate the connection between species' thermal tolerances, elevational range and shifts in the lower elevational limit of dung beetle species (Coleoptera, Aphodiidea) in an upland region in the northwest of England. We measured thermal tolerances in the laboratory, and used current and historical distribution data to test specific hypotheses about the area's three dominant species, particularly the species most likely to suffer from warming: Agollinus lapponum. We found marked differences between species in their minimum and maximum thermal tolerance and in their elevational range and patterns of abundance. Overall, differences in thermal limits among species matched the abundance patterns along the elevation gradient expected if distributions were constrained by climate. Agollinus lapponum abundance increased with elevation and this species showed lower maximum and minimum thermal limits than Acrossus depressus, for which abundance declined with elevation. Consistent with lower tolerance to high temperature, we recorded an uphill retreat of the low elevation limit of A. lapponum (177 m over 57 yr) in line with the increase in summer temperature observed in the region over the same period. Moreover, this species has been replaced at low and mid‐elevations by the other two warm‐tolerant species (A. depressus and Agrilinus ater). Our results provide empirical evidence that species' thermal tolerance constrains elevational ranges and contributes to explain the observed responses to climate warming. A mechanistic understanding of how climate change directly affects species, such as the one presented here, will provide a robust base to inform predictions of how individual species and whole assemblages may change in the future.  相似文献   

4.
Climate change is among the most important global threats to biodiversity and mountain areas are supposed to be under especially high pressure. Although recent modelling studies suggest considerable future range contractions of montane species accompanied with increased extinction risk, data allowing to test actual population consequences of the observed climate changes and identifying traits associated to their adverse impacts are very scarce. To fill this knowledge gap, we estimated long-term population trends of montane birds from 1984 to 2011 in a central European mountain range, the Giant Mountains (Krkonoše), where significant warming occurred over this period. We then related the population trends to several species'' traits related to the climate change effects. We found that the species breeding in various habitats at higher altitudes had more negative trends than species breeding at lower altitudes. We also found that the species moved upwards as a response to warming climate, and these altitudinal range shifts were associated with more positive population trends at lower altitudes than at higher altitudes. Moreover, long-distance migrants declined more than residents or species migrating for shorter distances. Taken together, these results indicate that the climate change, besides other possible environmental changes, already influences populations of montane birds with particularly adverse impacts on high-altitude species such as water pipit (Anthus spinoletta). It is evident that the alpine species, predicted to undergo serious climatically induced range contractions due to warming climate in the future, already started moving along this trajectory.  相似文献   

5.
There is pressing urgency to understand how tropical ectotherms can behaviorally and physiologically respond to climate warming. We examine how basking behavior and thermal environment interact to influence evolutionary variation in thermal physiology of multiple species of lygosomine rainforest skinks from the Wet Tropics of northeastern Queensland, Australia (AWT). These tropical lizards are behaviorally specialized to exploit canopy or sun, and are distributed across marked thermal clines in the AWT. Using phylogenetic analyses, we demonstrate that physiological parameters are either associated with changes in local thermal habitat or to basking behavior, but not both. Cold tolerance, the optimal sprint speed, and performance breadth are primarily influenced by local thermal environment. Specifically, montane lizards are more cool tolerant, have broader performance breadths, and higher optimum sprinting temperatures than their lowland counterparts. Heat tolerance, in contrast, is strongly affected by basking behavior: there are two evolutionary optima, with basking species having considerably higher heat tolerance than shade skinks, with no effect of elevation. These distinct responses among traits indicate the multiple selective pressures and constraints that shape the evolution of thermal performance. We discuss how behavior and physiology interact to shape organisms’ vulnerability and potential resilience to climate change.  相似文献   

6.
Coincident with recent global warming, species have shifted their geographic distributions to cooler environments, generally by moving along thermal axes to higher latitudes, higher elevations or deeper waters. While these shifts allow organisms to track their thermal niche, these three thermal axes also covary with non-climatic abiotic factors that could pose challenges to range-shifting plants and animals. Such novel abiotic conditions also present an unappreciated pitfall for researchers – from both empirical and predictive viewpoints – who study the redistribution of species under global climate change. Climate, particularly temperature, is often assumed to be the primary abiotic factor in limiting species distributions, and decades of thermal biology research have made the correlative and mechanistic understanding of temperature the most accessible and commonly used response to any abiotic factor. Receiving far less attention, however, is that global gradients in oxygen, light, pressure, pH and water availability also covary with latitude, elevation, and/or ocean depth, and species show strong physiological and behavioral adaptations to these abiotic variables within their historic ranges. Here, we discuss how non-climatic abiotic factors may disrupt climate-driven range shifts, as well as the variety of adaptations species use to overcome abiotic conditions, emphasizing which taxa may be most limited in this capacity. We highlight the need for scientists to extend their research to incorporate non-climatic, abiotic factors to create a more ecologically relevant understanding of how plants and animals interact with the environment, particularly in the face of global climate change. We demonstrate how additional abiotic gradients can be integrated into global climate change biology to better inform expectations and provide recommendations for addressing the challenge of predicting future species distributions in novel environments.  相似文献   

7.
Mountains, especially in the tropics, harbour a unique and large portion of the world''s biodiversity. Their geographical isolation, limited range size and unique environmental adaptations make montane species potentially the most threatened under impeding climate change. Here, we provide a global baseline assessment of geographical range contractions and extinction risk of high-elevation specialists in a future warmer world. We consider three dispersal scenarios for simulated species and for the world''s 1009 montane bird species. Under constrained vertical dispersal (VD), species with narrow vertical distributions are strongly impacted; at least a third of montane bird diversity is severely threatened. In a scenario of unconstrained VD, the location and structure of mountain systems emerge as a strong driver of extinction risk. Even unconstrained lateral movements offer little improvement to the fate of montane species in the Afrotropics, Australasia and Nearctic. Our results demonstrate the particular roles that the geography of species richness, the spatial structure of lateral and particularly vertical range extents and the specific geography of mountain systems have in determining the vulnerability of montane biodiversity to climate change. Our findings confirm the outstanding levels of biotic perturbation and extinction risk that mountain systems are likely to experience under global warming and highlight the need for additional knowledge on species'' vertical distributions, dispersal and adaptive capacities.  相似文献   

8.
Matthew J. Troia  Xingli Giam 《Ecography》2019,42(11):1913-1925
Identifying how close species live to their physiological thermal maxima is essential to understand historical warm‐edge elevational limits of montane faunas and forecast upslope shifts caused by future climate change. We used laboratory experiments to quantify the thermal tolerance and acclimation potential of four fishes (Notropis leuciodus, N. rubricroceus, Etheostoma rufilineatum, E. chlorobranchium) that are endemic to the southern Appalachian Mountains (USA), exhibit different historical elevational limits, and represent the two most species‐rich families in the region. All‐subsets selection of linear regression models using AICc indicated that species, acclimation temperature, collection location and month, and the interaction between species and acclimation temperature were important predictors of thermal maxima (Tmax), which ranged from 28.5 to 37.2°C. Next, we implemented water temperature models and stochastic weather generation to characterize the magnitude and frequency of extreme heat events (Textreme) under historical and future climate scenarios across 25 379 stream reaches in the upper Tennessee River system. Lastly, we used environmental niche models to compare warming tolerances (acclimation‐corrected Tmax minus Textreme) between historically occupied versus unoccupied reaches. Historical warming tolerances, ranging from +2.2 to +10.9°C, increased from low to high elevation and were positive for all species, suggesting that Tmax does not drive warm‐edge (low elevation) range limits. Future warming tolerances were lower (?1.2 to +9.3°C) but remained positive for all species under the direst warming scenario except for a small proportion of reaches historically occupied by E. rufilineatum, indicating that Tmax and acclimation potentials of southern Appalachian minnows and darters are adequate to survive future heat waves. We caution concluding that these species are invulnerable to 21st century warming because sublethal thermal physiology remains poorly understood. Integrating physiological sensitivity and warming exposure demonstrates a general and fine‐grained approach to assess climate change vulnerability for freshwater organisms across physiographically diverse riverscapes.  相似文献   

9.
Climate change is driving the redistribution of species at a global scale and documenting and predicting species' responses to warming is a principal focus of contemporary ecology. When interpreting and predicting their responses to warming, species are generally treated as single homogenous physiological units. However, local adaptation and phenotypic plasticity can result in intraspecific differences in thermal niche. Therefore, population loss may also not only occur from trailing edges. In species with low dispersal capacity this will have profound impacts for the species as a whole, as local population loss will not be offset by immigration of warm tolerant individuals. Recent evidence from terrestrial forests has shown that incorporation of intraspecific variation in thermal niche is vital to accurately predicting species responses to warming. However, marine macrophytes (i.e. seagrasses and seaweeds) that form some of the world's most productive and diverse ecosystems have not been examined in the same context. We conducted a literature review to determine how common intraspecific variation in thermal physiology is in marine macrophytes. We find that 90% of studies identified (n = 42) found clear differences in thermal niche between geographically separated populations. Therefore, non‐trailing edge populations may also be vulnerable to future warming trends and given their limited dispersal capacity, such population loss may not be offset by immigration. We also explore how next generation sequencing (NGS) is allowing unprecedented mechanistic insight into plasticity and adaptation. We conclude that in the ‘genomic era’ it may be possible to link understanding of plasticity and adaptation at the genetic level through to changes in populations providing novel insights on the redistribution of populations under future climate change.  相似文献   

10.
Only model organisms live in a world of endless summer. Fitness at temperate latitudes reflects the ability of organisms in nature to exploit the favorable season, to mitigate the effects of the unfavorable season, and to make the timely switch from one life style to the other. Herein, we define fitness as Ry, the year-long cohort replacement rate across all four seasons, of the mosquito, Wyeomyia smithii, reared in its natural microhabitat in processor-controlled environment rooms. First, we exposed cohorts of W. smithii, from southern, midlatitude, and northern populations (30-50 degrees N) to southern and northern thermal years during which we factored out evolved differences in photoperiodic response. We found clear evidence of evolved differences in heat and cold tolerance among populations. Relative cold tolerance of northern populations became apparent when populations were stressed to the brink of extinction; relative heat tolerance of southern populations became apparent when the adverse effects of heat could accumulate over several generations. Second, we exposed southern, midlatitude, and northern populations to natural, midlatitude day lengths in a thermally benign midlatitude thermal year. We found that evolved differences in photoperiodic response (1) prevented the timely entry of southern populations into diapause resulting in a 74% decline in fitness, and (2) forced northern populations to endure a warm-season diapause resulting in an 88% decline in fitness. We argue that reciprocal transplants across latitudes in nature always confound the effects of the thermal and photic environment on fitness. Yet, to our knowledge, no one has previously held the thermal year constant while varying the photic year. This distinction is crucial in evaluating the potential impact of climate change. Because global warming in the Northern Hemisphere is proceeding faster at northern than at southern latitudes and because this change represents an amelioration of the thermal environment and a concomitant increase in the duration of the growing season, we conclude that there should be more rapid evolution of photoperiodic response than of thermal tolerance as a consequence of global warming among northern, temperate ectotherms.  相似文献   

11.
The literature on the response of insect species to the changing environments experienced along altitudinal gradients is diverse and widely dispersed. There is a growing awareness that such responses may serve as analogues for climate warming effects occurring at a particular fixed altitude or latitude over time. This review seeks, therefore, to synthesise information on the responses of insects and allied groups to increasing altitude and provide a platform for future research. It focuses on those functional aspects of insect biology that show positive or negative reaction to altitudinal changes but avoids emphasising adaptation to high altitude per se. Reactions can be direct, with insect characteristics or performance responding to changing environmental parameters, or they can be indirect and mediated through the insect's interaction with other organisms. These organisms include the host plant in the case of herbivorous insects, and also competitor species, specific parasitoids, predators and pathogens. The manner in which these various factors individually and collectively influence the morphology, behaviour, ecophysiology, growth and development, survival, reproduction, and spatial distribution of insect species is considered in detail. Resultant patterns in the abundance of individual species populations and of community species richness are examined. Attempts are made throughout to provide mechanistic explanations of trends and to place each topic, where appropriate, into the broader theoretical context by appropriate reference to key literature. The paper concludes by considering how montane insect species will respond to climate warming.  相似文献   

12.
There is strong correlative evidence that human-induced climate warming is contributing to changes in the timing of natural events. Firm attribution, however, requires cause-and-effect links between observed climate change and altered phenology, together with statistical confidence that observed regional climate change is anthropogenic. We provide evidence for phenological shifts in the butterfly Heteronympha merope in response to regional warming in the southeast Australian city of Melbourne. The mean emergence date for H. merope has shifted −1.5 days per decade over a 65-year period with a concurrent increase in local air temperatures of approximately 0.16°C per decade. We used a physiologically based model of climatic influences on development, together with statistical analyses of climate data and global climate model projections, to attribute the response of H. merope to anthropogenic warming. Such mechanistic analyses of phenological responses to climate improve our ability to forecast future climate change impacts on biodiversity.  相似文献   

13.
The broad prediction that ectotherms will be more vulnerable to climate change in the tropics than in temperate regions includes assumptions about centre/edge population effects that can only be tested by within‐species comparisons across wide latitudinal gradients. Here, we investigated the thermal vulnerability of two mangrove crab species, comparing populations at the centre (Kenya) and edge (South Africa) of their distributions. At the same time, we investigated the role of respiratory mode (water‐ versus air‐breathing) in determining the thermal tolerance in amphibious organisms. To do this, we compared the vulnerability to acute temperature fluctuations of two sympatric species with two different lifestyle adaptations: the free living Perisesarma guttatum and the burrowing Uca urvillei, both pivotal to the ecosystem functioning of mangroves. The results revealed the air‐breathing U. urvillei to be a thermal generalist with much higher thermal tolerances than P. guttatum. Importantly, however, we found that, while U. urvillei showed little difference between edge and centre populations, P. guttatum showed adaptation to local conditions. Equatorial populations had elevated tolerances to acute heat stress and mechanisms of partial thermoregulation, which make them less vulnerable to global warming than temperate conspecifics. The results reveal both the importance of respiratory mode to thermal tolerance and the unexpected potential for low latitude populations/species to endure a warming climate. The results also contribute to a conceptual model on the latitudinal thermal tolerance of these key species. This highlights the need for an integrated population‐level approach to predict the consequences of climate change.  相似文献   

14.
Leafhoppers and related Auchenorrhynchous Hemiptera (AH) are among the most diverse grassland herbivores, and many have been linked inexorably to grassland vegetation through diet and shelter for millions of years. Are AH–plant communities in natural grasslands tightly integrated, how does the interaction differ across major ecological gradients, and do habitat or environmental factors explain the most variance in AH community structure? These questions have implications for the conservation of biodiversity and in evaluating effects of a warming climate. Using grasslands of the central Tien Shan Mountains as a natural laboratory, we examine whether AH species assemblages are concordant with vegetation in terms of community structure using closely associated species-level samples. Data were recorded from a nearly 3000-m elevation gradient crossing four arid and three montane grassland vegetation classes. We found elements of AH–plant community classification and structure to be closely correlated except for at the arid–montane habitat transition where a small group of widespread AH species were significant indicators for vegetation classes in both major grassland types. AH species richness and abundance are positively correlated with plant species density and percent cover and, correspondingly, peak at mid-elevations in association with montane grasslands. While overall elevation (and covariate mean annual temperature) explains the most variance in AH species assemblages, the sum total of habitat factors explain more variance than environmental factors when arid and montane grasslands were examined separately, but environmental factors are co-equal with habitat factors when the grassland types are combined. Unexplained variance in the AH community assemblages, attributable to individualistic species responses to environmental and habitat factors, slightly exceeds the total accounted for by the model.  相似文献   

15.
Environmental variation often induces shifts in functional traits, yet we know little about whether plasticity will reduce extinction risks under climate change. As climate change proceeds, phenotypic plasticity could enable species with limited dispersal capacity to persist in situ, and migrating populations of other species to establish in new sites at higher elevations or latitudes. Alternatively, climate change could induce maladaptive plasticity, reducing fitness, and potentially stalling adaptation and migration. Here, we quantified plasticity in life history, foliar morphology, and ecophysiology in Boechera stricta (Brassicaceae), a perennial forb native to the Rocky Mountains. In this region, warming winters are reducing snowpack and warming springs are advancing the timing of snow melt. We hypothesized that traits that were historically advantageous in hot and dry, low‐elevation locations will be favored at higher elevation sites due to climate change. To test this hypothesis, we quantified trait variation in natural populations across an elevational gradient. We then estimated plasticity and genetic variation in common gardens at two elevations. Finally, we tested whether climatic manipulations induce plasticity, with the prediction that plants exposed to early snow removal would resemble individuals from lower elevation populations. In natural populations, foliar morphology and ecophysiology varied with elevation in the predicted directions. In the common gardens, trait plasticity was generally concordant with phenotypic clines from the natural populations. Experimental snow removal advanced flowering phenology by 7 days, which is similar in magnitude to flowering time shifts over 2–3 decades of climate change. Therefore, snow manipulations in this system can be used to predict eco‐evolutionary responses to global change. Snow removal also altered foliar morphology, but in unexpected ways. Extensive plasticity could buffer against immediate fitness declines due to changing climates.  相似文献   

16.
Ongoing global climate change is driving widespread shifts in species distributions. Trends show frequent upwards shifts of treelines, but information on changes in montane forest below the treeline and in the tropics and subtropics is limited, despite the importance of these areas for biodiversity and ecosystem function. Patterns of species shifts in tropical and subtropical regions are likely to be more complex and individualistic than global averages suggest due to high species diversity and strong influence of competition, alongside direct climatic limitations on distributions. To address the question of how subtropical montane tree species are likely to move as climate changes, we used an extensive national forest inventory to estimate distribution shifts of 75 tree species in Taiwan by comparing the optimum elevation and range edges of adults and juveniles within species. Overall there was a significant difference in optimum elevation of adults and juveniles. Life stage mismatches suggested upward shifts in 35% of species but downward shifts of over half (56%), while 8% appeared stable. Upward elevation shifts were disproportionately common in high elevation species, whilst mid to low elevation species suggested greater variation in shift direction. Whilst previous research on mountain forest range shifts has been dominated by work addressing changes in treeline position, we show that although high elevation species shift up, below the treeline species may shift individualistically, heralding widespread changes in forest communities over coming decades. The wide variation of responses indicated is likely driven by individual species responses to interacting environmental factors such as competition, topography and anthropogenic influences across the broad range of forest types investigated. As global environmental changes continue, more detailed understanding of tree range shifts across a wide spectrum of forests will allow us to prepare for the implications of such changes for biodiversity, ecosystem function and dependent human populations.  相似文献   

17.
Intraspecific variation in key traits such as tolerance of warming can have profound effects on ecological and evolutionary processes, notably responses to climate change. The empirical evidence for three primary elements of intraspecific variation in tolerance of warming in fishes is reviewed. The first is purely mechanistic that tolerance varies across life stages and as fishes become mature. The limited evidence indicates strongly that this is the case, possibly because of universal physiological principles. The second is intraspecific variation that is because of phenotypic plasticity, also a mechanistic phenomenon that buffers individuals’ sensitivity to negative impacts of global warming in their lifetime, or to some extent through epigenetic effects over successive generations. Although the evidence for plasticity in tolerance to warming is extensive, more work is required to understand underlying mechanisms and to reveal whether there are general patterns. The third element is intraspecific variation based on heritable genetic differences in tolerance, which underlies local adaptation and may define long-term adaptability of a species in the face of ongoing global change. There is clear evidence of local adaptation and some evidence of heritability of tolerance to warming, but the knowledge base is limited with detailed information for only a few model or emblematic species. There is also strong evidence of structured variation in tolerance of warming within species, which may have ecological and evolutionary significance irrespective of whether it reflects plasticity or adaptation. Although the overwhelming consensus is that having broader intraspecific variation in tolerance should reduce species vulnerability to impacts of global warming, there are no sufficient data on fishes to provide insights into particular mechanisms by which this may occur.  相似文献   

18.
In a warming climate, species are expected to shift their geographical ranges to higher elevations and latitudes, and if interacting species shift at different rates, networks may be disrupted. To quantify the effects of ongoing climate change, repeating historical biodiversity surveys is necessary. In this study, we compare the distribution of a plant–pollinator community between two surveys 115 years apart (1889 and 2005–06), reporting distribution patterns and changes observed for bumblebee species and bumblebee-visited plants in the Gavarnie-Gèdre commune in the Pyrenees, located in southwest Europe at the French–Spanish border. The region has warmed significantly over this period, alongside shifts in agricultural land use and forest. The composition of the bumblebee community shows relative stability, but we observed clear shifts to higher elevations for bumblebees (averaging 129 m) and plants (229 m) and provide preliminary evidence that some bumblebee species shift with the plants they visit. We also observe that some species have been able to occupy the same climate range in both periods by shifting elevation range. The results suggest the need for long-term monitoring to determine the role and impact of the different drivers of global change, especially in montane habitats where the impacts of climate changes are anticipated to be more extreme.  相似文献   

19.
One of the strongest biological impacts of climate change has been the movement of species poleward and upward in elevation. Yet, what is not clear is the extent to which the spatial distribution of locally adapted lineages and ecologically important traits may also shift with continued climate change. Here, we take advantage of a transplant experiment mimicking up‐slope seed dispersal for a suite of ecologically diverse populations of yellow monkeyflower (Mimulus guttatus sensu lato) into a high‐elevation common garden during an extreme drought period in the Sierra Nevada mountains, California, USA. We use a demographic approach to quantify fitness and test for selection on life history traits in local versus lower‐elevation populations and in normal versus drought years to test the potential for up‐slope migration and phenotypic selection to alter the distribution of key life history traits in montane environments. We find that lower‐elevation populations tend to outperform local populations, confirming the potential for up‐slope migration. Although selection generally favored some local montane traits, including larger flowers and larger stem size at flowering, drought conditions tended to select for earlier flowering typical of lower‐elevation genotypes. Taken together, this suggests that monkeyflower lineages moving upward in elevation could experience selection for novel trait combinations, particularly under warmer and drier conditions that are predicted to occur with continued climate change.  相似文献   

20.
  1. Tropical ectotherm species tend to have narrower physiological limits than species from temperate areas. As a consequence, tropical species are considered highly vulnerable to climate change since minor temperature increases can push them beyond their physiological thermal tolerance. Differences in physiological tolerances can also be seen at finer evolutionary scales, such as among populations of ectotherm species along elevation gradients, highlighting the physiological sensitivity of such organisms.
  2. Here, we analyze the influence of elevation and bioclimatic domains, defined by temperature and precipitation, on thermal sensitivities of a terrestrial direct‐developing frog (Craugastor loki) in a tropical gradient. We address the following questions: (a) Does preferred temperature vary with elevation and among bioclimatic domains? (b) Do thermal tolerance limits, that is, critical thermal maximum and critical thermal minimum vary with elevation and bioclimatic domains? and (c) Are populations from high elevations more vulnerable to climate warming?
  3. We found that along an elevation gradient body temperature decreases as environmental temperature increases. The preferred temperature tends to moderately increase with elevation within the sampled bioclimatic domains. Our results indicate that the ideal thermal landscape for this species is located at midelevations, where the thermal accuracy (db) and thermal quality of the environment (de) are suitable. The critical thermal maximum is variable across elevations and among the bioclimatic domains, decreasing as elevation increases. Conversely, the critical thermal minimum is not as variable as the critical thermal maximum.
  4. Populations from the lowlands may be more vulnerable to future increases in temperature. We highlight that the critical thermal maximum is related to high temperatures exhibited across the elevation gradient and within each bioclimatic domain; therefore, it is a response to high environmental temperatures.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号