首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Replication protein A is sequentially phosphorylated during meiosis   总被引:1,自引:0,他引:1       下载免费PDF全文
Phosphorylation of the cellular single-stranded DNA-binding protein, replication protein A (RPA), occurs during normal mitotic cell cycle progression and also in response to genotoxic stress. In budding yeast, these reactions require the ATM homolog Mec1, a central regulator of the DNA replication and DNA damage checkpoint responses. We now demonstrate that the middle subunit of yeast RPA (Rfa2) becomes phosphorylated in two discrete steps during meiosis. Primary Rfa2 phosphorylation occurs early in meiotic progression and is independent of DNA replication, recombination and Mec1. In contrast, secondary Rfa2 phosphorylation is activated upon initiation of recombination and requires Mec1. While the primary Rfa2 phosphoisomer is detectable throughout most of meiosis, the secondary Rfa2 phosphoisomer is only transiently generated and begins to disappear soon after recombination is complete. Extensive secondary Rfa2 phosphorylation is observed in a recombination mutant defective for the pachytene checkpoint, indicating that Mec1-dependent Rfa2 phosphorylation does not function to maintain meiotic delay in response to DNA double-strand breaks. Our results suggest that Mec1-dependent RPA phosphorylation could be involved in regulating recombination rather than cell cycle or meiotic progression.  相似文献   

2.
The cellular single-stranded DNA (ssDNA)-binding protein replication protein A (RPA) becomes phosphorylated periodically during the normal cell cycle and also in response to DNA damage. In Saccharomyces cerevisiae, RPA phosphorylation requires the checkpoint protein Mec1, a protein kinase homologous in structure and function to human ATR. We confirm here that immunocomplexes containing a tagged version of Mec1 catalyze phosphorylation of purified RPA, likely reflecting an RPA kinase activity intrinsic to Mec1. A significant stimulation of this activity is observed upon the addition of covalently closed ssDNA derived from the bacteriophage M13. This stimulation is not observed with mutant RPA deficient for DNA binding, indicating that DNA-bound RPA is a preferred substrate. Stimulation is also observed upon the addition of linear ssDNA homopolymers or hydrolyzed M13 ssDNA. In contrast to circular ssDNA, these DNA cofactors stimulate both wild type and mutant RPA phosphorylation. This finding suggests that linear ssDNA can also stimulate Mec1-mediated RPA phosphorylation by activating Mec1 or an associated protein. Although the Mec1-interacting protein Ddc2 is required for RPA phosphorylation in vivo, it is required for neither basal nor ssDNA-stimulated RPA phosphorylation in vitro. Therefore, activation of Mec1-mediated RPA phosphorylation by either circular or linear ssDNA does not operate through Ddc2. Our results provide insight into the mechanisms that function in vivo to specifically induce RPA phosphorylation upon initiation of DNA replication, repair, or recombination.  相似文献   

3.
Successful pathogens must be able to swiftly respond to and repair DNA damages inflicted by the host defence. The replication protein A (RPA) complex plays multiple roles in DNA damage response and is regulated by phosphorylation. However, the regulators of RPA phosphorylation remain unclear. Here, we investigated Rfa2 phosphorylation in the pathogenic fungus Candida albicans. Rfa2, a RFA subunit, is phosphorylated when DNA replication is inhibited by hydroxyurea and dephosphorylated during the recovery. By screening a phosphatase mutant library, we found that Pph3 associates with different regulatory subunits to differentially control Rfa2 dephosphorylation in stressed and unstressed cells. Site‐directed mutagenesis revealed T11, S18, S29, and S30 being critical for Rfa2 phosphorylation in response to genotoxic insult. We obtained evidence that the genome integrity checkpoint kinase Mec1 and the cyclin‐dependent kinase Clb2–Cdc28 mediate Rfa2 phosphorylation. Although cells expressing either a phosphomimetic or a non‐phosphorylatable version of Rfa2 had defects, the latter exhibited greater sensitivity to genotoxic challenge, failure to repair DNA damages and to deactivate Rad53‐mediated checkpoint pathways in a dosage‐dependent manner. These mutants were also less virulent in mice. Our results provide important new insights into the regulatory mechanism and biological significance of Rfa2 phosphorylation in C. albicans.  相似文献   

4.
Kim HS  Brill SJ 《DNA Repair》2003,2(12):1321-1335
Replication protein A (RPA) is a conserved single-stranded DNA (ssDNA) binding protein with well-characterized roles in DNA metabolism. RPA is phosphorylated in response to genotoxic stress and is required for efficient checkpoint function, although these aspects of RPA function are not well understood. We have investigated the association between RPA and the checkpoint kinase Mec1 in yeast. RPA and Mec1 were found to be physically associated during unperturbed cell growth and in response to DNA damage. Using a Mec1 immunoprecipitate (IP)-kinase assay, we show that the two large subunits, RPA1 and RPA2, are good substrates for Mec1 kinase. The major phosphorylation site of RPA1 was further investigated as it was found to be localized to its amino terminus (RPA1N), which is a non-ssDNA binding domain implicated in regulatory function. This phosphorylation site mapped to serine 178 and phosphorylation-defective mutant protein, expressed from rfa1-S178A, showed reduced physical interaction with Mec1. Phenotypic analysis in vivo revealed that the rfa1-S178A mutation affected the kinetics of RPA1 and Rad53 phosphorylation but did not otherwise affect the checkpoint response. We suggest that phosphorylation of RPA1N by Mec1 may function together with other checkpoint events to regulate the checkpoint response.  相似文献   

5.
Mammalian Timeless is a multifunctional protein that performs essential roles in the circadian clock, chromosome cohesion, DNA replication fork protection, and DNA replication/DNA damage checkpoint pathways. The human Timeless exists in a tight complex with a smaller protein called Tipin (Timeless-interacting protein). Here we investigated the mechanism by which the Timeless-Tipin complex functions as a mediator in the ATR-Chk1 DNA damage checkpoint pathway. We find that the Timeless-Tipin complex specifically mediates Chk1 phosphorylation by ATR in response to DNA damage and replication stress through interaction of Tipin with the 34-kDa subunit of replication protein A (RPA). The Tipin-RPA interaction stabilizes Timeless-Tipin and Tipin-Claspin complexes on RPA-coated ssDNA and in doing so promotes Claspin-mediated phosphorylation of Chk1 by ATR. Our results therefore indicate that RPA-covered ssDNA not only supports recruitment and activation of ATR but also, through Tipin and Claspin, it plays an important role in the action of ATR on its critical downstream target Chk1.  相似文献   

6.
Replication protein A (RPA) is a DNA single-strand binding protein essential for DNA replication, recombination and repair. In human cells treated with the topoisomerase inhibitors camptothecin or etoposide (VP-16), we find that RPA2, the middle-sized subunit of RPA, becomes rapidly phosphorylated. This response appears to be due to DNA-dependent protein kinase (DNA-PK) and to be independent of p53 or the ataxia telangiectasia mutated (ATM) protein. RPA2 phosphorylation in response to camptothecin required ongoing DNA replication. Camptothecin itself partially inhibited DNA synthesis, and this inhibition followed the same kinetics as DNA-PK activation and RPA2 phosphorylation. DNA-PK activation and RPA2 phosphorylation were prevented by the cell-cycle checkpoint abrogator 7-hydroxystaurosporine (UCN-01), which markedly potentiates camptothecin cytotoxicity. The DNA-PK catalytic subunit (DNA-PKcs) was found to bind RPA which was replaced by the Ku autoantigen upon camptothecin treatment. DNA-PKcs interacted directly with RPA1 in vitro. We propose that the encounter of a replication fork with a topoisomerase-DNA cleavage complex could lead to a juxtaposition of replication fork-associated RPA and DNA double-strand end-associated DNA-PK, leading to RPA2 phosphorylation which may signal the presence of DNA damage to an S-phase checkpoint mechanism. Keywords: camptothecin/DNA damage/DNA-dependent protein kinase/RPA2 phosphorylation  相似文献   

7.
Exo1 is a nuclease involved in mismatch repair, DSB repair, stalled replication fork processing and in the DNA damage response triggered by dysfunctional telomeres. In budding yeast and mice, Exo1 creates single-stranded DNA (ssDNA) at uncapped telomeres. This ssDNA accumulation activates the checkpoint response resulting in cell cycle arrest. Here, we demonstrate that Exo1 is phosphorylated when telomeres are uncapped in cdc13-1 and yku70Delta yeast cells, and in response to the induction of DNA damage. After telomere uncapping, Exo1 phosphorylation depends on components of the checkpoint machinery such as Rad24, Rad17, Rad9, Rad53 and Mec1, but is largely independent of Chk1, Tel1 and Dun1. Serines S372, S567, S587 and S692 of Exo1 were identified as targets for phosphorylation. Furthermore, mutation of these Exo1 residues altered the DNA damage response to uncapped telomeres and camptothecin treatment, in a manner that suggests Exo1 phosphorylation inhibits its activity. We propose that Rad53-dependent Exo1 phosphorylation is involved in a negative feedback loop to limit ssDNA accumulation and DNA damage checkpoint activation.  相似文献   

8.
ATRMec1 phosphorylation-independent activation of Chk1 in vivo   总被引:1,自引:0,他引:1  
The conserved protein kinase Chk1 is a player in the defense against DNA damage and replication blocks. The current model is that after DNA damage or replication blocks, ATR(Mec1) phosphorylates Chk1 on the non-catalytic C-terminal domain. However, the mechanism of activation of Chk1 and the function of the Chk1 C terminus in vivo remains largely unknown. In this study we used an in vivo assay to examine the role of the C terminus of Chk1 in the response to DNA damage and replication blocks. The conserved ATR(Mec1) phosphorylation sites were essential for the checkpoint response to DNA damage and replication blocks in vivo; that is, that mutation of the sites caused lethality when DNA replication was stalled by hydroxyurea. Despite this, loss of the ATR(Mec1) phosphorylation sites did not change the kinase activity of Chk1 in vitro. Furthermore, a single amino acid substitution at an invariant leucine in a conserved domain of the non-catalytic C terminus restored viability to cells expressing the ATR(Mec1) phosphorylation site-mutated protein and relieved the requirement of an upstream mediator for Chk1 activation. Our findings show that a single amino acid substitution in the C terminus, which could lead to an allosteric change in Chk1, allows it to bypass the requirement of the conserved ATR(Mec1) phosphorylation sites for checkpoint function.  相似文献   

9.
Maintaining the integrity of the genome requires the high fidelity duplication of the genome and the ability of the cell to recognize and repair DNA lesions. The heterotrimeric single stranded DNA (ssDNA) binding complex Replication Protein A (RPA) is central to multiple DNA processes, which are coordinated by RPA through its ssDNA binding function and through multiple protein-protein interactions. Many RPA interacting proteins have been reported through large genetic and physical screens; however, the number of interactions that have been further characterized is limited. To gain a better understanding of how RPA functions in DNA replication, repair, and cell cycle regulation and to identify other potential functions of RPA, a yeast two hybrid screen was performed using the yeast 70 kDa subunit, Replication Factor A1 (Rfa1), as a bait protein. Analysis of 136 interaction candidates resulted in the identification of 37 potential interacting partners, including the cell cycle regulatory protein and DNA damage clamp loader Rad24. The Rfa1-Rad24 interaction is not dependent on ssDNA binding. However, this interaction appears affected by DNA damage. The regions of both Rfa1 and Rad24 important for this interaction were identified, and the region of Rad24 identified is distinct from the region reported to be important for its interaction with Rfc2 5. This suggests that Rad24-Rfc2-5 (Rad24-RFC) recruitment to DNA damage substrates by RPA occurs, at least partially, through an interaction between the N terminus of Rfa1 and the C terminus of Rad24. The predicted structure and location of the Rad24 C-terminus is consistent with a model in which RPA interacts with a damage substrate, loads Rad24-RFC at the 5’ junction, and then releases the Rad24-RFC complex to allow for proper loading and function of the DNA damage clamp.  相似文献   

10.
In eukaryotes, mutations in a number of genes that affect DNA damage checkpoints or DNA replication also affect telomere length [Curr. Opin. Cell Biol. 13 (2001) 281]. Saccharomyces cerevisae strains with mutations in the TEL1 gene (encoding an ATM-like protein kinase) have very short telomeres, as do strains with mutations in XRS2, RAD50, or MRE11 (encoding members of a trimeric complex). Xrs2p and Mre11p are phosphorylated in a Tel1p-dependent manner in response to DNA damage [Genes Dev. 15 (2001) 2238; Mol. Cell 7 (2001) 1255]. We found that Xrs2p, but not Mre11p or Rad50p, is efficiently phosphorylated in vitro by immunopreciptated Tel1p. Strains with mutations eliminating all SQ and TQ motifs in Xrs2p (preferred targets of the ATM kinase family) had wild-type length telomeres and wild-type sensitivity to DNA damaging agents. We also showed that Rfa2p (a subunit of RPA) and the Dun1p checkpoint kinase, which are required for DNA damage repair and which are phosphorylated in response to DNA damage in vivo, are in vitro substrates of the Tel1p and Mec1p kinases. In addition, Dun1p substrates with no SQ or TQ motifs are phosphorylated by Mec1p in vitro very inefficiently, but retain most of their ability to be phosphorylated by Tel1p. We demonstrated that null alleles of DUN1 and certain mutant alleles of RFA2 result in short telomeres. As observed with Xrs2p, however, strains with mutations of DUN1 or RFA2 that eliminate SQ motifs have no effect on telomere length or DNA damage sensitivity.  相似文献   

11.
Checkpoints prevent DNA replication or nuclear division when chromosomes are damaged. The Saccharomyces cerevisiae DDC1 gene belongs to the RAD17, MEC3 and RAD24 epistasis group which, together with RAD9, is proposed to act at the beginning of the DNA damage checkpoint pathway. Ddc1p is periodically phosphorylated during unperturbed cell cycle and hyperphosphorylated in response to DNA damage. We demonstrate that Ddc1p interacts physically in vivo with Mec3p, and this interaction requires Rad17p. We also show that phosphorylation of Ddc1p depends on the key checkpoint protein Mec1p and also on Rad24p, Rad17p and Mec3p. This suggests that Mec1p might act together with the Rad24 group of proteins at an early step of the DNA damage checkpoint response. On the other hand, Ddc1p phosphorylation is independent of Rad53p and Rad9p. Moreover, while Ddc1p is required for Rad53p phosphorylation, it does not play any major role in the phosphorylation of the anaphase inhibitor Pds1p, which requires RAD9 and MEC1. We suggest that Rad9p and Ddc1p might function in separated branches of the DNA damage checkpoint pathway, playing different roles in determining Mec1p activity and/or substrate specificity.  相似文献   

12.
The Mec1/ATR kinase is crucial for genome maintenance in response to a range of genotoxic insults, but it remains unclear how it promotes context‐dependent signaling and DNA repair. Using phosphoproteomic analyses, we uncovered a distinctive Mec1/ATR signaling response triggered by extensive nucleolytic processing (resection) of DNA ends. Budding yeast cells lacking Rad9, a checkpoint adaptor and an inhibitor of resection, exhibit a selective increase in Mec1‐dependent phosphorylation of proteins associated with single‐strand DNA (ssDNA) transactions, including the ssDNA‐binding protein Rfa2, the translocase/ubiquitin ligase Uls1, and the Sgs1‐Top3‐Rmi1 (STR) complex that regulates homologous recombination (HR). Extensive Mec1‐dependent phosphorylation of the STR complex, mostly on the Sgs1 helicase subunit, promotes an interaction between STR and the DNA repair scaffolding protein Dpb11. Fusion of Sgs1 to phosphopeptide‐binding domains of Dpb11 strongly impairs HR‐mediated repair, supporting a model whereby Mec1 signaling regulates STR upon hyper‐resection to influence recombination outcomes. Overall, the identification of a distinct Mec1 signaling response triggered by hyper‐resection highlights the multi‐faceted action of this kinase in the coordination of checkpoint signaling and HR‐mediated DNA repair.  相似文献   

13.
Liu JS  Kuo SR  Melendy T 《DNA Repair》2006,5(3):369-380
The major eukaryotic single-stranded DNA (ssDNA) binding protein, replication protein A (RPA), is a heterotrimer with subunits of 70, 32 and 14 kDa (RPA70, RPA32 and RPA14). RPA-coated ssDNA has been implicated as one of the triggers for intra-S-phase checkpoint activation. Phosphorylation of RPA occurs in cells with damaged DNA or stalled replication forks. Here we show that human RPA70 and RPA32 can be phosphorylated by purified S-phase checkpoint kinases, ATR and Chk1. While ATR phosphorylates the N-terminus of RPA70, Chk1 preferentially phosphorylates RPA's major ssDNA binding domain. Chk1 phosphorylated RPA70 shows reduced ssDNA binding activity, and binding of RPA to ssDNA blocks Chk1 phosphorylation, suggesting that Chk1 and ssDNA compete for RPA's major ssDNA binding domain. ssDNA stimulates RPA32 phosphorylation by ATR in a length dependent manner. Furthermore, 3'-, but not 5'-, recessed single strand/double strand DNA junctions produce an even stronger stimulatory effect on RPA32 phosphorylation by ATR. This stimulation occurs for both RNA and DNA recessed ends. RPA's DNA binding polarity and its interaction to 3'-primer-template junctions contribute to efficient RPA32 phosphorylation. Progression of DNA polymerase is able to block the accessibility of the 3'-recessed ends and prevent the stimulatory effects of primer-template junctions on RPA phosphorylation by ATR. We propose models for the role of RPA phosphorylation by Chk1 in S-phase checkpoint pathways, and the possible regulation of ATR activity by different nucleic acid structures.  相似文献   

14.
The yeast Mec1/Tel1 kinases, ATM/ATR in mammals, coordinate the DNA damage response by phosphorylating proteins involved in DNA repair and checkpoint pathways. Recently, ATP-dependent chromatin remodeling complexes, such as the INO80 complex, have also been implicated in DNA damage responses, although regulatory mechanisms that direct their function remain unknown. Here, we show that the Ies4 subunit of the INO80 complex is phosphorylated by the Mec1/Tel1 kinases during exposure to DNA-damaging agents. Mutation of Ies4's phosphorylation sites does not significantly affect DNA repair processes, but does influence DNA damage checkpoint responses. Additionally, ies4 phosphorylation mutants are linked to the function of checkpoint regulators, such as the replication checkpoint factors Tof1 and Rad53. These findings establish a chromatin remodeling complex as a functional component in the Mec1/Tel1 DNA damage signaling pathway that modulates checkpoint responses and suggest that posttranslational modification of chromatin remodeling complexes regulates their involvement in distinct processes.  相似文献   

15.
The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate DNA damage checkpoint pathways. In budding yeast, ATM and ATR homologs are encoded by TEL1 and MEC1, respectively. The Mre11 complex consists of two highly related proteins, Mre11 and Rad50, and a third protein, Xrs2 in budding yeast or Nbs1 in mammals. The Mre11 complex controls the ATM/Tel1 signaling pathway in response to double-strand break (DSB) induction. We show here that the Mre11 complex functions together with exonuclease 1 (Exo1) in activation of the Mec1 signaling pathway after DNA damage and replication block. Mec1 controls the checkpoint responses following UV irradiation as well as DSB induction. Correspondingly, the Mre11 complex and Exo1 play an overlapping role in activation of DSB- and UV-induced checkpoints. The Mre11 complex and Exo1 collaborate in producing long single-stranded DNA (ssDNA) tails at DSB ends and promote Mec1 association with the DSBs. The Ddc1-Mec3-Rad17 complex associates with sites of DNA damage and modulates the Mec1 signaling pathway. However, Ddc1 association with DSBs does not require the function of the Mre11 complex and Exo1. Mec1 controls checkpoint responses to stalled DNA replication as well. Accordingly, the Mre11 complex and Exo1 contribute to activation of the replication checkpoint pathway. Our results provide a model in which the Mre11 complex and Exo1 cooperate in generating long ssDNA tracts and thereby facilitate Mec1 association with sites of DNA damage or replication block.  相似文献   

16.
Rouse J  Jackson SP 《The EMBO journal》2000,19(21):5801-5812
We identified YDR499W as a Saccharomyces cerevisiae open reading frame with homology to several checkpoint proteins, including S. cerevisiae Rfc5p and Schizosaccharomyces pombe Rad26. Disruption of YDR499W (termed LCD1) results in lethality that is rescued by increasing cellular deoxyribonucleotide levels. Cells lacking LCD1 are very sensitive to a range of DNA-damaging agents, including UV irradiation, and to the inhibition of DNA replication. LCD1 is necessary for the phosphorylation and activation of Rad53p in response to DNA damage or DNA replication blocks, and for Chk1p activation in response to DNA damage. LCD1 is also required for efficient DNA damage-induced phosphorylation of Rad9p and for the association of Rad9p with the FHA2 domain of Rad53p after DNA damage. In addition, cells lacking LCD1 are completely defective in the G(1)/S and G(2)/M DNA damage checkpoints. Finally, we reveal that endogenous Mec1p co-immunoprecipitates with Lcd1p both before and after treatment with DNA-damaging agents. These results indicate that Lcd1p is a pivotal checkpoint regulator, involved in both the essential and checkpoint functions of the Mec1p pathway.  相似文献   

17.
The yeast checkpoint protein kinase Mec1, the ortholog of human ATR, is the essential upstream regulator of the cell cycle checkpoint in response to DNA damage and to stalling of DNA replication forks. The activity of Mec1/ATR is not directly regulated by the DNA substrates that signal checkpoint activation. Rather the signal appears to be transduced to Mec1 by factors that interact with the signaling DNA substrates. One of these factors, the DNA damage checkpoint clamp Rad17-Mec3-Ddc1 (human 9-1-1) is loaded onto gapped DNA resulting from the partial repair of DNA damage, and the Ddc1 subunit of this complex activates Mec1. In vertebrate cells, the TopBP1 protein (Cut5 in S. pombe and Dpb11 in S. cervisiae) that is also required for establishment of the replication fork, functions during replication fork dysfunction to activate ATR. Both mechanisms of activation generally upregulate the kinase activity towards all downstream targets.  相似文献   

18.
Saccharomyces cerevisiae cells with a single double-strand break (DSB) activate the ATR/Mec1-dependent checkpoint response as a consequence of extensive ssDNA accumulation. The recombination factor Tid1/Rdh54, a member of the Swi2-like family proteins, has an ATPase activity and may contribute to the remodelling of nucleosomes on DNA. Tid1 dislocates Rad51 recombinase from dsDNA, can unwind and supercoil DNA filaments, and has been implicated in checkpoint adaptation from a G2/M arrest induced by an unrepaired DSB.Here we show that both ATR/Mec1 and Chk2/Rad53 kinases are implicated in the phosphorylation of Tid1 in the presence of DNA damage, indicating that the protein is regulated during the DNA damage response. We show that Tid1 ATPase activity is dispensable for its phosphorylation and for its recruitment near a DSB, but it is required to switch off Rad53 activation and for checkpoint adaptation. Mec1 and Rad53 kinases, together with Rad51 recombinase, are also implicated in the hyper-phosphorylation of the ATPase defective Tid1-K318R variant and in the efficient binding of the protein to the DSB site.In summary, Tid1 is a novel target of the DNA damage checkpoint pathway that is also involved in checkpoint adaptation.  相似文献   

19.
DNA damage response is crucial for maintaining genomic integrity and preventing cancer by coordinating the activation of checkpoints and the repair of damaged DNA. Central to DNA damage response are the two checkpoint kinases ATM and ATR that phosphorylate a wide range of substrates. RING finger and WD repeat domain 3 (RFWD3) was initially identified as a substrate of ATM/ATR from a proteomic screen. Subsequent studies showed that RFWD3 is an E3 ubiquitin ligase that ubiquitinates p53 in vitro and positively regulates p53 levels in response to DNA damage. We report here that RFWD3 associates with replication protein A (RPA), a single-stranded DNA-binding protein that plays essential roles in DNA replication, recombination, and repair. Binding of RPA to single-stranded DNA (ssDNA), which is generated by DNA damage and repair, is essential for the recruitment of DNA repair factors to damaged sites and the activation of checkpoint signaling. We show that RFWD3 is physically associated with RPA and rapidly localizes to sites of DNA damage in a RPA-dependent manner. In vitro experiments suggest that the C terminus of RFWD3, which encompass the coiled-coil domain and the WD40 domain, is necessary for binding to RPA. Furthermore, DNA damage-induced phosphorylation of RPA and RFWD3 is dependent upon each other. Consequently, loss of RFWD3 results in the persistent foci of DNA damage marker γH2AX and the repair protein Rad51 in damaged cells. These findings suggest that RFWD3 is recruited to sites of DNA damage and facilitates RPA-mediated DNA damage signaling and repair.  相似文献   

20.
Saccharomyces cerevisiae telomerase-negative cells undergo homologous recombination on subtelomeric or TG1–3 telomeric sequences, thus allowing Type I or Type II post-senescence survival, respectively. Here, we find that the DNA damage sensors, Mec1, Mec3 and Rad24 control Type II recombination, while the Rad9 adaptor protein and the Rad53 and Chk1 effector kinases have no effect on survivor type selection. Therefore, the Mec1 and Mec3 checkpoint complexes control telomeric recombination independently of their roles in generating and amplifying the Mec1-Rad53-Chk1 kinase cascade. rfa1-t11 mutant cells, bearing a mutation in Replication Protein A (RPA) conferring a defect in recruiting Mec1-Ddc2, were also deficient in both types of telomeric recombination. Importantly, expression of an Rfa1-t11-Ddc2 hybrid fusion protein restored checkpoint-dependent arrest, but did not rescue defective telomeric recombination. Therefore, the Rfa1-t11-associated defect in telomeric recombination is not solely due to its failure to recruit Mec1. We have also isolated novel alleles of RFA1 that were deficient in Type I but not in Type II recombination and proficient in checkpoint control. Therefore, the checkpoint and recombination functions of RPA can be genetically separated, as can the RPA-mediated control of the two types of telomeric recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号