首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All pathogenic Yersinia species (Y. enterocolitica, Y. pestis, and Y. pseudotuberculosis) share a type three secretion system (TTSS) that allows translocation of effector proteins into host cells. Yersinia enterocolitica SycH is a chaperone assisting the transport of the effector YopH and two regulatory components of the TTSS, YscM1 and YscM2. We have recombinantly expressed SycH in Escherichia coli. Purification of tag-free SycH to near homogeneity was achieved by combining ammonium sulfate precipitation, anion exchange chromatography, and gel filtration. Functionality of purified SycH was proven by demonstrating binding to YopH. SycH crystals were grown that diffracted to 2.94A resolution. Preliminary crystallographic data and biochemical findings suggest that SycH forms homotetramers. SycH may therefore represent a novel class of TTSS chaperones. In addition, we found that YopH was enzymatically active in the presence of SycH. This implies that the function of the secretion chaperone SycH is not to keep YopH in a globally unfolded state prior to secretion.  相似文献   

2.
Pathogenic Yersinia species (Y. enterocolitica, Y. pestis, and Y. pseudotuberculosis) make use of a virulence plasmid-encoded type three secretion system (TTSS) to inject effector proteins into host cells. Y. enterocolitica YscM1 (LcrQ in Y. pestis and Y. pseudotuberculosis) and its homologue YscM2 are regulatory components of the TTSS that are also secreted by this transport apparatus. YscM1 and YscM2 share 57% identity and are believed to be functionally equivalent. We have recombinantly expressed and purified YscM1 and YscM2 in Escherichia coli. After expression as glutathione S-transferase (GST) fusions purification to near homogeneity was achieved by glutathione-Sepharose affinity chromatography followed by PreScission protease treatment to cleave off GST and gel filtration on a Superdex 75 column. Such recombinant YscM1 and YscM2 bound efficiently to the specific chaperone SycH, indicating proper folding of the purified proteins. Gel filtration analyses revealed that both YscM1 and YscM2 formed homodimers. The YscM1 and YscM2 homodimers could be dissociated at high ionic strength, indicating that salt bridges essentially contribute to the dimerization. We further demonstrated that YscM1 and YscM2 are susceptible to thrombin cleavage.  相似文献   

3.
4.
Yersinia adhering at the surface of eukaryotic cells secrete a set of proteins called Yops. This secretion which occurs via a type III secretion pathway is immediately followed by the injection of some Yops into the cytosol of eukaryotic cells. Translocation of YopE and YopH across the eukaryotic cell membranes requires the presence of the translocators YopB and YopD. YopE and YopH are modular proteins composed of an N-terminal secretion signal, an internalization domain, and an effector domain. Secretion of YopE and YopH requires the presence of the specific cytosolic chaperones SycE and SycH, respectively. In this work, we have mapped the regions of YopE and YopH that are involved in binding of their cognate chaperone. There is only one Syc-binding domain in YopE (residues 15–50) and YopH (residues 20–70). This domain is localized immediately after the secretion signal and it corresponds to the internalization domain. Removal of this bifunctional domain did not affect secretion of YopE and YopH and even suppressed the need for the chaperone in the secretion process. Thus SycE and SycH are not secretion pilots. Instead, we propose that they prevent intrabacterial interaction of YopE and YopH with proteins involved in translocation of these Yops across eukaryotic cell membranes.  相似文献   

5.
YscB of Yersinia pestis Functions as a Specific Chaperone for YopN   总被引:5,自引:0,他引:5       下载免费PDF全文
Following contact with a eucaryotic cell, Yersinia species pathogenic for humans (Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica) export and translocate a distinct set of virulence proteins (YopE, YopH, YopJ, YopM, and YpkA) from the bacterium into the eucaryotic cell. During in vitro growth at 37°C in the presence of calcium, Yop secretion is blocked; however, in the absence of calcium, Yop secretion is triggered. Yop secretion occurs via a plasmid-encoded type III, or “contact-dependent,” secretion system. The secreted YopN (also known as LcrE), TyeA, and LcrG proteins are necessary to prevent Yop secretion in the presence of calcium and prior to contact with a eucaryotic cell. In this paper we characterize the role of the yscB gene product in the regulation of Yop secretion in Y. pestis. A yscB deletion mutant secreted YopM and V antigen both in the presence and in the absence of calcium; however, the export of YopN was specifically reduced in this strain. Complementation with a functional copy of yscB in trans completely restored the wild-type secretion phenotype for YopM, YopN, and V antigen. The YscB amino acid sequence showed significant similarities to those of SycE and SycH, the specific Yop chaperones for YopE and YopH, respectively. Protein cross-linking and immunoprecipitation studies demonstrated a specific interaction between YscB and YopN. In-frame deletions in yopN eliminating the coding region for amino acids 51 to 85 or 6 to 100 prevented the interaction of YopN with YscB. Taken together, these results indicate that YscB functions as a specific chaperone for YopN in Y. pestis.  相似文献   

6.

Background  

Pathogenic Yersinia species (Y. enterocolitica, Y. pestis, Y. pseudotuberculosis) share a type three secretion system (TTSS) which allows translocation of effector proteins (called Yops) into host cells. It is believed that proteins are delivered through a hollow needle with an inner diameter of 2–3 nm. Thus transport seems to require substrates which are essentially unfolded. Recent work from different groups suggests that the Yersinia TTSS cannot accommodate substrates which are folded prior to secretion. It was suggested that folding is prevented either by co-translational secretion or by the assistance of specific Yop chaperones (called Sycs).  相似文献   

7.
Pathogenic yersiniae utilize a type three secretion system (T3SS) to inject Yop proteins into host cells in order to undermine their immune response. YscM1 and YscM2 proteins have been reported to be functionally equivalent regulators of the T3SS in Yersinia enterocolitica. Here, we show by affinity purification, native gel electrophoresis and small angle x-ray scattering that both YscM1 and YscM2 bind to phosphoenolpyruvate carboxylase (PEPC) of Y. enterocolitica. Under in vitro conditions, YscM1, but not YscM2, was found to inhibit PEPC with an apparent IC50 of 4 μm (Ki = 1 μm). To analyze the functional roles of PEPC, YscM1, and YscM2 in Yop-producing bacteria, cultures of Y. enterocolitica wild type and mutants defective in the formation of PEPC, YscM1, or YscM2, respectively, were grown under low calcium conditions in the presence of [U-13C6]glucose. The isotope compositions of secreted Yop proteins and nine amino acids from cellular proteins were analyzed by mass spectrometry. The data indicate that a considerable fraction of oxaloacetate used as precursor for amino acids was derived from [13C3]phosphoenolpyruvate by the catalytic action of PEPC in the wild-type strain but not in the PEPC- mutant. The data imply that PEPC is critically involved in replenishing the oxaloacetate pool in the citrate cycle under virulence conditions. In the YscM1- and YscM2- mutants, increased rates of pyruvate formation via glycolysis or the Entner-Doudoroff pathway, of oxaloacetate formation via the citrate cycle, and of amino acid biosynthesis suggest that both regulators trigger the central metabolism of Y. enterocolitica. We propose a “load-and-shoot cycle” model to account for the cross-talk between T3SS and metabolism in pathogenic yersiniae.Type three secretion systems (T3SSs)3 are used by several Gram-negative bacteria as microinjection devices to deliver effector proteins into host cells (1). The translocated effector proteins reprogram the host cell in favor of the microbial invader or symbiont. Pathogenic yersiniae (the enteropathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis and the plague bacillus Yersinia pestis) utilize a plasmid-encoded T3SS to undermine the host primary immune response (2). This is mediated by the injection of a set of effector proteins called Yops (Yersinia outer proteins) into host cells, in particular into cells with innate immune functions, such as macrophages, dendritic cells, and neutrophils (3). The concerted action of Yops, targeting multiple signaling pathways, results in actin cytoskeleton disruption, suppression of proinflammatory signaling, and induction of apoptosis. This strategy enables yersiniae to multiply extracellularly in host tissue.Expression of the Yersinia T3SS is up-regulated at 37 °C, and translocation of Yops across the host cell membrane is triggered by cell contact (4, 5). Pathogenic yersiniae cultivated under low calcium conditions at 37 °C express a phenotype referred to as “low calcium response” (LCR). The LCR is characterized by growth restriction as well as massive expression and secretion of Yops into the culture medium (69). The allocation of energy and metabolites for the massive synthesis and transport of Yops is demanding, and this burden is believed to be responsible for the observed growth inhibition (10). To give an idea of the metabolic requirements, Yops are secreted to the culture supernatant in 10-mg amounts per liter of culture within 2 h after calcium depletion of the medium. Furthermore, post-translationally secreted substrates need to be unfolded by a T3SS-specific ATPase prior to secretion (1114). In addition, T3SS-dependent transport of Yops requires the proton motive force (15). However, there is evidence that growth cessation and Yop expression can be uncoupled (16, 17), suggesting a coordinated regulation of metabolism and protein transport rather than the LCR reflecting an inevitable physiological consequence.What are the candidate proteins that could be involved in such a coordination? YscM1 and YscM2 (57% identical to YscM1) are key candidates, since they act at a major nodal point of the T3SS regulatory network in Y. enterocolitica. In Y. pestis and Y. pseudotuberculosis, only the YscM1 homologue LcrQ exists (99% identical to YscM1). YscM1/LcrQ and YscM2 are secretion substrates of the T3SS that are involved in up-regulation of Yop expression after host cell contact. Upon cell contact, the decrease of intracellular levels of YscM1/LcrQ and YscM2 due to their translocation into host cells results in a derepression of Yop synthesis (1821). The two yscM copies of Y. enterocolitica were presumed to be functionally equivalent, since deletion of either gene was found to be phenotypically silent (19, 22). Only deletion of both yscM genes could establish the lcrQ phenotype (19, 22), distinguished by temperature sensitivity for growth, derepressed Yop expression, and secretion of LcrV and YopD in the presence of calcium ions.YscM1/LcrQ as well as YscM2 exhibit homology to the N terminus of the effector YopH (19, 23, 24), a fact that may explain their shared assistance by SycH (specific Yop chaperone) (20, 25). It was shown that YscM1/LcrQ and YscM2 exert their influence on Yop expression in concert with the T3SS components SycH, SycD (LcrH in Y. pestis and Y. pseudotuberculosis), and YopD (21, 2628). It is further described that YscM1 and/or YscM2 interact with several of the T3SS-specific chaperones, in particular with SycH, SycE, SycD, and SycO (20, 2931). This has led to the model that YscM/LcrQ proteins might function as an interface that senses whether chaperones are loaded with Yops and transduces these signals into control of Yop expression (14).These features of YscM1/LcrQ and YscM2 prompted us to speculate about a key role of these proteins in coordination of metabolism and expression of T3SS components. Using recombinant GST-YscM1 and GST-YscM2 as bait for Y. enterocolitica cytosolic proteins, we identified phosphoenolpyruvate carboxylase (PEPC) as interaction partner of both YscM1 and YscM2. Under in vitro conditions, YscM1 down-regulated PEPC activity and bacterial growth/replication. Isotopologue profiling of Yop proteins and derived amino acids from Y. enterocolitica grown in the presence of [U-13C6]glucose showed the functionality of the PEPC reaction under virulence conditions (isotopologues are molecular entities that differ only in isotopic composition (number of isotopic substitutions); e.g. CH4, CH3D, and CH2D2). Moreover, biosynthetic rates of amino acids were increased in mutants defective in YscM1 or YscM2, suggesting a general role of these regulators in the metabolism of Y. enterocolitica. Recently, evidence has been accumulating that the metabolic state contributes to the regulation of T3SSs of diverse pathogens, also including the flagellar T3SS in Pseudomonas and Salmonella (3236).  相似文献   

8.
9.
LcrQ is a regulatory protein unique to Yersinia. Previous study in Yersinia pseudotuberculosis and Yersinia enterocolitica prompted the model in which LcrQ negatively regulates the expression of a set of virulence proteins called Yops, and its secretion upon activation of the Yop secretion (Ysc) type III secretion system permits full induction of Yops expression. In this study, we tested the hypothesis that LcrQ's effects on Yops expression might be indirect. Excess LcrQ was found to exert an inhibitory effect specifically at the level of Yops secretion, independent of production, and a normal inner Ysc gate protein LcrG was required for this activity. However, overexpression of LcrQ did not prevent YopH secretion, suggesting that LcrQ's effects at the Ysc discriminate among the Yops. We tested this idea by determining the effects of deletion or overexpression of LcrQ, YopH and their common chaperone SycH on early Yop secretion through the Ysc. Together, our findings indicated that LcrQ is not a negative regulator directly, but it acts in partnership with SycH at the Ysc gate to control the entry of a set of Ysc secretion substrates. A hierarchy of YopH secretion before YopE appears to be imposed by SycH in conjunction with both LcrQ and YopH. LcrQ and SycH in addition influenced the deployment of LcrV, a component of the Yops delivery mechanism. Accordingly, LcrQ appears to be a central player in determining the substrate specificity of the Ysc.  相似文献   

10.
Based on differences within the yopT-coding region of Yersinia. enterocolitica, Y. pseudotuberculosis and Y. pestis, a rapid and sensitive one-step polymerase chain reaction assay with high specificity for pathogenic Y. enterocolitica was developed. By this method pathogenic isolates of Y. enterocolitica can be easily identified and discriminated from other members of this genus. The entire coding sequence of the yopT effector gene of Y. pseudotuberculosis Y36 was determined.  相似文献   

11.
12.
Pathogenic strains of Yersinia deploy a type III secretion system to inject the potent tyrosine phosphatase YopH into host cells, where it dephosphorylates focal adhesion-associated substrates. The amino-terminal, non-catalytic domain of YopH is bifunctional; it is essential for the secretion and binding of the specific chaperone SycH, but also targets the catalytic domain to substrates in the infected cell. We describe the 2.2 A resolution crystal structure of residues 1-129 of YopH from Yersinia pseudotuberculosis. The amino-terminal alpha-helix (2-17), comprising the secretion signal, and beta-strand (24-28) of one molecule exchange with another molecule to form a domain-swapped dimer. Nuclear magnetic resonance (NMR) and gel filtration experiments demonstrated that YopH(1-129) could exist as a monomer and/or a dimer in solution. The topology of the dimer and the dynamics of a monomeric form in solution observed by NMR imply that YopH has the propensity to unfold partially. The dimer is probably not important physiologically, but may mimic how SycH binds to the exposed non-polar surfaces of a partially unfolded YopH. Phosphopeptide-induced perturbations in NMR chemical shifts define a substrate-binding surface on YopH(1-129) that includes residues previously shown by mutagenesis to be essential for YopH function.  相似文献   

13.
14.

Background  

Pathogenic yersiniae (Y. pestis, Y. pseudotuberculosis, Y. enterocolitica) share a virulence plasmid encoding a type three secretion system (T3SS). This T3SS comprises more than 40 constituents. Among these are the transport substrates called Yops (Yersinia outer proteins), the specific Yop chaperones (Sycs), and the Ysc (Yop secretion) proteins which form the transport machinery. The effectors YopO and YopP are encoded on an operon together with SycO, the chaperone of YopO. The characterization of SycO is the focus of this study.  相似文献   

15.
The virulence of a large number of Gram-negative bacterial pathogens depends on the type III secretion (T3S) system, which transports select bacterial proteins into host cells. An essential component of the Yersinia T3S system is YscD, a single-pass inner membrane protein. We report here the 2.52-Å resolution structure of the cytoplasmic domain of YscD, called YscDc. The structure confirms that YscDc consists of a forkhead-associated (FHA) fold, which in many but not all cases specifies binding to phosphothreonine. YscDc, however, lacks the structural properties associated with phosphothreonine binding and thus most likely interacts with partners in a phosphorylation-independent manner. Structural comparison highlighted two loop regions, L3 and L4, as potential sites of interactions. Alanine substitutions at L3 and L4 had no deleterious effects on protein structure or stability but abrogated T3S in a dominant negative manner. To gain insight into the function of L3 and L4, we identified proteins associated with YscD by affinity purification coupled to mass spectrometry. The lipoprotein YscJ was found associated with wild-type YscD, as was the effector YopH. Notably, the L3 and L4 substitution mutants interacted with more YopH than did wild-type YscD. These substitution mutants also interacted with SycH (the specific chaperone for YopH), the putative C-ring component YscQ, and the ruler component YscP, whereas wild-type YscD did not. These results suggest that substitutions in the L3 and L4 loops of YscD disrupted the dissociation of SycH from YopH, leading to the accumulation of a large protein complex that stalled the T3S apparatus.  相似文献   

16.
Bacterial type III secretion system (T3SS) chaperones pilot substrates to the export apparatus in a secretion‐competent state, and are consequently central to the translocation of effectors into target cells. Chlamydia trachomatis is a genetically intractable obligate intracellular pathogen that utilizes T3SS effectors to trigger its entry into mammalian cells. The only well‐characterized T3SS effector is TARP (translocated actin recruitment protein), but its chaperone is unknown. Here we exploited a known structural signature to screen for putative type III secretion chaperones encoded within the C. trachomatis genome. Using bacterial two‐hybrid, co‐precipitation, cross‐linking and size exclusion chromatography we show that Slc1 (SycE‐like chaperone 1; CT043) specifically interacts with a 200‐amino‐acid residue N‐terminal region of TARP (TARP1–200). Slc1 formed homodimers in vitro, as shown in cross‐linking and gel filtration experiments. Biochemical analysis of an isolated Slc1–TARP1–200 complex was consistent with a characteristic 2:1 chaperone–effector stoichiometry. Furthermore, Slc1 was co‐immunoprecipitated with TARP from C. trachomatis elementary bodies. Also, coexpression of Slc1 specifically enhanced host cell translocation of TARP by a heterologous Yersinia enterocolitica T3SS. Taken together, we propose Slc1 as a chaperone of the C. trachomatis T3SS effector TARP.  相似文献   

17.
YopH is a 468-amino acid protein-tyrosine phosphatase that is produced by pathogenic Yersinia species. YopH is translocated into host mammalian cells via a type III protein secretion system. Translocation of YopH into human epithelial cells results in dephosphorylation of p130(Cas) and paxillin, disruption of focal adhesions, and inhibition of integrin-mediated bacterial phagocytosis. Previous studies have shown that the N-terminal 129 amino acids of YopH comprise a bifunctional domain. This domain binds to the SycH chaperone in Yersinia to orchestrate translocation and to tyrosine-phosphorylated target proteins in host cells to mediate substrate recognition. We used random mutagenesis in combination with the yeast two-hybrid system to identify residues in the YopH N-terminal domain that are involved in substrate-binding activity. Four single codon changes (Q11R, V31G, A33D, and N34D) were identified that interfered with binding of the YopH N-terminal domain to tyrosine-phosphorylated p130(Cas) but not to SycH. These mutations did not impair YopH translocation into HeLa cells infected with Yersinia pseudotuberculosis. Introduction of the V31G substitution into catalytically inactive (substrate-trapping) forms of YopH interfered with the ability of these proteins to bind to p130(Cas) and to localize to focal adhesions in HeLa cells. In addition, the V31G substitution reduced the ability of catalytically active YopH to dephosphorylate target proteins in HeLa cells. These data indicate that the substrate- and SycH-binding activities of the YopH N-terminal domain can be separated and that the former activity is important for recognition and dephosphorylation of substrates by YopH in vivo.  相似文献   

18.
赵彤  苏雅  孟娇  陈晶瑜 《微生物学通报》2021,48(9):2972-2981
【背景】小肠结肠炎耶尔森菌(Yersinia enterocolitica)是重要的人畜共患食源性病原菌。由于其生存环境与传染性生活方式,小肠结肠炎耶尔森菌暴露在各种生存压力中,而胞膜压力应答能力对维持其环境耐受性和毒力发挥着重要作用。【目的】探究小肠结肠炎耶尔森菌在胞膜压力应答中的调节机制。【方法】通过使用多粘菌素B破坏小肠结肠炎耶尔森菌细胞膜的稳定性,并从生长能力、运动能力、生物被膜形成能力以及相关基因表达的变化探讨Rcs (Regulator of Capsule Synthesis)系统对多粘菌素B产生的胞膜压力的应答。【结果】多粘菌素B引起的细胞胞膜压力抑制了小肠结肠炎耶尔森菌的运动和生物被膜形成能力;而阻断Rcs信号途径后,小肠结肠炎耶尔森菌的运动和生物被膜形成能力有所恢复。对flhC、hmsS、hmsT等关键下游表型基因的表达水平的分析结果表明Rcs双组分系统对由多粘菌素B诱导的胞膜压力作出响应,通过感知胞膜胁迫向胞内传递信号,积极地调控细菌增强对抗菌肽的抗性。【结论】明确了Rcs双组分系统在响应多粘菌素B压力胁迫中的特异性调控作用,加深了对小肠结肠炎耶尔森菌环境应答机制...  相似文献   

19.
20.
Bacterial virulence is typically initiated by translocation of effector or toxic proteins across host cell membranes. A class of gram-negative pathogenic bacteria including Yersinia pseudotuberculosis and Yersinia pestis accomplishes this objective with a protein assembly called the type III secretion system. Yersinia effector proteins (Yop) are presented to the translocation apparatus through formation of specific complexes with their cognate chaperones (Syc). In the complexes where the structure is available, the Yops are extended and wrap around their cognate chaperone. This structural architecture enables secretion of the Yop from the bacterium in early stages of translocation. It has been shown previously that the chaperone-binding domain of YopE is disordered in its isolation but becomes substantially more ordered in its wrap-around complex with its chaperone SycE. Here, by means of NMR spectroscopy, small-angle X-ray scattering and molecular modeling, we demonstrate that while the free chaperone-binding domain of YopH (YopHCBD) adopts a fully ordered and globular fold, it populates an elongated, wrap-around conformation when it engages in a specific complex with its chaperone SycH2. Hence, in contrast to YopE that is unstructured in its free state, YopH transits from a globular free state to an elongated chaperone-bound state. We demonstrate that a sparsely populated YopHCBD state has an elevated affinity for SycH2 and represents an intermediate in the formation of the protein complex. Our results suggest that Yersinia has evolved a binding mechanism where SycH2 passively stimulates an elongated YopH conformation that is presented to the type III secretion system in a secretion-competent conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号