首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deng Y  Ye J  Mi H 《Plant & cell physiology》2003,44(5):534-540
The expression and activity of type-1 NAD(P)H dehydrogenase (NDH-1) was compared between cells of Synechocystis PCC6803 grown in high (H-cells) and low (L-cells) CO(2) conditions. Western analysis indicated that L-cells contain higher amounts of the NDH-1 subunits, NdhH, NdhI and NdhK. An NADPH-specific subcomplex of NDH-1 showed higher NADPH-nitroblue tetrazolium oxidoreductase activity in L-cells. The activities of both NADPH-menadione oxidoreductase and light-dependent NADPH oxidation driven by photosystem I were much higher in L-cells than in H-cells. The initial rate of re-reduction of P700(+) following actinic light illumination in the presence of DCMU under background far-red light was enhanced in L-cells. In addition, rotenone, a specific inhibitor of NDH-1, suppressed the relative rate of post-illumination increase in Chl fluorescence of L-cells more than that of H-cells, suggesting that the involvement of NDH-1 in cyclic electron flow around photosystem I was enhanced by low CO(2). Taken together, these results suggest that NDH-1 complex and NDH-1-mediated cyclic electron transport are stimulated by low CO(2) and function in the acclimation of cyanobacteria to low CO(2).  相似文献   

2.
The expression and activity of type 1 NAD(P)H dehydrogenase (NDH-1) were investigated in Synechocystis PCC 6803 cells during different growth phases (i.e. lag, logarithmic, stationary and decline phases). The relative amount of NDH-1, estimated by Western blot analysis using antibodies against NdhH, NdhI and NdhK, increased more than two-fold during growth from the lag to the logarithmic phase and then decreased after the logarithmic phase to reach lowest levels after 15 days (decline phase). The activity of light-dependent NADPH oxidation and cyclic electron flow around photosystem I (PSI) changed nearly in parallel with the amount of NdhH, NdhI and NdhK in cells across the growth phases. In contrast, the activity of photosynthetic O2 evolution and respiratory O2 uptake was not significantly different across phases of growth; the fluctuation of the activity at different phases was within 40%. These results suggested that the activity of light-dependent NADPH oxidation and PSI-cyclic electron flow are restricted by the amount of NDH-1 and that other factor(s) are limiting the rates of photosynthesis and respiration.  相似文献   

3.
Two mutants that grew faster than the wild-type (WT) strain under high light conditions were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in ssl1690 encoding NdhO. Deletion of ndhO increased the activity of NADPH dehydrogenase (NDH-1)-dependent cyclic electron transport around photosystem I (NDH-CET), while overexpression decreased the activity. Although deletion and overexpression of ndhO did not have significant effects on the amount of other subunits such as NdhH, NdhI, NdhK, and NdhM in the cells, the amount of these subunits in the medium size NDH-1 (NDH-1M) complex was higher in the ndhO-deletion mutant and much lower in the overexpression strain than in the WT. NdhO strongly interacts with NdhI and NdhK but not with other subunits. NdhI interacts with NdhK and the interaction was blocked by NdhO. The blocking may destabilize the NDH-1M complex and repress the NDH-CET activity. When cells were transferred from growth light to high light, the amounts of NdhI and NdhK increased without significant change in the amount of NdhO, thus decreasing the relative amount of NdhO. This might have decreased the blocking, thereby stabilizing the NDH-1M complex and increasing the NDH-CET activity under high light conditions.  相似文献   

4.
Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has a similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described for comparison.  相似文献   

5.
The larger protein complexes of the cyanobacterial photosynthetic membrane of Thermosynechoccus elongatus and Synechocystis 6803 were studied by single particle electron microscopy after detergent solubilization, without any purification steps. Besides the "standard" L-shaped NDH-1L complex, related to complex I, large numbers of a U-shaped NDH-1MS complex were found in both cyanobacteria. In membranes from Synechocystis DeltacupA and DeltacupA/cupB mutants the U-shaped complexes were absent, indicating that CupA is responsible for the U-shape by binding at the tip of the membrane-bound arm of NDH-1MS. Comparison of membranes grown under air levels of CO(2) or 3% CO(2) indicates that the number of NDH-1MS particles is 30-fold higher under low-CO(2).  相似文献   

6.
发菜是一种陆生蓝藻,分布于一些干旱和半干旱区域。其NADPH脱氢酶(NDH-1)是一种重要的光合膜蛋白复合体,参与CO2吸收、围绕光系统Ⅰ的循环电子传递和细胞呼吸。为研究该物种中ndhK基因的功能,本研究利用特异性引物,通过PCR方法从发菜中扩增ndhK基因并克隆到原核表达载体pET-32a上,得到表达载体pET-32a-ndhK,将其转入大肠杆菌BL21(DE3),经异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达,得到分子量大小为43 kDa的融合蛋白NdhK。随后,采用亲和层析,对融合蛋白进行纯化回收,并以此回收蛋白作为抗原进行免疫,制备NdhK的多克隆抗体。最后,利用Western blot蛋白免疫印迹对所得抗体的特异性进行验证。从而为进一步探索发菜ndhK基因的功能以及发菜中NDH-1复合体各亚基的作用进行前期准备。  相似文献   

7.
Cyanobacteria possess multiple, functionally distinct NADPH dehydrogenase (NDH-1) complexes. In this mini-review, we describe the cyanobacterial NDH-1 complexes by focusing on their identification, regulatory properties, and multiple functions. The multiple functions can be divided into basic and extending functions, and the basic functions are compared with those in chloroplasts. Many questions related to cyanobacterial NDH-1 complexes remain unanswered and are briefly summarized here.  相似文献   

8.
The cyanobacterial type I NAD(P)H dehydrogenase (NDH-1) complexes play a crucial role in a variety of bioenergetic reactions such as respiration, CO2 uptake, and cyclic electron transport around photosystem I. Two types of NDH-1 complexes, NDH-1MS and NDH-1MS′, are involved in the CO2 uptake system. However, the composition and function of the complexes still remain largely unknown. Here, we found that deletion of ndhM caused inactivation of NDH-1-dependent cyclic electron transport around photosystem I and abolishment of CO2 uptake, resulting in a lethal phenotype under air CO2 condition. The mutation of NdhM abolished the accumulation of the hydrophilic subunits of the NDH-1, such as NdhH, NdhI, NdhJ, and NdhK, in the thylakoid membrane, resulting in disassembly of NDH-1MS and NDH-1MS′ as well as NDH-1L. In contrast, the accumulation of the hydrophobic subunits was not affected in the absence of NdhM. In the cytoplasm, the NDH-1 subcomplex assembly intermediates including NdhH and NdhK were seriously affected in the ΔndhM mutant but not in the NdhI-deleted mutant ΔndhI. In vitro protein interaction analysis demonstrated that NdhM interacts with NdhK, NdhH, NdhI, and NdhJ but not with other hydrophilic subunits of the NDH-1 complex. These results suggest that NdhM localizes in the hydrophilic subcomplex of NDH-1 complexes as a core subunit and is essential for the function of NDH-1MS and NDH-1MS′ involved in CO2 uptake in Synechocystis sp. strain PCC 6803.  相似文献   

9.
Type II NADH dehydrogenase of Corynebacterium glutamicum (NDH-2) was purified from an ndh overexpressing strain. Purification conferred 6-fold higher specific activity of NADH:ubiquinone-1 oxidoreductase with a 3.5-fold higher recovery than that previously reported (K. Matsushita et al., 2000). UV-visible and fluorescence analyses of the purified enzyme showed that NDH-2 of C. glutamicum contained non-covalently bound FAD but not covalently bound FMN. This enzyme had an ability to catalyze electron transfer from NADH and NADPH to oxygen as well as various artificial quinone analogs at neutral and acidic pHs respectively. The reduction of native quinone of C. glutamicum, menaquinone-2, with this enzyme was observed only with NADH, whereas electron transfer to oxygen was observed more intensively with NADPH. This study provides evidence that C. glutamicum NDH-2 is a source of the reactive oxygen species, superoxide and hydrogen peroxide, concomitant with NADH and NADPH oxidation, but especially with NADPH oxidation. Together with this unique character of NADPH oxidation, phylogenetic analysis of NDH-2 from various organisms suggests that NDH-2 of C. glutamicum is more closely related to yeast or fungal enzymes than to other prokaryotic enzymes.  相似文献   

10.
The isolated epsilon subunit of F(1)-ATPase from thermophilic Bacillus PS3 (TF(1)) binds ATP [Y. Kato-Yamada, M. Yoshida, J. Biol. Chem. 278 (2003) 36013]. The obvious question is whether the ATP binding concern with the regulation of ATP synthase activity or not. If so, the epsilon subunit even in the ATP synthase complex should have the ability to bind ATP. To check if the ATP binding to the epsilon subunit within the ATP synthase complex may occur, the gammaepsilon sub-complex of TF(1) was prepared and ATP binding was examined. The results clearly showed that the gammaepsilon sub-complex can bind ATP.  相似文献   

11.
The thermophilic bacterium, Moorella sp. HUC22-1, newly isolated from a mud sample, produced ethanol from H(2) and CO(2) during growth at 55 degrees C. In batch cultures in serum bottles, 1.5 mM ethanol was produced from 270 mM H(2) and 130 mM CO(2) after 156 h, whereas less than 1 mM ethanol was produced from 23 mM fructose after 33 h. Alcohol dehydrogenase and acetaldehyde dehydrogenase activities were higher in cells grown with H(2) and CO(2) than those grown with fructose. The NADH/NAD(+) and NADPH/NADP(+) ratios in cells grown with H(2) and CO(2) were also higher than those in cells grown with fructose. When the culture pH was controlled at 5 with H(2) and CO(2) in a fermenter, ethanol production was 3.7-fold higher than that in a pH-uncontrolled culture after 220 h.  相似文献   

12.
To investigate the (co)expression, interaction, and membrane location of multifunctional NAD(P)H dehydrogenase type 1 (NDH-1) complexes and their involvement in carbon acquisition, cyclic photosystem I, and respiration, we grew the wild type and specific ndh gene knockout mutants of Synechocystis sp PCC 6803 under different CO2 and pH conditions, followed by a proteome analysis of their membrane protein complexes. Typical NDH-1 complexes were represented by NDH-1L (large) and NDH-1M (medium size), located in the thylakoid membrane. The NDH-1L complex, missing from the DeltaNdhD1/D2 mutant, was a prerequisite for photoheterotrophic growth and thus apparently involved in cellular respiration. The amount of NDH-1M and the rate of P700+ rereduction in darkness in the DeltaNdhD1/D2 mutant grown at low CO2 were similar to those in the wild type, whereas in the M55 mutant (DeltaNdhB), lacking both NDH-1L and NDH-1M, the rate of P700+ rereduction was very slow. The NDH-1S (small) complex, localized to the thylakoid membrane and composed of only NdhD3, NdhF3, CupA, and Sll1735, was strongly induced at low CO2 in the wild type as well as in DeltaNdhD1/D2 and M55. In contrast with the wild type and DeltaNdhD1/D2, which show normal CO2 uptake, M55 is unable to take up CO2 even when the NDH-1S complex is present. Conversely, the DeltaNdhD3/D4 mutant, also unable to take up CO2, lacked NDH-1S but exhibited wild-type levels of NDH-1M at low CO2. These results demonstrate that both NDH-1S and NDH-1M are essential for CO2 uptake and that NDH-1M is a functional complex. We also show that the Na+/HCO3- transporter (SbtA complex) is located in the plasma membrane and is strongly induced in the wild type and mutants at low CO2.  相似文献   

13.
Photoautotrophically grown cells of the cyanobacterium Synechocystis sp. PCC 6803 wild type and the Ins2 mutant carrying an insertion in the drgA gene encoding soluble NAD(P)H:quinone oxidoreductase (NQR) did not differ in the rate of light-induced oxygen evolution and Photosystem I reaction center (P700+) reduction after its oxidation with a white light pulse. In the presence of DCMU, the rate of P700+ reduction was lower in mutant cells than in wild type cells. Depletion of respiratory substrates after 24 h dark-starvation caused more potent decrease in the rate of P700+ reduction in DrgA mutant cells than in wild type cells. The reduction of P700+ by electrons derived from exogenous glucose was slower in photoautotrophically grown DrgA mutant than in wild type cells. The mutation in the drgA gene did not impair the ability of Synechocystis sp. PCC 6803 cells to oxidize glucose under heterotrophic conditions and did not impair the NDH-1-dependent, rotenone-inhibited electron transfer from NADPH to P700+ in thylakoid membranes of the cyanobacterium. Under photoautotrophic growth conditions, NADPH-dehydrogenase activity in DrgA mutant cells was less than 30% from the level observed in wild type cells. The results suggest that NQR, encoded by the drgA gene, might participate in the regulation of cytoplasmic NADPH oxidation, supplying NADP+ for glucose oxidation in the pentose phosphate cycle of cyanobacteria.  相似文献   

14.
Oscar Juárez  Federico Martínez 《BBA》2004,1658(3):244-251
Ustilago maydis mitochondria contain the four classical components of the electron transport chain (complexes I, II, III, and IV), a glycerol phosphate dehydrogenase, and two alternative elements: an external rotenone-insensitive flavone-sensitive NADH dehydrogenase (NDH-2) and an alternative oxidase (AOX). The external NDH-2 contributes as much as complex I to the NADH-dependent respiratory activity, and is not modulated by Ca2+, a regulatory mechanism described for plant NDH-2, and presumed to be a unique characteristic of the external isozyme. The AOX accounts for the 20% residual respiratory activity after inhibition of complex IV by cyanide. This residual activity depends on growth conditions, since cells grown in the presence of cyanide or antimycin A increase its proportion to about 75% of the uninhibited rate. The effect of AMP, pyruvate and DTT on AOX was studied. The activity of AOX in U. maydis cells was sensitive to AMP but not to pyruvate, which agrees with the regulatory characteristics of a fungal AOX. Interestingly, the presence of DTT during cell permeabilisation protected the enzyme against inactivation.The pathways of quinone reduction and quinol oxidation lack an additive behavior. This is consistent with the competition of the respiratory components of each pathway for the quinol/quinone pool.  相似文献   

15.
In order to develop mutagenic methods, supercritical CO(2) was evaluated as a new environmentally friendly mutagen. During treatment by supercritical CO(2), the survival rate and the positive mutation rate of Flavobacterium sp. strain YY25 were strongly dependent on pressure, temperature, treatment time and additive (DMSO). 8 MPa, 35 degrees C, 30 min of supercritical CO(2) and 1% of DMSO were believed as the optimum doses. After the seed liquid was treated under these conditions, a mutant strain with about 44.2% increase in lipase yield comparing with the wild strain was acquired, indicating that the novel mutagenic method by supercritical CO(2) was feasible and promising in microbial breeding field.  相似文献   

16.
Eleven varieties of Sorghum bicolor, subjected to PEG-mediated drought stress were compared for their photosynthetic performance. The varieties differed in their relative water content over a range of PEG concentrations (0-25%). CO2 assimilation, stomatal conductance and the quantum yield of PSII electron transport decreased with increasing PEG concentrations in all varieties. However the intercellular CO2 concentration showed a nonlinear PEG concentration-dependent change. At lower PEG concentrations there was a decrease in the levels of intercellular CO2 concentration in all varieties that could be attributed to stomatal closure. At higher PEG concentrations, some varieties showed an increase in the intercellular CO2 concentration, indicating an inhibition of photosynthetic activity due to non-stomatal effects, while others did not. It was seen that the varieties differed in the stress thresholds at which stomatal and metabolic limitations to photosynthesis occur. These differences in the photosynthetic adaptation of Sorghum varieties could be useful in identifying genotypes showing large differences in photosynthetic adaptation, which could be useful in mapping photosynthetic traits for drought stress tolerance.  相似文献   

17.
Two major complexes of NADPH dehydrogenase (NDH-1) have been identified in cyanobacteria. A large complex (NDH-1L) contains NdhD1 and NdhF1, which are absent in a medium size complex (NDH-1M). They play important roles in respiration, cyclic electron transport around photosystem I, and CO2 acquisition. Two mutants sensitive to high light for growth and impaired in NDH-1-mediated cyclic electron transfer were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in sml0013 encoding NdhP, a single transmembrane small subunit of the NDH-1 complex. During prolonged incubation of the wild type thylakoid membrane with n-dodecyl β-d-maltoside (DM), about half of the NDH-1L was disassembled to NDH-1M and the rest decomposed completely without forming NDH-1M. In the ndhP deletion mutant (ΔndhP), disassembling of NDH-1L to NDH-1M occurred even on ice, and decomposition to a small piece occurred at room temperature much faster than in the wild type. Deletion of the C-terminal tail of NdhP gave the same result. The C terminus of NdhP was tagged by YFP-His6. Blue native gel electrophoresis of the DM-treated thylakoid membrane of this strain and Western analysis using the antibody against GFP revealed that NdhP-YFP-His6 was exclusively confined to NDH-1L. During prolonged incubation of the thylakoid membrane of the tagged strain with DM at room temperature, NDH-1L was partially disassembled to NDH-1M and the 160-kDa band containing NdhP-YFP-His6 and possibly NdhD1 and NdhF1. We therefore conclude that NdhP, especially its C-terminal tail, is essential to assemble NdhD1 and NdhF1 and stabilize the NDH-1L complex.  相似文献   

18.
Type II NADH dehydrogenases (NDH-2) are monomeric flavoenzymes catalyzing electron transfer from NADH to quinones. While most NDH-2 preferentially oxidize NADH, some of these enzymes have been reported to efficiently oxidize NADPH. With the aim to modify the NADPH vs NADH specificity of the relatively NADH specific Agrobacterium tumefaciens NDH-2, two conserved residues (E and A) of the substrate binding domain were, respectively, mutated to Q and S. We show that when E was replaced by Q at position 203 the enzyme was able to oxidize NADPH as efficiently as NADH. Growth on a minimal medium of an Escherichia coli double mutant lacking both NDH-1 and NDH-2 was restored more efficiently when mutated proteins able to oxidize NADPH were expressed. The biotechnological interest of expressing such modified enzymes in photosynthetic organisms is discussed.  相似文献   

19.
Wall-pore olfactory sensilla located in the capsule of Haller's organ on the tarsus of Amblyomma variegatum ticks bear cells responding to vertebrate breath: one of these sensilla contains a CO2-excited receptor and a second sensillum has a CO2-inhibited receptor. Each of these antagonistic CO2-receptors, which display typical phasic-tonic responses, monitors a different CO2-concentration range. The CO2-inhibited receptor is very sensitive to small concentration changes between 0 and ca. 0.2%, but variations of 0.01% around ambient (ca. 0.04%) induce the strongest frequency modulation of this receptor. An increase of just 0.001-0.002% (10-20 ppm) above a zero CO2-level already inhibits this receptor. By contrast, the CO2-excited receptor is not so sensitive to small CO2 shifts around ambient, but best monitors changes in CO2 concentrations above 0.1%. This receptor is characterized by a steep dose-response curve and a fast inactivation even at high CO2-concentrations (greater than 2%). In a wind-tunnel, Amblyomma variegatum is activated from the resting state and attracted by CO2 concentrations of 0.04 to ca. 1%, which corresponds to the sensitivity range of its CO2-receptors. The task of perceiving the whole concentration range to which this tick is attracted would thus appear to be divided between two receptors, one sensitive to small changes around ambient and the other sensitive to the higher concentrations normally encountered when approaching a vertebrate host.  相似文献   

20.
We established an Na2S-free, large-scale overexpression system of deriving CODH II from thermophilic bacterium Carboxydothermus hydrogenoformans in Escherichia coli using a large-scale fermentor. Recombinant-CODH II showed a CO oxidation activity of 9,600 U/mg. In addition, recombinant-CODH II exhibited considerable CO2 reduction activity, of 16.9 U/mg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号