首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is not known whether global warming will affect winning times in endurance events, and counterbalance improvements in race performances that have occurred over the past century. We examined a time series (1933–2004) from the Boston Marathon to test for an effect of warming on winning times by men and women. We found that warmer temperatures and headwinds on the day of the race slow winning times. However, 1.6°C warming in annual temperatures in Boston between 1933 and 2004 did not consistently slow winning times because of high variability in temperatures on race day. Starting times for the race changed to earlier in the day beginning in 2006, making it difficult to anticipate effects of future warming on winning times. However, our models indicate that if race starting times had not changed and average race day temperatures had warmed by 0.058°C/yr, a high-end estimate, we would have had a 95% chance of detecting a consistent slowing of winning marathon times by 2100. If average race day temperatures had warmed by 0.028°C/yr, a mid-range estimate, we would have had a 64% chance of detecting a consistent slowing of winning times by 2100.  相似文献   

2.
Correlating measurements from differential scanning calorimetry, freeze-fracture freeze-etch electron microscopy, and survival of twigs after two-step cooling experiments, we provide strong evidence that winter-hardened Populus balsamifera v. virginiana (Sarg.) resists the stresses of freezing below −28°C by amorphous solidification (glass formation) of most of its intracellular contents during slow cooling (≤5°C per hour). It is shown that other components of the intracellular medium go through glass transitions during slow cooling at about −45°C and below −70°C. This `three glass' model was then used to predict the results of differential scanning calorimetry, freeze-fracture freeze-etch electron microscopy, and biological experiments. This model is the first definitive explanation for the resistance of a woody plant to liquid N2 temperatures even if quench cooling (1200°C per minute) begins at temperatures as high as −20°C and warming is very slow (≤5°C per hour). It is also the first time high temperature natural intracellular glass formation has been demonstrated.  相似文献   

3.
Background and Aims Asymmetric warming is one of the distinguishing features of global climate change, in which winter and night-time temperatures are predicted to increase more than summer and diurnal temperatures. Winter warming weakens vernalization and hence decreases the potential to flower for some perennial herbs, and night warming can reduce carbohydrate concentrations in storage organs. This study therefore hypothesized that asymmetric warming should act to reduce flower number and nectar production per flower in a perennial herb, Saussurea nigrescens, a key nectar plant for pollinators in Tibetan alpine meadows.Methods A long-term (6 years) warming experiment was conducted using open-top chambers placed in a natural meadow and manipulated to achieve asymmetric increases in temperature, as follows: a mean annual increase of 0·7 and 2·7 °C during the growing and non-growing seasons, respectively, combined with an increase of 1·6 and 2·8 °C in the daytime and night-time, respectively, from June to August. Measurements were taken of nectar volume and concentration (sucrose content), and also of leaf non-structural carbohydrate content and plant morphology.Key Results Six years of experimental warming resulted in reductions in nectar volume per floret (64·7 % of control), floret number per capitulum (8·7 %) and capitulum number per plant (32·5 %), whereas nectar concentration remained unchanged. Depletion of leaf non-structural carbohydrates was significantly higher in the warmed than in the ambient condition. Overall plant density was also reduced by warming, which, when combined with reductions in flower development and nectar volumes, led to a reduction of ∼90 % in nectar production per unit area.Conclusions The negative effect of asymmetric warming on nectar yields in S. nigrescens may be explained by a concomitant depletion of leaf non-structural carbohydrates. The results thus highlight a novel aspect of how climate change might affect plant–pollinator interactions and plant reproduction via induction of allocation shifts for plants growing in communities subject to asymmetric warming.  相似文献   

4.
The spores of four species of vesicular-arbuscular endophytes were L-dried at 22°C, and their viability was tested after heating at 80°C for up to 40 min. L-drying of spores in the soil in which they developed was a very effective method of preservation of all spore types examined. Slow L-drying of spores separated from soil and supported on glass fiber filters also gave high viability for spores of some species. A scheme for the long-term preservation of vesicular-arbuscular endophyte spores is proposed.  相似文献   

5.
Sakai A  Yoshida S 《Plant physiology》1967,42(12):1695-1701
The survival rates of the cortical parenchymal cells of mulberry tree were determined as a function of cooling and rewarming rates. When cooling was carried out slowly at 1° to 15° per minute, all of the cells still remained viable even when rewarmed either rapidly or slowly. Survival rates gradually decreased to zero as the cooling rate increased from about 15° to 2000° per minute. In the intermediate cooling rates, when the cells were cooled at the rates lower than 14° per minute, from −2.2° to about −10°, these cells could survive subsequent rapid cooling and rewarming.

However, at cooling rates above 1000° per minute and with rapid rewarming, the effect of cooling rate reversed and survival increased, reaching a maximum at about 200,000° per minute. As the cooling rate increased above 15° per minute, survival rates became increasingly dependent on the rewarming rate, with rapid rewarming becoming less deleterious than slow rewarming.

The temperature range at which damage occurred during rewarming following removal from liquid nitrogen and in which growth rate of ice crystallization was greatest, was −30° to −40°. The survival rates even in the prefrozen cells at −30° decreased considerably by keeping them at −30° for 10 minutes after removal from liquid nitrogen. This fact indicates that intracellular freezable water remains to some degree even in the prefrozen cells at −30°. After removal from liquid nitrogen, all cells retained their viability, when they were passed rapidly through a temperature range between −50° and −2.5° within about 2 seconds, namely at the rates greater than 1000° per minute.

These observations are explained in terms of the size of the crystals formed within the cortical cells.

  相似文献   

6.
Global warming is causing ocean warming and acidification. The distribution of Heliocidaris erythrogramma coincides with the eastern Australia climate change hot spot, where disproportionate warming makes marine biota particularly vulnerable to climate change. In keeping with near-future climate change scenarios, we determined the interactive effects of warming and acidification on fertilization and development of this echinoid. Experimental treatments (20–26°C, pH 7.6–8.2) were tested in all combinations for the ‘business-as-usual’ scenario, with 20°C/pH 8.2 being ambient. Percentage of fertilization was high (>89%) across all treatments. There was no difference in percentage of normal development in any pH treatment. In elevated temperature conditions, +4°C reduced cleavage by 40 per cent and +6°C by a further 20 per cent. Normal gastrulation fell below 4 per cent at +6°C. At 26°C, development was impaired. As the first study of interactive effects of temperature and pH on sea urchin development, we confirm the thermotolerance and pH resilience of fertilization and embryogenesis within predicted climate change scenarios, with negative effects at upper limits of ocean warming. Our findings place single stressor studies in context and emphasize the need for experiments that address ocean warming and acidification concurrently. Although ocean acidification research has focused on impaired calcification, embryos may not reach the skeletogenic stage in a warm ocean.  相似文献   

7.
The formation of more than trace amounts of ice in cells is lethal. The two contrasting routes to avoiding it are slow equilibrium freezing and vitrification. The cryopreservation of mammalian oocytes by either method continues to be difficult, but there seems a slowly emerging consensus that vitrification procedures are somewhat better for mouse and human oocytes. The approach in these latter procedures is to load cells with high concentrations of glass-inducing solutes and cool them at rates high enough to induce the glassy state. Several devices have been developed to achieve very high cooling rates. Our study has been concerned with the relative influences of warming rate and cooling rate on the survival of mouse oocytes subjected to a vitrification procedure. Oocytes suspended in an ethylene glycol–acetamide–Ficoll–sucrose solution were cooled to −196 °C at rates ranging from 37 to 1827 °C/min between 20 and −120 °C, and for each cooling rate, warmed at rates ranging from 139 to 2950 °C/min between −70 and −35 °C. The results are unambiguous. If the samples were warmed at the highest rate, survivals were >80% over cooling rates of 187–1827 °C/min. If the samples were warmed at the lowest rate, survivals were near 0% regardless of the cooling rate. We interpret the lethality of slow warming to be a consequence of it allowing time for the growth of small intracellular ice crystals by recrystallization.  相似文献   

8.
Global surface temperature is predicted to increase by at least 1.5°C by the end of this century. However, the response of soil microbial communities to global warming is still poorly understood, especially in high-elevation grasslands. We therefore conducted an experiment on three types of alpine grasslands on the Qinghai-Tibet Plateau to study the effect of experimental warming on abundance and composition of soil microbial communities at 0–10 and 10–20 cm depths. Plots were passively warmed for 3 years using open-top chambers and compared to adjacent control plots at ambient temperature. Soil microbial communities were assessed using phospholipid fatty acid (PLFA) analysis. We found that 3 years of experimental warming consistently and significantly increased microbial biomass at the 0–10 cm soil depth of alpine swamp meadow (ASM) and alpine steppe (AS) grasslands, and at both the 0–10 and 10–20 cm soil depths of alpine meadow (AM) grasslands, due primarily to the changes in soil temperature, moisture, and plant coverage. Soil microbial community composition was also significantly affected by warming at the 0–10 cm soil depth of ASM and AM and at the 10–20 cm soil depth of AM. Warming significantly decreased the ratio of fungi to bacteria and thus induced a community shift towards bacteria at the 0–10 cm soil depth of ASM and AM. While the ratio of arbuscular mycorrhizal fungi to saprotrophic fungi (AMF/SF) was significantly decreased by warming at the 0–10 cm soil depth of ASM, it was increased at the 0–10 cm soil depth of AM. These results indicate that warming had a strong influence on soil microbial communities in the studied high-elevation grasslands and that the effect was dependent on grassland type.  相似文献   

9.
We present an integrated hydrology/water operations simulation model of the Tuolumne and Merced River Basins, California, using the Water Evaluation and Planning (WEAP) platform. The model represents hydrology as well as water operations, which together influence water supplied for agricultural, urban, and environmental uses. The model is developed for impacts assessment using scenarios for climate change and other drivers of water system behavior. In this paper, we describe the model structure, its representation of historical streamflow, agricultural and urban water demands, and water operations. We describe projected impacts of climate change on hydrology and water supply to the major irrigation districts in the area, using uniform 2°C, 4°C, and 6°C increases applied to climate inputs from the calibration period. Consistent with other studies, we find that the timing of hydrology shifts earlier in the water year in response to temperature warming (5–21 days). The integrated agricultural model responds with increased water demands 2°C (1.4–2.0%), 4°C (2.8–3.9%), and 6°C (4.2–5.8%). In this sensitivity analysis, the combination of altered hydrology and increased demands results in decreased reliability of surface water supplied for agricultural purposes, with modeled quantity-based reliability metrics decreasing from a range of 0.84–0.90 under historical conditions to 0.75–0.79 under 6°C warming scenario.  相似文献   

10.
11.
Slow deep breathing improves blood oxygenation (SpO2) and affects hemodynamics in hypoxic patients. We investigated the ventilatory and hemodynamic effects of slow deep breathing in normal subjects at high altitude. We collected data in healthy lowlanders staying either at 4559 m for 2–3 days (Study A; N = 39) or at 5400 m for 12–16 days (Study B; N = 28). Study variables, including SpO2 and systemic and pulmonary arterial pressure, were assessed before, during and after 15 minutes of breathing at 6 breaths/min. At the end of slow breathing, an increase in SpO2 (Study A: from 80.2±7.7% to 89.5±8.2%; Study B: from 81.0±4.2% to 88.6±4.5; both p<0.001) and significant reductions in systemic and pulmonary arterial pressure occurred. This was associated with increased tidal volume and no changes in minute ventilation or pulmonary CO diffusion. Slow deep breathing improves ventilation efficiency for oxygen as shown by blood oxygenation increase, and it reduces systemic and pulmonary blood pressure at high altitude but does not change pulmonary gas diffusion.  相似文献   

12.

Background

Chlorhexidine is a broad-spectrum antimicrobial commonly used to disinfect the skin of patients to reduce the risk of healthcare-associated infections. Because chlorhexidine is not sporicidal, it is not anticipated that it would have an impact on skin contamination with Clostridium difficile, the most important cause of healthcare-associated diarrhea. However, although chlorhexidine is not sporicidal as it is used in healthcare settings, it has been reported to kill spores of Bacillus species under altered physical and chemical conditions that disrupt the spore’s protective barriers (e.g., heat, ultrasonication, alcohol, or elevated pH). Here, we tested the hypothesis that similarly altered physical and chemical conditions result in enhanced sporicidal activity of chlorhexidine against C. difficile spores.

Principal Findings

C. difficile spores became susceptible to heat killing at 80°C within 15 minutes in the presence of chlorhexidine, as opposed to spores suspended in water which remained viable. The extent to which the spores were reduced was directly proportional to the concentration of chlorhexidine in solution, with no viable spores recovered after 15 minutes of incubation in 0.04%–0.0004% w/v chlorhexidine solutions at 80°C. Reduction of spores exposed to 4% w/v chlorhexidine solutions at moderate temperatures (37°C and 55°C) was enhanced by the presence of 70% ethanol. However, complete elimination of spores was not achieved until 3 hours of incubation at 55°C. Elevating the pH to ≥9.5 significantly enhanced the killing of spores in either aqueous or alcoholic chlorhexidine solutions.

Conclusions

Physical and chemical conditions that alter the protective barriers of C. difficile spores convey sporicidal activity to chlorhexidine. Further studies are necessary to identify additional agents that may allow chlorhexidine to reach its target within the spore.  相似文献   

13.

Background and Aims

The importance of thermal thresholds for predicting seed dormancy release and germination timing under the present climate conditions and simulated climate change scenarios was investigated. In particular, Vitis vinifera subsp. sylvestris was investigated in four Sardinian populations over the full altitudinal range of the species (from approx. 100 to 800 m a.s.l).

Methods

Dried and fresh seeds from each population were incubated in the light at a range of temperatures (10–25 and 25/10 °C), without any pre-treatment and after a warm (3 months at 25 °C) or a cold (3 months at 5 °C) stratification. A thermal time approach was then applied to the germination results for dried seeds and the seed responses were modelled according to the present climate conditions and two simulated scenarios of the Intergovernmental Panel on Climate Change (IPCC): B1 (+1·8 °C) and A2 (+3·4 °C).

Key Results

Cold stratification released physiological dormancy, while very few seeds germinated without treatments or after warm stratification. Fresh, cold-stratified seeds germinated significantly better (>80 %) at temperatures ≥20 °C than at lower temperatures. A base temperature for germination (Tb) of 9·0–11·3 °C and a thermal time requirement for 50 % of germination (θ50) ranging from 33·6 °Cd to 68·6 °Cd were identified for non-dormant cold-stratified seeds, depending on the populations. This complex combination of thermal requirements for dormancy release and germination allowed prediction of field emergence from March to May under the present climatic conditions for the investigated populations.

Conclusions

The thermal thresholds for seed germination identified in this study (Tb and θ50) explained the differences in seed germination detected among populations. Under the two simulated IPCC scenarios, an altitude-related risk from climate warming is identified, with lowland populations being more threatened due to a compromised seed dormancy release and a narrowed seed germination window.  相似文献   

14.
Increased temperature means and fluctuations associated with climate change are predicted to exert profound effects on the seed yield of soybean. We conducted an experiment to evaluate the impacts of global warming on the phenology and yield of two determinate soybean cultivars in a temperate region (37.27°N, 126.99°E; Suwon, South Korea). These two soybean cultivars, Sinpaldalkong [maturity group (MG) IV] and Daewonkong (MG VI), were cultured on various sowing dates within a four-year period, under no water-stress conditions. Soybeans were kept in greenhouses controlled at the current ambient temperature (AT), AT+1.5°C, AT+3.0°C, and AT+5.0°C throughout the growth periods. Growth periods (VE–R7) were significantly prolonged by the elevated temperatures, especially the R1–R5 period. Cultivars exhibited no significant differences in seed yield at the AT+1.5°C and AT+3.0°C treatments, compared to AT, while a significant yield reduction was observed at the AT+5.0°C treatment. Yield reductions resulted from limited seed number, which was due to an overall low numbers of pods and seeds per pod. Heat stress conditions induced a decrease in pod number to a greater degree than in seed number per pod. Individual seed weight exhibited no significant variation among temperature elevation treatments; thus, seed weight likely had negligible impacts on overall seed yield. A boundary line analysis (using quantile regression) estimated optimum temperatures for seed number at 26.4 to 26.8°C (VE–R5) for both cultivars; the optimum temperatures (R5–R7) for single seed weight were estimated at 25.2°C for the Sinpaldalkong smaller-seeded cultivar, and at 22.3°C for the Daewonkong larger-seeded cultivar. The optimum growing season (VE–R7) temperatures for seed yield, which were estimated by combining the two boundary lines for seed number and seed weight, were 26.4 and 25.0°C for the Sinpaldalkong and Daewonkong cultivars, respectively. Considering the current soybean growing season temperature, which ranges from 21.7 (in the north) to 24.6°C (in the south) in South Korea, and the temperature response of potential soybean yields, further warming of less than approximately 1°C would not become a critical limiting factor for soybean production in South Korea.  相似文献   

15.
Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) with observations from the Goddard Institute for Space Studies (GISS) and the Climate Research Unit (CRU). Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951–1980) exceeding 3σ (σ is based on the local internal variability) are defined as “extremely hot”. The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, “extremely hot” summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection). Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, “extremely hot” summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by “extremely hot” summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low.  相似文献   

16.
The interactions between freezing kinetics and subsequent storage temperatures and their effects on the biological activity of lactic acid bacteria have not been examined in studies to date. This paper investigates the effects of three freezing protocols and two storage temperatures on the viability and acidification activity of Lactobacillus delbrueckii subsp. bulgaricus CFL1 in the presence of glycerol. Samples were examined at −196°C and −20°C by freeze fracture and freeze substitution electron microscopy. Differential scanning calorimetry was used to measure proportions of ice and glass transition temperatures for each freezing condition tested. Following storage at low temperatures (−196°C and −80°C), the viability and acidification activity of L. delbrueckii subsp. bulgaricus decreased after freezing and were strongly dependent on freezing kinetics. High cooling rates obtained by direct immersion in liquid nitrogen resulted in the minimum loss of acidification activity and viability. The amount of ice formed in the freeze-concentrated matrix was determined by the freezing protocol, but no intracellular ice was observed in cells suspended in glycerol at any cooling rate. For samples stored at −20°C, the maximum loss of viability and acidification activity was observed with rapidly cooled cells. By scanning electron microscopy, these cells were not observed to contain intracellular ice, and they were observed to be plasmolyzed. It is suggested that the cell damage which occurs in rapidly cooled cells during storage at high subzero temperatures is caused by an osmotic imbalance during warming, not the formation of intracellular ice.  相似文献   

17.
Kinetics of thiamin cleavage by sulphite   总被引:2,自引:0,他引:2       下载免费PDF全文
Results are presented on the rate of thiamin cleavage by sulphite in aqueous solutions as affected by temperature (20–70°), pH(2·5–7·0), and variation of the concentration of either thiamin (1–20μm) or sulphite (10–5000μm as sulphur dioxide). Plots of the logarithm of percentage of residual thiamin against time were found to be linear and cleavage thus was first-order with respect to thiamin. At pH5 the rate was also found to be proportional to the sulphite concentration. In the pH region 2·5–7·0 at 25° the rate constant was 50m−1hr.−1 at pH5·5–6·0, and decreased at higher or lower pH values. The rate of reaction increased between 20° and 70°, indicating a heat of activation of 13·6kcal./mole.  相似文献   

18.
Induction of Freezing Tolerance in Spinach during Cold Acclimation   总被引:8,自引:2,他引:6       下载免费PDF全文
Spinach (Spinacia oleracea L.) seedlings, grown in soil or on an agar medium in vitro, became cold acclimated when exposed to a constant 5°C. Plants subjected to cold acclimation, beginning 1 week postgermination, attained freezing tolerance levels similar to that achieved by seedlings that were cold acclimated beginning 3 weeks after sowing. Seedlings at 1 week of age had only cotyledonary leaves, while 3-week-old seedlings had developed true leaves. Plants grown in vitro were able to increase in freezing tolerance, but were slightly less hardy than soil-grown plants. These results suggest that spinach, a cool-season crop that begins growth in early spring when subzero temperatures are likely, can undergo cold acclimation at the earliest stages of development following germination. Axenic seedlings, grown in vitro, were used to develop a noninjurious radiolabeling technique. Leaf proteins were radiolabeled to specific activities of 105 counts per minute per microgram at 25°C or 5 × 104 counts per minute per microgram at 5°C over a 24 hour period. The ability to radiolabel leaf proteins of in vitro grown plants to high specific activities at low temperature, without injury or microbial contamination, will facilitate studies of cold acclimation.  相似文献   

19.
Bin Wen 《PloS one》2015,10(10)
Mexican sunflower is native to Mexico and Central America and was introduced into China early last century. Now it has widely naturalized and is exhibiting increasing invasiveness in South China. As this species often dominates bare ground, a habitat characterized by extreme fluctuation in temperature and water, it is reasonable to hypothesize that it has special adaptations to high temperature and water stress. Using laboratory experiments to simulate these stresses, this study investigated the response of Mexican sunflower seed germination to temperature and water stress, and compared these responses with those previously reported for another invasive, bamboo piper, which is confined to relatively cool and moist habitats in Xishuangbanna. As expected, Mexican sunflower seeds exhibited higher tolerance to these stresses than bamboo piper. Germination of Mexican sunflower seeds was highest at 15–30°C, but significant numbers of seeds germinated and formed seedlings at 10°C and 35°C, at which no bamboo piper seeds formed seedlings, indicating a wider temperature range for germination than the latter. Roughly half the seeds survived 240 h continuous heat treatment and up to 15 h daily periodical heat treatment at 40°C, while bamboo piper seeds were mostly killed by these treatments. About 20% of Mexican sunflower but no bamboo piper seeds germinated after heat treatment for 30 min at 80°C. Germination was completely inhibited in bamboo piper seeds at -0.6 mPa, while 20–60% of Mexican sunflower seeds germinated depending on PEG or NaCl as osmoticum. This higher tolerance in Mexican sunflower seeds accords with its stronger invasiveness in this area. This comparison between two plant invaders demonstrates that invasiveness is not an all-or-nothing situation, and that adaptation to local habitats is a critical determinant of successful invasiveness for an alien plant.  相似文献   

20.
In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO2) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO2 enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night) but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms-1 average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO2 had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO2. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号