首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Ammonium nitrate fertilizer, labelled with15N, was applied in spring to winter wheat growing in undisturbed monoliths of clay and sandy loam soil in lysimeters; the rates of application were respectively 95 and 102 kg N ha−1 in the spring of 1976 and 1975. Crops of winter wheat, oilseed rape, peas and barley grown in the following 5 or 6 years were treated with unlabelled nitrogen fertilizer at rates recommended for maximum yields. During each year of the experiments the lysimeters were divided into treatments which were either freelydrained or subjected to periods of waterlogging. Another labelled nitrogen application was made in 1980 to a separate group of lysimeters with a clay soil and a winter wheat crop to study further the uptake of nitrogen fertilizer in relation to waterlogging. In the first growing season, shoots of the winter wheat at harvest contained 46 and 58% of the fertilizer nitrogen applied to the clay and sandy loam soils respectively. In the following year the crops contained a further 1–2% of the labelled fertilizer, and after 5 and 6 years the total recoveries of labelled fertilizer in the crops were 49 and 62% on the clay and sandy loam soils respectively. In the first winter after the labelled fertilizer was applied, less than 1% of the fertilizer was lost in the drainage water, and only about 2% of the total nitrogen (mainly nitrate) in the drainage water from both soils was derived from the fertilizer. Maximum annual loss occurred the following year but the proportion of tracer nitrogen in drainage was nevertheless smaller. Leaching losses over the 5 and 6 years from the clay and sandy loam soil were respectively 1.3 and 3.9% of the original application. On both soils the percentage of labelled nitrogen to the total crop nitrogen content was greater after a period of winter waterlogging than for freely-drained treatments. This was most marked on the clay soil; evidence points to winter waterlogging promoting denitrification and the consequent loss of soil nitrogen making the crop more dependent on spring fertilizer applications.  相似文献   

2.
Thomsen  Ingrid K.  Kjellerup  Viggo  Jensen  Bendt 《Plant and Soil》1997,197(2):233-239
Two animal slurries either labelled with 15N in the urine or in the faeces fraction, were produced by feeding a sheep with unlabelled and 15N-labelled hay and collecting faeces and urine separately. The slurries were applied (12 g total N -2) to a coarse sand and a sandy loam soil confined in lysimeters and growing spring barley (Hordeum vulgare L). Reference lysimeters without slurry were supplied with15 NH4 15NO3 corresponding to the inorganic N applied with the slurries (6 g N m-2). In the second year, all lysimeters received unlabelled mineral fertilizer (6 g N m-2) and grew spring barley. N harvested in the two crops (grain + straw) and the loss of nitrate by leaching were determined. 15N in the urine fraction was less available for crop uptake than mineral fertilizer 15N. The first barley crop on the sandy loam removed 49% of the 15N applied in mineral fertilizer and 36% of that applied with urine. The availability of fertilizer 15N (36%) and urine15 N (32%) differed less on the coarse sand. Of the15 N added with the faeces fraction, 12–14% was taken up by the barley crop on the two soils. N mineralized from faeces compensated for the reduced availability of urine N providing a similar or higher crop N uptake in manured lysimeters compared with mineral fertilized ones.About half of the total N uptake in the first crop originated from the N applied either as slurry or mineral fertilizer. The remaining N was derived from the soil N pool. Substantially smaller but similar proportions of15 N from faeces, urine and fertilizer were found in the second crop. The similar recoveries indicated a slow mineralization rate of the residual faeces N since more faeces was left in the soil after the first crop.More N was lost by leaching from manured lysimeters but as a percentage of N applied, losses were similar to those from mineral fertilizer. During the first and second winter, 3–5% and 1–3%, respectively, of the 15N in slurry and mineral fertilizer was leached as nitrate. Thus slurry N applied in spring just before sowing did not appear to be more prone to loss by nitrate leaching than N given in mineral fertilizer. Slurry N accounted for a higher proportion of the N leached, however, because more N was added in this treatment.  相似文献   

3.
In the SE periphery of Brazilian Amazonia, low-input agriculture systems on sandy loam soils have very low nutrient use efficiency. In a low-input alley cropping system, we measured residue decomposition dynamics and the yield and nutrient uptake of a maize crop associated with the following treatments: Clitoria + Pigeon pea; Acacia + Pigeon pea; Leucaena + Clitoria; Leucaena + Acacia, Leucaena + Pigeon pea and no residue input (control). The acacia treatments provided better soil coverage throughout the whole corn cycle. Potassium was released faster than nitrogen from the residues; N concentration in corn leaves in the residue treatments were below critical levels. The Leucaena + Acacia treatment was the most effective in increasing post-tasseling N and K assimilation and K use efficiency. This resulted in corn productivity 3.5 times greater (7.3 Mg ha?1) than the control without residue application. In the Amazonian sandy loam soils, which are susceptible to hardsetting and nutrient leaching, efficient N and K use should be priorities for soil management. Although no-till alley cropping of leguminous trees constitutes an important option for low-input farming, its efficiency depends on using a mixture of residues that keeps soil covered and have high rates of both N and K release during the entire crop cycle.  相似文献   

4.
Di  H.J.  Cameron  K.C.  Moore  S.  Smith  N.P. 《Plant and Soil》1999,210(2):189-198
The objective of this study was to compare the N leaching loss and pasture N uptake from autumn-applied dairy shed effluent and ammonium fertilizer (NH4Cl) labeled with 15N, using intact soil lysimeters (80 cm diameter, 120 cm depth). The soil used was a sandy loam, and the pasture was a mixture of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens). The DSE and NH4Cl were applied twice annually in autumn (May) and late spring (November), each at 200 kg N ha-1. The N applied in May 1996 was labeled with 15N. The lysimeters were either spray or flood irrigated during the summer. The autumn-applied DSE resulted in lower N leaching losses compared with NH4Cl. However, the N applied in the autumn had a higher potential for leaching than N applied in late spring. Between 4.5–8.1% of the 15N-labeled mineral N in the DSE and 15.1–18.8% of the 15N-labeled NH4Cl applied in the autumn were leached within a year of application. Of the annual N leaching losses in the DSE treatments (16.0–26.9 kg N ha-1), a fifth (20.3–22.9%) was from the mineral N fraction of the DSE applied in the autumn, with the remaining larger proportion from the organic fraction of the DSE, soil N and N applied in spring. In the NH4Cl treatments, more than half (53.8–64.8%) of the annual N leaching loss (55.9–57.6 kg N ha-1) was derived from the autumn-applied NH4Cl. DSE was as effective as NH4Cl in stimulating pasture production. Since only 4.4–4.5% of the annual herbage N uptake in the DSE treatment and 12.3–13.3% in the NH4Cl treatment were derived from the autumn-applied mineral N, large proportions of the annual herbage N uptake must have been derived from the N applied in spring, the organic N fraction in the DSE, soil N and N fixed by clover. The recoveries of 15N in the herbage were similar between the DSE and the NH4Cl treatments, but those in the leachate were over 50% less from the DSE than from the NH4Cl treatment. The lower leaching loss of 15N in the DSE treatment was attributed to the stimulated microbial activities and increased immobilization following the application of DSE. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The objective of this research was to determine the optimum nitrogen fertilizer rate for producing sweet sorghum (a promising biofuel crop) juice, sugar, and bagasse on silt loam, sandy loam, and clay soils in Missouri. Seven nitrogen fertilization rates were applied, ranging from 0 to 134 kg N ha?1. Regardless of the soil and year, the juice content of sweet sorghum stalk averaged 68.8% by weight. The juice yield ranged from 15.2 to 71.1 m3 ha?1. Soil and N rate significantly impacted the juice yield (P < 0.0001). The pH and the density of the juice were not affected by the soil or N. The sugar content (Brix) of the juice varied between 10.7% and 18.9%. N fertilization improved the sugar content of the juice. A negative correlation existed between the sugar concentration and the juice yield. In general, the lowest sugar content was found in the clay soil and the impact of the N fertilization on juice sugar content was most pronounced in that soil. The juice sugar yield ranged between 2 and 9.9 Mg ha?1, with significant differences found between years, N rates, and soils. N fertilization always increased the sugar yield in the clay soil, whereas in loam soil, a significant sugar response was recorded when the sweet sorghum was planted after corn. The average juice water content was 84% by weight. The dry bagasse yield fluctuated between 3.2 and 13.8 Mg ha?1 with significant difference found with N rate, soil, and year. When sweet sorghum was grown after soybean or cotton, its N requirement was less than after a corn crop was grown the previous year. In general, a minimum of 67 kg N ha?1 was required to optimize juice, sugar, and bagasse yield in sweet sorghum.  相似文献   

6.
Jensen  L.S.  Christensen  L.  Mueller  T.  Nielsen  N.E. 《Plant and Soil》1997,190(2):193-202
We studied the fate of 15N-labelled fertilizer nitrogen in a sandy loam soil after harvest of winter oilseed rape (Brassica napus L. cv. Ceres) given 100 or 200 kg N ha-1 in spring, with or without irrigation. Our main objective was to quantify the temporal variations of the soil mineral N, the extractable soil organic N and soil microbial biomass N, and fertilizer derived N in these pools during autumn and winter. Nitrogen use efficiency of the oilseed rape crop varied from 47% of applied N in the 100N, irrigated treatment to 34% in the 200N, non-irrigated treatment. However, only in the latter treatment did we find significantly higher fertilizer derived soil mineral N than in the three other treatments which all had low soil mineral N contents at the first sampling after harvest (8 days after stubble tillage). Between 31% and 42% of the applied N could not be accounted for in the harvested plants or 0-15 cm soil layer at this first sampling. Over the following autumn and winter none of the remaining fertilizer derived soil N was lost from the 0–5 cm depth, but from the 5–15 cm depth a marked proportion of N derived from fertilizer was lost, probably by leaching. Negligible amounts of fertilizer derived extractable soil organic and mineral N (<1 kg N ha-1, 0-15 cm) were found in all treatments after the first sampling.Soil microbial biomass N was not significantly affected by treatments and showed only small temporal variability (±11% of the mean 76 kg N ha-1, 0- 15 cm depth). Surprisingly, the average amount of soil microbial biomass N derived from fertilizer was significantly affected by the treatments, with the extremes being 5.5 and 3.1 kg N ha-1 in the 200N, non-irrigated and 100N, irrigated treatments, respectively. Also, the estimated exponential decay rate of microbial biomass N derived from fertilizer, differed greatly (2 fold) between these two treatments, indicating highly different microbial turnover rates in spite of the similar total microbial biomass N values. In studies utilising 15N labelling to estimate turnover rates of different soil organic matter pools this finding is of great importance, because it may question the assumption that turnover rates are not affected by the insertion of the label.  相似文献   

7.
In an effort to provide an explanation for the reported variability in fertilizer N efficiency from deepplaced urea on flooded rice, a set of controlled experiments was conducted to evaluate the effect of water percolation on fertilizer loss and plant uptake from15N labeled urea supergranules. Three soils of different texture (silt loam-clay) were subjected to various percolation rates (0–20 mm/day) while planted to rice which was harvested after approximately 40 days.The results indicate that moderate to high percolation through silt loam soil will lead to significant fertilizer N losses and drastically decrease the fertilizer uptake by plants. The permeability of the clay soil was too low for any leaching to take place. It is therefore concluded that deep placement of urea supergranules not be recommended in soils where percolation rates may exceed 5 mm/day, particularly if the cation exchange capacity of the soil is low. This experiment points to the need of evaluating and reporting the percolation rates in soils where experiments with supergranular urea are conducted.Contribution from the Agro-Economic Division of the International Fertilizer Development Center (IFDC), Muscle Shoals, Alabama 35660.  相似文献   

8.
Summary Results of a two year study on the fate on15N-labelled urea (9.95 atoms percent excess15N) applied @ 180 kg N/ha to flooded rice in monolith lysimeters at the Punjab Agricultural University Farm, Ludhiana are reported. The soil of the experimental field was sandy clay loam in texture (Typic Ustochrept), had pH 7.9, organic carbon 0.36 percent, available N 187 kg/ha and total N 0.08 percent. The results revealed that 18.1 to 53.0 per cent of the fertilizer N was utilized by the rice plant, 25.1 to 41.1 percent was immobilized in the soil and 4.8 to 7.2 percent was lost by denitrification. The losses due to ammonia volatilization and leaching were negligible. The data on vertical distribution of labelled N in the soil profile reflected a higher concentration (38.3 to 39.5 per cent) in the surface (0–30 cm) soil. The content sharply decreased (1.8 to 2.4, percent) in lower soil layers (30–150 cm). A balance sheet of the various pathways of applied N showed that 58.8 to 72.2 and 66.2 to 83.0 percent N was recovered in 1976 and 1977, respectively and 17 to 41.2 per cent of labelled N still remained unaccounted for. Utilization of fertilizer N by rice was increased and losses decreased when N was applied in three equal splits as compared to the single N application at transplanting.Availability of fertilizer N immobilized in the soil was investigated in the succeeding crops of wheat and rice. The results showed that 2.1 tot 3.4 per cent of the N applied to the preceding rice was utilized by the second rice crop grown in succession. This may look small but cannot be neglected on a long term basis. But there is need to initiate long term studies to investigate the, turnover of residual N and to determine the fate of applied N in varying soil and cropping systems by using improved techniques.  相似文献   

9.
Eighteen pan lysimeters were installed at a depth of 1.2 m in a Hagerstown silt loam soil in a corn field in central Pennsylvania in 1988. In 1995, wick lysimeters were also installed at 1.2 m depth in the same access pits. Treatments have included N fertilizer rates, use of manure, crop rotation (continuous corn, corn-soybean, alfalfa-corn), and tillage (chisel plow-disk, no-till). The leachate data were used to evaluate a number of nitrate leaching models. Some of the highlights of the 11 years of results include the following: 1) growing corn without organic N inputs at the economic optimum N rate (EON) resulted in NO3--N concentrations of 15 to 20 mg l(-1) in leachate; 2) use of manure or previous alfalfa crop as partial source of N also resulted in 15 to 20 mg l(-1) of NO3--N in leachate below corn at EON; 3) NO3--N concentration in leachate below alfalfa was approximately 4 mg l(-1); 4) NO3--N concentration in leachate below soybeans following corn was influenced by fertilizer N rate applied to corn; 5) the mass of NO3--N leached below corn at the EON rate averaged 90 kg N ha(-1) (approx. 40% of fertilizer N applied at EON); 6) wick lysimeters collected approximately 100% of leachate vs. 40-50% collected by pan lysimeters. Coefficients of variation of the collected leachate volumes for both lysimeter types were similar; 7) tillage did not markedly affect nitrate leaching losses; 8) tested leaching models could accurately predict leachate volumes and could be calibrated to match nitrate leaching losses in calibration years, but only one model (SOILN) accurately predicted nitrate leaching losses in the majority of validation treatment years. Apparent problems with tested models: there was difficulty estimating sizes of organic N pools and their transformation rates, and the models either did not include a macropore flow component or did not handle macropore flow well.  相似文献   

10.
Field studies were conducted to assess the turnover and the leaching of nitrogen in arable soils of Lower Saxony (NW Germany). The mean surplus N (difference between N inputs by fertilization and N export by the yield; 146 field plots) from 1985–1988 amounted to 38 kg ha-1 yr-1 in fine textured (clay, loam, silt) and to 98 kg ha-1 yr-1 in coarse (sandy) soils. Leaching of nitrate calculated by a simple functional model for simulation of the N regime over the winter period (i.e. mineralization and leaching) was 16 kg ha-1 in the fine and 63 kg N ha-1 in coarse soils (mean values of the winter periods 1985–1988 from 256 plots).Before the 1960s, the depth of the Ap horizons rarely exceeded 25 cm in arable soils of the former FRG. During the last three decades, ploughing depth has increased to at least 35 cm. The mass balance calculations for total N after ploughing to 35 cm in loess soils of southern Lower Saxony (105 farm plots) yielded a mean increase in total N by about 900 kg ha-1 in 20 years. With respect to soil organic matter equilibria, N accumulation will continue for at least another 10 years on 67% of the examined farm plots. This study suggests that long term N immobilization is one of the most important sinks for nitrogen in arable soils of Germany. For simulation of the N dynamics over the growing season and for long time periods total nitrogen dynamics need to be considered.  相似文献   

11.
Sogbedji  J. M.  van Es  H. M.  Hutson  J. L. 《Plant and Soil》2001,229(1):57-70
The need for efficient use of agricultural chemicals and their potential adverse impact on critical water resources have increased the use of simulation models of the soil and plant system. Nevertheless, there is currently little or no agreement concerning model validity and applicability in varied soils and environments. The research version of LEACHMN (the N subroutine of LEACHM) was calibrated using field data including soil physical, hydraulic, and chemical properties, and maize (Zea mays L.) N uptake collected from a 3-yr nitrate leaching experiment. The field site consisted of plot-size lysimeters on clay loam and loamy sand soils with N fertilizer rates of 22, 100 and 134 kg N ha–1. The calibration involved adjusting nitrification, denitrification, and volatilization rate constants to optimize the fit between predicted and measured data. When calibrated for each treatment-year combination and soil type, the model simulations of soil profile NO3–N distribution were generally successful. The N transformation rate constants yielded by the calibration efforts were similar or close to those used in other model simulation studies. At both sites, the calibrated rate constants for the first year (following sod plowdown) were different from those for the subsequent two years. Denitrification rate constants were consistently higher for the clay site than for the sand site, while the nitrification rate constants were lower. N rate of application appeared not to affect the rate constants within each year-site combination, suggesting that cropping history and soil type had the greatest effect on N transformation rates.  相似文献   

12.
Restoration of soil organic carbon (SOC) in arable lands represents potential sink for atmospheric CO2. The strategies for restoration of SOC include the appropriate land use management, cropping sequence, fertilizer and organic manures application. To achieve this goal, the dynamics of SOC and nitrogen (N) in soils needs to be better understood for which the long-term experiments are an important tool. A study was thus conducted to determine SOC and nitrogen dynamics in a long-term experiment in relation to inorganic, integrated and organic fertilizer application in rice-cowpea system on a sandy loam soil (Typic Rhodualf). The fertilizer treatments during rice included (i) 100% N (@ 100 kg N ha?1), (ii) 100% NP (100 kg N and 50 kg P2O5 ha?1), (iii) 100% NPK (100 kg N, 50 kg P2O5 and 50 kg K2O ha?1) as inorganic fertilizers, (iv) 50% NPK + 50% farm yard manure (FYM) (@ 5 t ha?1) and (v) FYM alone @ 10 t ha?1 compared with (vi) control treatment i.e. without any fertilization. The N alone or N and P did not have any significant effect on soil carbon and nitrogen. The light fraction carbon was 53% higher in NPK + FYM plots and 56% higher in FYM plots than in control plots, in comparison to 30% increase with inorganic fertilizers alone. The microbial biomass carbon and water-soluble carbon were relatively higher both in FYM or NPK + FYM plots. The clay fraction had highest concentration of C and N followed by silt, fine sand and coarse sand fractions in both surface (0–15 cm) and subsurface soil layers (15–30 cm). The C:N ratio was lowest in the clay fraction and increased with increase in particle size. The C and N enrichment ratio was highest for the clay fraction followed by silt and both the sand fractions. Relative decrease in enrichment ratio of clay in treatments receiving NPK and or FYM indicates comparatively greater accumulation of C and N in soil fractions other than clay.  相似文献   

13.
Liang  B.C.  Gregorich  E.G.  MacKenzie  A.F. 《Plant and Soil》1999,208(2):227-232
Studies of soil organic matter equilibria must include estimates of C turnover. The objective of this study was to provide data on how the natural 13C abundance method can be used to determine the flow of C from C4 residues and soil organic matter (C3-source) in a short-term incubation. Corn residue was added at a rate of 5.7 mg C g−1 soil to two soils, a clay and a sandy clay loam. During the course of a 35-day incubation in a CO2-free system, CO2-C and 13C natural abundance of the respired CO2 were measured. About 20% of the corn residue-C added was mineralized in both soils as determined from the CO2 respired and the 13C natural abundance of the respired CO2. Mineralization of the added residues was also calculated as the difference of the total amount of the respired CO2-C between the control and the corn residue-treated soils divided by the total amount of corn residue-C. Values were 35% for the clay soil, and 30% for the sandy clay loam soil. The difference in values calculated from the 13 C natural abundance and the difference method was due to mineralization of the indigenous soil organic C resulting from the addition of corn residues. Use of the natural 13C abundance method could determine the degree of ‘priming effect’ in soils amended with C4-C residues. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Nannipieri  P.  Falchini  L.  Landi  L.  Benedetti  A.  Canali  S.  Tittarelli  F.  Ferri  D.  Convertini  G.  Badalucco  L.  Grego  S.  Vittori-Antisari  L.  Raglione  M.  Barraclough  D. 《Plant and Soil》1999,208(1):43-56
The N uptake by crops, soil distribution and recovery of 15N labelled urea-N (100 kg N ha-1) were investigated in a sorghum-wheat rotation in two silty clay soils (Foggia and Rieti Casabianca) and one silt loam soil (Rieti Piedifiume) under different mediterranean conditions. Non-exchangeable labelled NH4-N represented an important pool at both Rieti sites with higher values (p<0.05) under sorghum (14.0 and 24.6% of the urea N in the 0-20 cm layer at the end of the cropping season) than wheat whereas it was much less important in the Foggia soil (10.0% in the surface soil under sorghum). This is probably related to the clay minerals composition of the three soils; because vermiculite was present in both Rieti sites but not in the Foggia soil. At harvest from 4.4 to 5.3% of the urea N initially applied was present as microbial biomass N in the surface soil layer with no generally significant differences due to location and type of crops. Both sorghum and wheat N yields were higher in the driest site (Foggia) probably due to better light conditions, higher temperatures and irrigation during summer of the sorghum cropping period. The recovery of plant fertilizer N (about 21% for sorghum and 27% for wheat) and the percentage of N in the plant derived from the fertilizer (NDFF) were the lowest at Rieti-Casabianca probably as the result of the protection of immobilized fertilizer N against microbial mineralization by the swelling clays. The fertilizer N unaccounted for was nil or very low (10.8% at Rieti-Casabianca under wheat and 11.8 and 4.9% at Rieti-Piedifiume under sorghum and wheat, respectively). Urea-N losses occurred when Rieti Piedifiume and Rieti Casabianca soils were kept bare. In this case the urea N unaccounted for ranged from 12 to 56% of the urea N with higher losses in Rieti-Piedifiume than in Rieti-Casabianca. The higher recoveries in the latter soil were probably confirmed by the stabilizing effect of clays on the immobilized urea N. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta) has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM) oxidation and physical compaction. Rice (Oryza sativa) production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 – 4 % combined). Shallow groundwater contributed 24 – 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 – 81 % of plant N uptake (129 – 149 kg N ha-1) was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 – 70 %, estimated net C loss ranged from 1149 – 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices.  相似文献   

16.
Troelstra  S.R.  Wagenaar  R.  Smant  W. 《Plant and Soil》1997,197(1):41-53
High deposition levels of atmospheric ammonia in the Netherlands have led to the major replacement of dwarf shrubs by grasses and to elevated nitrification rates in acid heathland soils. In order to study the efficacy of a naturally established grass-heath of Deschampsia flexuosa at capturing NO- 3, an outdoor 'mesocosm' lysimeter experiment was set up with relatively large and undisturbed soil columns from two Deschampsia-dominated heathland sites. One of the sites (Ede) had a relatively high rate of nitrate production, whereas the other (Hoorneboeg [HB]) showed practically no nitrate formation. For part of the Ede columns, the fate of labeled nitrate, split-applied at two rates (30 or 150 kg ha-1 yr-1) during two seasons, was studied. D. flexuosa was highly effective in acquiring fertilizer nitrate, as demonstrated by (1) distinct rises in foliar NRA, especially at high N; (2) increased 15N enrichments in all plant components with N rate; (3) significant increases in organic-N and carboxylate concentration in several plant compartments; and (4) clear shifts in biomass allocation in favour of the aboveground tissues.After 18 months at low N, an average 39 and 23% of the applied N was immobilized in the plant and soil compartments, respectively; at high N rate, corresponding recoveries were 33 and 20%. Total leaching of nitrate (beyond a depth of 35 cm) from the unfertilized Ede columns corresponded to an annual loss of 1.9 kmol N ha-1, whereas leaching was virtually zero from HB columns. Relatively high amounts of N leached from the fertilized columns with apparent fertilizer recovery in the leachate reaching an average 60% at high N. However,15 N analyses revealed only recoveries of 2.0% (low N) and 7.2% (high N) of the applied N in the leachate. From columns where the plant cover had been removed, apparent and real leaching losses reached values of >100 and 10% of the applied N, respectively. Hence, soil-derived N appeared by far the major source of leaching. Unplanted and unfertilized HB columns displayed high rates of nitrification and leached high amounts of nitrate, suggesting a plant-induced repression of the in situ nitrification at this site.On average, planted columns had lost 37% (low N) and 40% (high N) of the applied N, whereas unplanted lysimeters had lost 89% (for both low and high N). The N not recovered was presumed lost by denitrification due to favourable conditions with respect to nitrate concentration, moisture, carbon supply, and temperature.  相似文献   

17.

Background and aims

Biochar additions to tropical soils have been shown to reduce N leaching and increase N use efficiency. No studies exist verifying reduced N leaching in field experiments on temperate agricultural soils or identifying the mechanism for N retention.

Methods

Biochar derived from maize stover was applied to a maize cropping system in central New York State at rates of 0, 1, 3, 12, and 30 t?ha-1 in 2007. Secondary N fertilizer was added at 100, 90, 70, and 50 % of the recommended rate (108 kg N ha-1). Nitrogen fertilizer enriched with 15?N was applied in 2009 to the 0 and 12 t?ha-1 of biochar at 100 and 50 % secondary N application.

Results

Maize yield and plant N uptake did not change with biochar additions (p?>?0.05; n?=?3). Less N (by 82 %; p?<?0.05) was lost after biochar application through leaching only at 100 %?N fertilization. The reason for an observed 140 % greater retention of applied 15?N in the topsoil may have been the incorporation of added 15?N into microbial biomass which increased approximately three-fold which warrants further research. The low leaching of applied fertilizer 15?N (0.42 % of applied N; p?<?0.05) and comparatively high recovery of applied 15?N in the soil (39 %) after biochar additions after one cropping season may also indicate greater overall N retention through lower gaseous or erosion N losses with biochar.

Conclusions

Addition of biochar to fertile soil in a temperate climate did not improve crop growth or N use efficiency, but increased retention of fertilizer N in the topsoil.  相似文献   

18.
A series of batch experiments were conducted to observe the variations of bioavailability of naphthalene in different types of soil with indigenous microorganisms. Solid phase microextraction (SPME) was employed to estimate the bioavailability of naphthalene in the soils. Various soil properties were attained by artificially modifying soil organic matter (SOM) with the addition of bagasse compost and textures with the addition of original silt and clay to determine the correlation between the amount of biodegraded naphthalene after 300 h and the amount of extractable naphthalene by SPME. Experimental results indicated that the biodegradation rate increased from 0.30 (sandy loam) to 0.48 (silty loam) μg g−1 h−1 when soils had more silt/clay. In contrast, the biodegradation rate slightly decreased from 0.30 (1.3% SOM) to 0.20 (5.2% SOM) μg g−1 h−1 when the SOM was high. Distributions of naphthalene in soils after biodegradation were affected by the addition of bagasse compost. It showed that the bioavailability of naphthalene in soils decreased with an increase in SOM. Sequestration as measured by ultrasonic extractability evidently occurred within 4 months in aged soil samples. However, the amounts extracted by sonication after 4 and 16 months of aging did not statistically differ from each other. The SPME measurements correlated well with the amount of biodegraded naphthalene by indigenous microorganisms. Results of this study demonstrate that SPME is a promising method to estimate the bioremediation efficacy of naphthalene-contaminated soils with various properties.  相似文献   

19.
Fertilization rates and clay fixed ammonium in two Quebec soils   总被引:5,自引:0,他引:5  
Clay fixed NH4 + can provide a significant sink for fertilizer N, as well as a source of N for plant uptake. Knowledge or soil NH4 + fixing capacity and release for crops is necessary to develop long-term fertilizer programs. Field experiments with corn (Zea mays L.) were carried out to investigate soil NH4 + fixing capacity and subsequent release as influenced by fertilizer rates using 15N in a Ste. Rosalie clay (fine, mixed, frigid, Typic Humaquept) and a Chicot sandy clay loam (fine-loamy, mixed, frigid, Typic Hapludalf). With high N rates increased NH4 + fixation occurred only in the Ste. Rosalie soil. At the end of the first growing season, fertilizer N recovery as clay fixed NH4 + for high and normal rates of fertilizer in the Ste. Rosalie soil was 17.8% and 28.7%, respectively and the recovery for the high and normal rates in the Chicot soil was 4.6 and 10.5%, respectively. Significant amounts of clay fixed NH4 +-N were released in the soil profile in the second year after 15N application on the Chicot soil. Recently clay fixed fertilizer NH4 +N was released more rapidly than that of the native fixed NH4 +, from the surface layer of the Ste. Rosalie soil. The fertilizer fixed NH4 + seems to be in a more labile N pool than the native fixed NH4 +-N in the Chicot soil.  相似文献   

20.
Clough  T.J.  Ledgard  S.F.  Sprosen  M.S.  Kear  M.J. 《Plant and Soil》1998,199(2):195-203
A field lysimeter experiment was conducted over a 406 day period to determine the effect of different soil types on the fate of synthetic urinary nitrogen (N). Soil types included a sandy loam, silty loam, clay and peat. Synthetic urine was applied at 1000 kg N ha-1, during a winter season, to intact soil cores in lysimeters. Leaching losses, nitrous oxide (N2O) emissions, and plant uptake of N were monitored, with soil 15N content determined upon destructive sampling of the lysimeters. Plant uptake of urine-N ranged from 21.6 to 31.4%. Soil type influenced timing and form of inorganic-N leaching. Macropore flow occurred in the structured silt and clay soils resulting in the leaching of urea. Ammonium (NH 4 + –N), nitrite (NO 2 - –N) and nitrate (NO3 -–N) all occurred in the leachates with maximum concentrations, varying with soil type and ranging from 2.3–31.4 g NH 4 + –N mL-1, 2.4–35.6 g NO 2 - –N mL-1, and 62–102 g NO 3 - –N mL-1, respectively. Leachates from the peat and clay soils contained high concentrations of NO 2 - –N. Gaseous losses of N2O were low (<2% of N applied) over a 112 day measurement period. An associated experiment showed the ratio of N2–N:N2O–N ranged from 6.2 to 33.2. Unrecovered 15N was presumed to have been lost predominantly as gaseous N2. It is postulated that the high levels of NO 2 - –N could have contributed to chemodenitrification mechanisms in the peat soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号