首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical muscle stimulation (Mstim) at a low or high frequency is associated with failure of force production, but the exact mechanisms leading to fatigue in this model are still poorly understood. Using 31P magnetic resonance spectroscopy (31PMRS), we investigated the metabolic changes in rabbit tibialis anterior muscle associated with the force decline during Mstim at low (10 Hz) and high (100 Hz) frequency. We also simultaneously recorded the compound muscle mass action potential (M-wave) evoked by direct muscle stimulation, and we analyzed its post-Mstim variations. The 100-Hz Mstim elicited marked M-wave alterations and induced mild metabolic changes at the onset of stimulation followed by a paradoxical recovery of phosphocreatine (PCr) and pH during the stimulation period. On the contrary, the 10-Hz Mstim produced significant PCr consumption and intracellular acidosis with no paradoxical recovery phenomenon and no significant changes in M-wave characteristics. In addition, the force depression was linearly linked to the stimulation-induced acidosis and PCr breakdown. These results led us to conclude that force failure during 100-Hz Mstim only results from an impaired propagation of muscle action potentials with no metabolic involvement. On the contrary, fatigue induced by 10-Hz Mstim is closely associated with metabolic changes with no alteration of the membrane excitability, thereby underlining the central role of muscle energetics in force depression when muscle is stimulated at low frequency. Finally, our results further indicate a reduction of energy cost of contraction when stimulation frequency is increased from 10 to 100 Hz.  相似文献   

2.
Ion-selective microelectrode measurements of molecular diffusion have provided unique information about the structural characteristics of the extracellular compartment of brain tissue. Magnetic resonance (MR) techniques can also be used to perform diffusion measurements in living tissue in situ. In MR applications, the challenge to study a particular physiological compartment lies in achieving the appropriate specificity in the experimentally-observed MR signal, and many strategies have been used to provide measurements that reflect molecular diffusion within the extracellular space. This review describes how magnetic resonance and microelectrode diffusion measurements are performed, and applications using the MR technique are summarized. Comparisons of experimental results obtained from the two techniques indicate that their use in combination may further augment what is known about extracellular space structure.  相似文献   

3.
The objective of this study is to observe the visual fatigue caused by watching 3DTV using the method of functional magnetic resonance imaging (fMRI). The data of fMRI during three kinds of visual stimulation tasks were obtained from twenty subjects. At first, blood-oxygen-level dependent (BOLD) signal changes during stimuli of checkerboard task were compared before and after one-hour watching 3D/2DTV, and subjective evaluation was conducted based on the questionnaire simultaneously. Then 3D and 2D images were used to stimulate healthy individuals to measure brain activities that correlated with stereoscopic vision. Finally, the relationship between front or back depth of field images and visual fatigue was investigated. The results reveal that the 3D group shows more significant differences of brain activities in BA8, BA17, BA18 and BA19 than the 2D group during the checkerboard stimulation. BA5, BA6, BA7 and BA8 were testified to have close relationship with stereoscopic perception via the 2D/3D images stimulation. Furthermore, the front depth of field image was proven to impose a more serious impact on visual fatigue than the back one. These conclusions are useful for healthy and reasonable 3DTV watching as well as properly designing of 3D scenes.  相似文献   

4.
Muscle functional magnetic resonance imaging (MRI) refers to changes in the contrast properties of certain MR images that occur in exercising muscles. In part, these changes result indirectly from increased rates of cellular energy metabolism, which alter the image contrast properties by increasing the water content and by decreasing the intracellular pH. Also, increases in blood oxygen extraction cause a rapidly evolving, small, and negative contribution to signal. Together, these changes produce a complex time course of contrast changes during exercise. Analysis of this time course may provide insight into the physiology of exercising muscles. These contrast changes also provide a non-invasive method for determining the spatial pattern of muscle activation.  相似文献   

5.
Muscle fatigue, which is defined as the decline in muscle performance during exercise, may occur at different sites along the pathway from the central nervous system through to the intramuscular contractile machinery. Historically, both impairment of neuromuscular transmission and peripheral alterations within the muscle have been proposed to be involved in the development of fatigue. However, according to the more recent studies, muscle energetics would have a key role in this process. Intramyoplasmic accumulation of inorganic phosphate (P(i)) and limitation in ATP availability are frequently proposed as the causative factors of fatigue development. Although attractive, these hypotheses have been elaborated on the basis of experimental results obtained in vitro and their physiological relevance has never been clearly demonstrated in vivo. In that context, non-invasive methods such as 31-phosphorus magnetic resonance spectroscopy ((31)P MRS) and electromyographic (EMG) recordings have been employed to understand both metabolic and electrical aspects of muscle fatigue under physiological condition. The main results of these studies are reviewed in the present paper.  相似文献   

6.
Nuclear magnetic resonance spectroscopy has become a powerful tool for metabolic investigations on living cell suspensions. However, unless mechanical means are used to maintain the cells in dispersion, settling occurs during the NMR experiment. Because high packed-cell volumes are generally used to produce maximum NMR signals, settling may be inapparent to the eye, leading to unrecognized artifactual changes in NMR spectra. Such artifacts include time-dependent loss of signal intensity when the sample volume approximates the sensitive volume of the NMR probe, and time-dependent increase in signal intensity when the sample volume exceeds the sensitive volume. Through the addition of the polysaccharide arabinogalactan, increasing the buoyant density of the suspending medium to approach that of the cells, we have eliminated cell settling and improved the quality of 31P NMR spectra of human erythrocytes.  相似文献   

7.
This study addresses the question whether unintended response of the knee flexors (hamstrings) accompanies transcutaneous functional electrical stimulation (FES) of the quadriceps and whether the knee torque is hereby affected. Transcutaneous FES of the right quadriceps of two paraplegic subjects was applied and measurements were made of the net torque and of the myoelectric activities of the quadriceps and hamstrings muscles of the right leg. A low correlation was obtained between the peak-to-peak amplitudes of the M-waves of the two muscles. This correlation decreased further with the development of fatigue, which indicated that the electromyography (EMG) signals from the hamstrings were not the result of cross-talk between adjacent recording sites. The force profile of each muscle was determined from a developed model incorporating EMG-based activation, muscle anthropometry as obtained from in vivo magnetic resonance imaging of the thigh, and metabolic fatigue function, based on data acquired by 31P nuclear magnetic resonance spectroscopy. A sensitivity analysis revealed that the muscle specific tension and the muscle moment arms have a major influence on the resulting muscle forces and should therefore be accurately provided. The results show that during the unfatigued phase of contraction the estimated maximal force in the hamstrings was lower than 20% of that in the quadriceps and could be considered to be practically negligible. As fatigue progressed the hamstrings-to-quadriceps force ratio increased, reaching up to 45%, and the effect of co-activation on the torque partition between the two muscles was no longer negligible.  相似文献   

8.
Magnetic resonance (MR) imaging is the most promising new technology to appear in the clinical imaging arena since the advent of x-ray transmission computed tomography in the early 1970s. Five independent tissue characteristics (spin density, spin-lattice and spin-spin relaxation times, flow and spectral shift information) are accessible to MR imaging, and their relative influence in the magnetic resonance image can be varied by appropriate selection of pulse sequences and pulse times. All major organ systems appear to be amenable to MR imaging, and some are revealed with superior definition compared with their appearance in images obtained by alternate imaging technologies. Of particular interest is the superior contrast resolution in MR images of the brain and spinal cord, and the absence of bone- and motion-induced artifacts in images of the abdomen and pelvis. Applications of MR imaging to the heart and great vessels are just developing, as are new types of contrast agents for use in MR imaging. In vivo chemical spectroscopic measurements by magnetic resonance are heralded by some investigators as the most significant contribution that magnetic resonance will make ultimately to clinical diagnosis.At present, the number of MR imaging units is extremely low, and clinical studies are proceeding at a slow rate. Nevertheless, it is possible to provide a preliminary evaluation of the usefulness of MR imaging in a variety of clinical applications. This article is such an evaluation, tempered by the acknowledgement that much additional work remains to be done.  相似文献   

9.
10.
Electromyographic models to assess muscle fatigue   总被引:1,自引:0,他引:1  
Muscle fatigue is a common experience in daily life. Many authors have defined it as the incapacity to maintain the required or expected force, and therefore, force, power and torque recordings have been used as direct measurements of muscle fatigue. In addition, the measurement of these variables combined with the measurement of surface electromyography (sEMG) recordings (which can be measured during all types of movements) during exercise may be useful to assess and understand muscle fatigue. Therefore, there is a need to develop muscle fatigue models that relate changes in sEMG variables with muscle fatigue. However, the main issue when using conventional sEMG variables to quantify fatigue is their poor association with direct measures of fatigue. Therefore, using different techniques, several authors have combined sets of sEMG parameters to assess muscle fatigue. The aim of this paper is to serve as a state-of-the-art summary of different sEMG models used to assess muscle fatigue. This paper provides an overview of linear and non-linear sEMG models for estimating muscle fatigue, their ability to assess power loss and their limitations due to neuromuscular changes after a training period.  相似文献   

11.
In order to visualize the global and downstream neuronal responses to deep brain stimulation (DBS) at various targets, we have developed a protocol for using blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) to image rodents with simultaneous DBS. DBS fMRI presents a number of technical challenges, including accuracy of electrode implantation, MR artifacts created by the electrode, choice of anesthesia and paralytic to minimize any neuronal effects while simultaneously eliminating animal motion, and maintenance of physiological parameters, deviation from which can confound the BOLD signal. Our laboratory has developed a set of procedures that are capable of overcoming most of these possible issues. For electrical stimulation, a homemade tungsten bipolar microelectrode is used, inserted stereotactically at the stimulation site in the anesthetized subject. In preparation for imaging, rodents are fixed on a plastic headpiece and transferred to the magnet bore. For sedation and paralysis during scanning, a cocktail of dexmedetomidine and pancuronium is continuously infused, along with a minimal dose of isoflurane; this preparation minimizes the BOLD ceiling effect of volatile anesthetics. In this example experiment, stimulation of the subthalamic nucleus (STN) produces BOLD responses which are observed primarily in ipsilateral cortical regions, centered in motor cortex. Simultaneous DBS and fMRI allows the unambiguous modulation of neural circuits dependent on stimulation location and stimulation parameters, and permits observation of neuronal modulations free of regional bias. This technique may be used to explore the downstream effects of modulating neural circuitry at nearly any brain region, with implications for both experimental and clinical DBS.  相似文献   

12.
An optical monitor of tension for small cardiac preparations.   总被引:6,自引:0,他引:6       下载免费PDF全文
When a light beam is focused on a muscle preparation which is allowed to contract, large changes in the intensity of the emerging light accompany the contraction. These movement-related optical signals were studied and compared to simultaneous measurements of force in isolated cardiac Purkinje fibers. The two signals were compared in response to action potentials and to graded changes in membrane potential controlled under voltage clamp. These experiments indicate that the optical signal is a sensitive monitor of tension development under these conditions. This technique is particularly well-suited to force measurements in smaller preparations in which direct mechanical techniques are not feasible.  相似文献   

13.
Skeletal muscle activity is invariably associated with a decline in force-generating capacity (fatigue). The build-up of metabolic by-products such as intracellular H+ and inorganic phosphate (Pi) has been shown to be one of the potential mechanisms of muscle fatigue. The use of phosphorus magnetic resonance spectroscopy is a repeatable and useful tool to study the effect of pH and Pi on force development. When maximal exercise is preceded by submaximal exercise to reduce the starting muscle pH and increase Pi, the degree of muscle fatigue correlates more strongly with H2PO4- than pH or Pi alone. However, other studies in humans have found that H2PO4- does not always correlate well with fatigue. The use of ramp exercise protocols allow repeatable and sensitive measurement of changes in muscle metabolism in response to endurance training. Chronic electrical stimulation in dogs and endurance training in humans results in reduced pH and Pi changes at the same exercise intensities. This means that the effect of pH and Pi in depressing force development is reduced, which could partially explain the increased fatigue resistance seen following endurance training.  相似文献   

14.
This paper discusses the assessment of the electrical manifestations of muscle fatigue during dynamic contractions. In the past, the study of muscle fatigue was restricted to isometric constant force contractions because, in this contraction paradigm, the myoelectric signal may be considered as wide sense stationary over epochs lasting up to two or three seconds, and hence classic spectral estimation techniques may be applied. Recently, the availability of spectral estimation techniques specifically designed for nonstationary signal analysis made it possible to extend the employment of muscle fatigue assessment to cyclic dynamic contractions, thus increasing noticeably its possible clinical applications. After presenting the basics of time-frequency distributions, we introduce instantaneous spectral parameters well suited to tracking spectral changes due to muscle fatigue, discuss the issues of quasi-stationarity and quasi-cyclostationarity, and present different strategies of signal analysis to be utilized with cyclic dynamic contractions. We present preliminary results obtained by analyzing data collected from paraspinal muscles during repetitive lift movements, from the first dorsal interosseus during abduction-adduction movements of the index finger, and from knee flexors and extensors during isokinetic exercise. In conclusion, data herein reported demonstrate that the described techniques allow for evidencing the electrical manifestations of muscle fatigue in different paradigms of cyclic dynamic contractions. We believe that the extension of the objective assessment of the electrical manifestations of muscle fatigue from static to dynamic contractions may increase considerably the interest of researchers and clinicians and open new application fields, as ergonomics and sports medicine.  相似文献   

15.
To examine the neural basis of the blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI) signal, we have developed a rodent model in which functional MRI data and in vivo intracortical recording can be performed simultaneously. The combination of MRI and electrical recording is technically challenging because the electrodes used for recording distort the MRI images and the MRI acquisition induces noise in the electrical recording. To minimize the mutual interference of the two modalities, glass microelectrodes were used rather than metal and a noise removal algorithm was implemented for the electrophysiology data. In our studies, two microelectrodes were separately implanted in bilateral primary somatosensory cortices (SI) of the rat and fixed in place. One coronal slice covering the electrode tips was selected for functional MRI. Electrode shafts and fixation positions were not included in the image slice to avoid imaging artifacts. The removed scalp was replaced with toothpaste to reduce susceptibility mismatch and prevent Gibbs ringing artifacts in the images. The artifact structure induced in the electrical recordings by the rapidly-switching magnetic fields during image acquisition was characterized by averaging all cycles of scans for each run. The noise structure during imaging was then subtracted from original recordings. The denoised time courses were then used for further analysis in combination with the fMRI data. As an example, the simultaneous acquisition was used to determine the relationship between spontaneous fMRI BOLD signals and band-limited intracortical electrical activity. Simultaneous fMRI and electrophysiological recording in the rodent will provide a platform for many exciting applications in neuroscience in addition to elucidating the relationship between the fMRI BOLD signal and neuronal activity.Download video file.(95M, mp4)  相似文献   

16.
Exercise-induced water concentration changes have been determined in the medial gastrocnemius muscle noninvasively with image-guided in vivo proton magnetic resonance spectroscopy (MRS). These measurements were performed on seven normal male volunteers during and after isometric and ischemic-isometric exercise at 5, 10, and 20% maximum voluntary contraction (MVC). The observed water flux changes during different phases of exercise have been interpreted in terms of fluid transfer between the vasculature and exercising muscle. Good correlation between individual MVC and changes in water fluxes and the decay of water content was observed after 20% MVC exercise level. MRS results have been found to be consistent with those reported in the literature based on invasive biopsy techniques.  相似文献   

17.
The occurrence of pH heterogeneity in human tibial anterior muscle during sustained isometric exercise is demonstrated by applying (31)P-nuclear magnetic resonance (NMR) spectroscopy in a study of seven healthy subjects. Exercise was performed at 30 and 60% of maximal voluntary contraction (MVC) until fatigue. The NMR spectra, as localized by a surface coil and improved by proton irradiation, were obtained at a high time resolution (16 s). They revealed the simultaneous presence of two pH pools during most experiments. Maximum difference in the two pH levels during exercise was 0.40 +/- 0.07 (30% MVC, n = 7) and 0.41 +/- 0.03 (60% MVC, n = 3). Complementary two-dimensional (31)P spectroscopic imaging experiments in one subject supported the supposition that the distinct pH pools reflect the metabolic status of the main muscle fiber types. The relative size of the P(i) peak in the spectrum attributed to the type II fiber pool increases with decreasing pH levels. This phenomenon is discussed in the context of the size principle stating that the smaller (type I) motor units are recruited first.  相似文献   

18.
Potential differences were assessed between the dominant (D) and non-dominant (ND) forearms of sedentary subjects during anaerobic exercise. Subjects performed voluntary concentric contractions of D and ND forearm muscle during a series of three high-intensity (60% of the maximal voluntary contraction force (MVC)) exercise bouts. The time-dependent changes in intracellular pH (pH(i)), Pi, and PCr concentrations, and their relation to muscular work were examined using 31P magnetic resonance spectroscopy (MRS) techniques, and revealed that D forearm metabolic kinetics in sedentary individuals are improved during repetitive high-intensity exercise compared to their respective ND forearm muscle. We postulate that the more regular and preferential utilization of the D limb leads to a "trained-like" condition.  相似文献   

19.
Devor A  Dunn AK  Andermann ML  Ulbert I  Boas DA  Dale AM 《Neuron》2003,39(2):353-359
Recent advances in brain imaging techniques, including functional magnetic resonance imaging (fMRI), offer great promise for noninvasive mapping of brain function. However, the indirect nature of the imaging signals to the underlying neural activity limits the interpretation of the resulting maps. The present report represents the first systematic study with sufficient statistical power to quantitatively characterize the relationship between changes in blood oxygen content and the neural spiking and synaptic activity. Using two-dimensional optical measurements of hemodynamic signals, simultaneous recordings of neural activity, and an event-related stimulus paradigm, we demonstrate that (1) there is a strongly nonlinear relationship between electrophysiological measures of neuronal activity and the hemodynamic response, (2) the hemodynamic response continues to grow beyond the saturation of electrical activity, and (3) the initial increase in deoxyhemoglobin that precedes an increase in blood volume is counterbalanced by an equal initial decrease in oxyhemoglobin.  相似文献   

20.
Chemical-ionization mass spectrometry (CIMS) using flow reactors is an emerging method for on-line monitoring of trace concentrations of organic compounds in the gas phase. In this study, a flow-reactor CIMS instrument, employing the H(3)O(+) cation as the ionizing reagent, was used to simultaneously monitor several volatile metabolic products as they are released into the headspace during bacterial growth in a bioreactor. Production of acetaldehyde, ethanol, acetone, butanol, acetoin, diacetyl, and isoprene by Bacillus subtilis is reported. Ion signal intensities were related to solution-phase concentrations using empirical calibrations and, in the case of isoprene, were compared with simultaneous gas chromatography measurements. Identification of volatile and semivolatile metabolites is discussed. Flow-reactor CIMS techniques should be useful for bioprocess monitoring applications because of their ability to sensitively and simultaneously monitor many volatile metabolites on-line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号