首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidermal growth factor (EGF) enhances the induction of alpha-lactalbumin in mammary explants from pregnant and virgin rats in the presence of insulin (I), hydrocortisone (F) and prolactin (P). EGF also enhances the prolactin-independent induction of alpha-lactalbumin in tissue from pregnant rats and evokes prolactin-independent induction of alpha-lactalbumin in mammary tissue from virgin rats in the presence of I and F. Casein synthesis and galactosyltransferase activity are unaffected by EGF in the IFP-system, and are not induced in the IF-EGF-system. Multiplication stimulating activity, nerve growth factor, fibroblast growth factor and platelet-derived growth factor do not mimic the selective effects of EGF on rat alpha-lactalbumin. These influences of EGF on the differentiation of isolated rat mammary tissue are compared with those on mouse and rabbit tissue studied previously.  相似文献   

2.
Epithelial cells in explants from the mammary glands of euthyroid mature virgin mice are proliferatively dormant. They must undergo DNA synthesis and traverse the cell cycle in vitro before they are able to differentiate fully in response to insulin, hydrocortisone, and prolactin, and synthesize enzymatically active alpha-lactalbumin (measured as lactose synthetase activity). In contrast, glands from hyperthyroid mature virgin mice do not require DNA synthesis in vitro to differentiate. Explants from the euthyroid virgin tissue overcome their dependence on DNA synthesis when 10(-9) M 3,5,3'-triiodo-L-thyronine is added directly to the cultures in addition to the other three hormones. Explants from involuted mammary glands from euthyroid primiparous mice do not require DNA synthesis in vitro to make the milk protein even though they, like explants from mature euthyroid virgin tissue, are proliferatively dormant and do not contain detectable lactose synthetase activity in vivo. Glands from primiparous animals made mildly hypothyroid by ingestion of 0.1% thiouracil in drinking water during 7 wk of involution remain morphologically indistinguishable from glands of their euthyroid counterparts. However, explants from the glands of these hypothyroid animals revert to a state of dependence on DNA synthesis to differentiate functionally. These observations suggest that the dependence on DNA synthesis and cell cycle traversal for hormonal induction of lactose synthetase activity in the mouse mammary gland is controlled by thyroid hormones.  相似文献   

3.
Virgin mouse mammary gland in explant culture will differentiate and synthesize casein and α-lactalbumin when insulin, hydrocortisone, and prolactin (IFPRL) are present in the culture medium. Explants whose DNA synthesis has been blocked differentiate cytologically, mobilize lipid, synthesize RNA, and incorporate 3H-amino acids into proteins to the same extent as unblocked tissue. Nevertheless, casein synthesis as measured by immunoprecipitation with casein-specific antiserum remains at the zero-time level in blocked explants while unblocked explants produce casein at five- to eightfold greater levels. Electrophoretic analysis of immunoprecipitated radioactive proteins showed that the IFPRL-treated virgin tissue made all four size classes of mouse casein. Immunoperoxidase studies of explants revealed that the number of mammary epithelial cells positive for casein was 2–8% in blocked and 24–31% in unblocked, in good agreement with the radioimmunoprecipitation results. Immunoelectron microscopy demonstrated the accumulation of casein within the cisternae of the granular endoplasmic reticulum and in Golgi vacuoles in the unblocked epithelial cells. Similar accumulation did not occur in blocked cultures despite the secretory appearance of the cells. Autoradiographic analysis of blocked and unblocked explants, incubated in the presence of IFPRL and [3H]thymidine for 72 hr, showed that 53–57% of the epithelial cells synthesized DNA in unblocked explants, whereas only 2% incorporated the label in the presence of cytosine arabinoside. When explants were incubated with IFPRL and various concentrations of colchicine, only 5–6% of the epithelial cells were found to enter mitosis. Since cell duplication cannot account for the severalfold increase in casein-producing cells in the unblocked explants, the results suggest that the requirement for DNA synthesis in this system may involve either polyploid cells or the augmentation of specific sequences necessary for the facilitation of terminal differentiation. Similar requirements for DNA synthesis were not observed in mammary explants from pregnant and primiparous (but nonpregnant) mice.  相似文献   

4.
1. alpha-Lactalbumin and casein have been isolated from tammar milk. 2. alpha-Lactalbumin was induced in mammary explants by culture with anterior pituitary. 3. Casein was induced maximally in the presence of a physiological concentration of prolactin alone. 4. Progesterone did not inhibit the prolactin-induced synthesis of casein, alpha-lactalbumin, galactosyltransferase or fatty acids. 5. Both dibutyryl cAMP and a combination of cholera toxin and IBMX did significantly inhibit the induction of casein and alpha-lactalbumin. 6. Progesterone withdrawal is not a component of the lactogenic trigger in this marsupial but cAMP may be a common intracellular signal for negative control of lactogenesis in both marsupials and eutherians.  相似文献   

5.
The metabolism of nuclear proteins was studied at differentiation of mammary cells in the tissue culture with lactogenic hormones. The synthesis of nuclear acidic proteins under the influence of insulin is shown to be an initial step in cell differentiation of the gland; later the DNA synthesis is stimulated, and the synthesis and phosphorylation of histones are intestified. The inducing action of prolactin on the synthesis of RNA and casein is displayed only after the action of insulin and hydrocortisone on the tissue.  相似文献   

6.
We have previously described pluripotent, parity-induced mammary epithelial cells (PI-MEC) marked by Rosa26-lacZ expression in the mammary glands of parous females. PI-MEC act as lobule-limited epithelial stem/progenitor cells. To determine whether parity is necessary to generate PI-MEC, we incubated mammary explant cultures from virgin mice in vitro with insulin alone (I), hydrocortisone alone (H), prolactin alone (Prl), or a combination of these lactogenic hormones (IHPrl). Insulin alone activated the WAP-Cre gene. Hydrocortisone and prolactin alone did not. Any combination of hormones that included insulin was effective. Only I, H and Prl together were able to induce secretory differentiation and milk protein synthesis. In addition, EGF, IGF-2 and IGF-1 added individually produced activated (lacZ(+)) PI-MEC in explant cultures. Neither estrogen nor progesterone induced WAP-Cre expression in the explants. None of these positive initiators of WAP-Cre expression in PI-MEC were effective in mammospheres or two-dimensional cultures of mammary epithelium, indicating the indispensability of epithelial-stromal interaction in PI-MEC activation. Like PI-MEC, lacZ(+) cells from virgin explants proliferated and contributed progeny to mammospheres in vitro and to epithelial outgrowths in vivo after transplantation. LacZ(+) cells induced in virgin mouse mammary explants were multipotent (like PI-MEC) in impregnated hosts producing lacZ(+) mammary alveolar structures comprised of both myoepithelial and luminal progeny. These data demonstrate PI-MEC, a mammary epithelial sub-population of lobule-limited progenitor cells, are present in nulliparous female mice before parity and, like the PI-MEC observed following parity, are capable of proliferation, self-renewal and the capacity to produce progeny of diverse epithelial cell fates.  相似文献   

7.
8.
9.
Addition of cortisol at concentrations above 300 nM selectively inhibited the synthesis of alpha-lactalbumin and the accumulation of its mRNA in the mouse mammary gland cultured in the presence of insulin and prolactin, whereas the same treatment augmented casein synthesis and the accumulation of casein mRNA. Prostaglandin E2 or F2 alpha reversed the inhibitory effects of cortisol in a dose-dependent manner, without affecting casein production. The levels of prostaglandin E2 or F2 alpha in tissue explants cultured with insulin and prolactin increased about 2.6-fold over those in uncultured tissue, and the addition of cortisol decreased these levels approximately 2-fold. These results indicate the ability of prostaglandins to counteract the inhibitory effect of cortisol on the alpha-lactalbumin gene expression in the mouse mammary gland.  相似文献   

10.
Amiloride, an inhibitor of Na+/H+ exchange, was added at various concentrations to the culture medium of rabbit mammary explants. In the concentration range 100-250 microM, amiloride progessively inhibited 14C-thymidine incorporation induced by insulin, EGF or prolactin. Up to 250 microM, amiloride, which did not inhibit basal protein synthesis, was not cytotoxic, but it reduced basal DNA synthesis at the highest concentration. Addition of amiloride to the culture medium of mammary explants also strongly inhibited the induction of casein synthesis and casein mRNA accumulation by prolactin. The inhibition by amiloride is therefore not specific of the mitogenic action of prolactin since this drug also prevented its lactogenic action. The data reported here describe a new inhibitory action of amiloride on the transmission of the lactogenic signals.  相似文献   

11.
The anatomical and physiological characteristics of thoracic and abdominal mammary glands were investigated in order to understand why the incidence of mammary tumors is higher in the former. Epithelium in explants from both sets of glands required DNA synthesis, insulin, cortisol, and prolactin for full differentiation as measured by alpha-lactalbumin accumulation. The temporal pattern and magnitude of response were the same with respect to both DNA synthesis and differentiation; however, the epithelium in explants from the thoracic glands required concentrations of hormones for alpha-lactalbumin accumulation only one-half to one-third those from abdominal glands. Tumor distribution did not appear to correlate with mammary gland histology, size, or epithelial content.  相似文献   

12.
Cortisol was previously shown to exert different, concentration-dependent, effects on the accumulation of casein and alpha-lactalbumin in mammary glands from mid-pregnant mice cultured in the presence of insulin and prolactin [Ono & Oka (1980) Cell 19, 473-480]. The present study demonstrated that the addition of 30nM-cortisol to the medium containing insulin and prolactin resulted in a marked enhancement of the rate of synthesis of both alpha-lactalbumin and casein in cultured tissue. The addition of 3 microM-cortisol in combination with insulin and prolactin caused a marked decrease in the rate of alpha-lactalbumin synthesis, but increased casein synthesis substantially. Similar changes were also observed in the amount of translatable mRNA for alpha-lactalbumin and casein in mammary explants cultured with insulin, prolactin and the two concentrations of cortisol. The study of the turnover of the milk proteins in cultured explants showed that virtually all of the casein synthesized remained intact in tissue explants cultured with 3 microM cortisol, whereas about 45% of casein disappeared in 40h from explants cultured with 30nM-cortisol. In contrast, the two concentrations of cortisol did not differentially affect the disappearance of alpha-lactalbumin, which was about 55% in 40h. These results indicate that the concentration-dependent differential actions of cortisol on the accumulation of alpha-lactalbumin and casein are exerted through its effects on the rate of synthesis and turnover of the two proteins as well as on the accumulation of their mRNA species.  相似文献   

13.
J W Perry  T Oka 《In vitro》1984,20(1):59-65
The organ culture of the mammary gland of lactating mice was used to examine the response of the differentiated gland to lactogenic stimuli, insulin, cortisol, and prolactin. Time course studies showed that casein synthesis in cultured tissue decreased rapidly during the first 2 d despite the presence of the three hormones, but on the 3rd d tissue cultured with either insulin and prolactin or all three hormones regained the ability to synthesize milk proteins, casein, and alpha-lactalbumin: a greater increase occurred in the three hormone system. The delayed addition of prolactin on Day 2 to the culture system containing insulin and cortisol also stimulated casein synthesis. The addition of cytarabine, which inhibited insulin-dependent cell proliferation in cultured explants, did not block the rebound of milk protein synthesis. These results indicate that in the presence of insulin, cortisol, and prolactin mammary epithelial cells in culture first lose and then regain the ability of synthesizing milk protein without requiring the formation of new daughter cells.  相似文献   

14.
The effect of progesterone on the synthesis of milk proteins, casein and alpha-lactalbumin was investigated by culturing mammary explants from mid-pregnant mice in serum-free medium. The addition of progesterone at concentrations above 10 ng/ml inhibited both the casein and alpha-lactalbumin accumulation that were induced by the synergistic actions of insulin, prolactin and cortisol. The maximal inhibition was attained at a progesterone concentration of 100 ng/ml. The maximal level of inhibition of the alpha-lactalbumin accumulation was about 90% in the presence of insulin and prolactin or insulin, prolactin and 0.01 microgram/ml of cortisol. The inhibition of the casein accumulation by progesterone was about 80% in the presence of insulin and prolactin, and about 40% in the presence of insulin, prolactin and 1 microgram/ml of cortisol, indicating that cortisol partially antagonized the action of progesterone on the casein synthesis. When the inhibitory effect of progesterone on the accumulation of both alpha-lactalbumin and casein was examined in cultured mammary tissues from virgin, early pregnant, mid-pregnant and late pregnant mice, the degree of inhibition was markedly reduced in tissue from late pregnant mice. This indicates that the susceptibility of mammary gland to the inhibitory action of progesterone varies with the developmental stage of the tissue.  相似文献   

15.
16.
p-Bromphenacyl bromide (BPB) at concentrations of 50 microM and above and quinacrine (50 microM) abolished the actions of prolactin (PRL) on casein and lipid biosynthesis in cultured mouse mammary gland explants. In cultured rabbit mammary gland explants, 100 microM BPB or quinacrine abolished the PRL stimulation of casein synthesis, while 50 microM BPB or 250 microM quinacrine abolished the PRL stimulation of lipid biosynthesis. Since BPB and quinacrine are known to inhibit the enzyme phospholipase A2 (PLA2), it is possible that ongoing PLA2 activity is essential for prolactin to express its actions on at least certain lactogenic processes.  相似文献   

17.
Cell-cell interactions promote mammary epithelial cell differentiation   总被引:16,自引:6,他引:10       下载免费PDF全文
Mammary epithelium differentiates in a stromal milieu of adipocytes and fibroblasts. To investigate cell-cell interactions that may influence mammary epithelial cell differentiation, we developed a co-culture system of murine mammary epithelium and adipocytes and other fibroblasts. Insofar as caseins are specific molecular markers of mammary epithelial differentiation, rat anti-mouse casein monoclonal antibodies were raised against the three major mouse casein components to study this interaction. Mammary epithelium from mid-pregnant mice was plated on confluent irradiated monolayers of 3T3-L1 cells, a subclone of the Swiss 3T3 cell line that differentiates into adipocytes in monolayer culture and other cell monolayers (3T3-C2 cells, Swiss 3T3 cells, and human foreskin fibroblasts). Casein was synthesized by mammary epithelium only in the presence of co-cultured cells and the lactogenic hormone combination of insulin, hydrocortisone, and prolactin. Synthesis and accumulation of alpha-, beta-, and gamma-mouse casein within the epithelium was shown by immunohistochemical staining of cultured cells with anti-casein monoclonal antibodies, and the specificity of the immunohistochemical reaction was demonstrated using immunoblots. A competitive immunoassay was used to measure the amount of casein secreted into the culture medium. In a 24-h period, mammary epithelium co-cultured with 3T3-L1 cells secreted 12-20 micrograms beta-casein per culture dish. There was evidence of specificity in the cell-cell interaction that mediates hormone-dependent casein synthesis. Swiss 3T3 cells, newborn foreskin fibroblasts, substrate-attached material ("extracellular matrix"), and tissue culture plastic did not support casein synthesis, whereas monolayers of 3T3-L1 and 3T3-C2 cells, a subclone of Swiss 3T3 cells that does not undergo adipocyte differentiation, did. We conclude that interaction between mammary epithelium and other specific nonepithelial cells markedly influences the acquisition of hormone sensitivity of the epithelium and hormone-dependent differentiation.  相似文献   

18.
Epithelial cell differentiation frequently occurs in situ in conjunction with supporting mesenchyme or connective tissue. In embryonic development the importance of the supporting mesenchyme for cytodifferentiation and morphogenesis has been demonstrated in several epithelial tissues, but the importance of epithelial-connective tissue interactions is less well studied in adult epithelial organs. We have investigated the interaction of adult mammary epithelial cells with adipocytes, which compose the normal supporting connective tissue in the mammary gland. Mammary epithelial cells from mice in various physiological states were cultured on cellular substrates of adipocytes formed from cells of the 3T3-L1 preadipocyte cell line. We found that there were two distinct phases to the interaction of epithelial cells with adipocytes. Cytodifferentiation of the epithelial cells and milk protein production were dependent on lactogenic hormones (insulin, hydrocortisone, and prolactin), whereas ductal morphogenesis was lactogenic hormone independent. When cultured on preadipocytes or adipocytes, mammary epithelial cells from never pregnant, pregnant, lactating, and involuting mice responded to lactogenic hormones rapidly by producing and secreting large amounts of alpha-, beta-, and gamma-casein and alpha-lactalbumin. This response was seen in individual as well as in clusters of epithelial cells, but was not seen if the same cells were cultured on tissue culture dishes without adipocytes, on fibroblasts (human newborn foreskin fibroblasts) or in the presence of adipocytes but in the absence of lactogenic hormones. Continued incubation of mammary epithelial cells on adipocytes in the presence or absence of lactogenic hormones resulted in the formation of a branching ductal system. Mammary epithelial cells in ducts that formed in the absence of lactogenic hormones produced no casein, but rapidly synthesized casein when subsequently exposed to these hormones. Ultrastructural studies revealed that the formation of a basement membrane occurs only in co-cultures of mammary epithelium with adipocytes or preadipocytes. Ultrastructural changes associated with secretion occurred only in the presence of lactogenic hormones. We propose that growth and formation of a ductal system in vitro can occur in the absence of lactogenic hormones, but that certain environment-associated events must occur if the epithelium is to become responsive to lactogenic hormones and undergo the cytodifferentiation associated with lactation.  相似文献   

19.
Mammary explants from pregnant rats showed a progressive increase in α-lactalbumin activity during culture with insulin, hydrocortisone and prolactin. Unexpectedly, culture with only insulin and hydrocortisone produced a similar rate of increase of α-lactalbumin-like activity, but this increase commenced about 24 hr later. The delay suggests that the enhanced activity effected by insulin and hydrocortisone is not a reflection of carry-over of endogenous mammotrophic hormones. Insulin plus hydrocortisone did not stimulate casein or fatty acid synthesis by pregnancy tissue, and did not enhance α-lactalbumin-like activity in virgin rat mammary explants. Enhancement of this activity by insulin plus hydrocortisone in pregnant tissue was constant over a wide range of glucocorticoid concentrations, but was inhibited by progesterone. Available evidence indicates that the active factor in extracts from insulin-hydrocortisone-explants is a heat-stable protein which is either α-lactalbumin itself, or another molecule with similar specifier properties.  相似文献   

20.
Because mammary epithelium from virgin mice must undergo DNA synthesis prior to differentiation and because poly(ADP-ribosyl)ation has been linked to the cell cycle, it was hypothesized that this requirement for DNA synthesis might be related to the poly(ADP-ribosyl)ation of nuclear proteins. However, 3-methoxybenzamide, an inhibitor of poly(ADP-ribosyl)ation, stimulates alpha-lactalbumin accumulation even when added after DNA replication is completed. Furthermore, in parous mice this compound is still effective when DNA synthesis is blocked by cytosine arabinoside-beta-D-arabinofuranoside. Therefore, poly(ADP-ribosyl)ation appears to be associated, not with DNA synthesis, but with some other event in mammary gland differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号