首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
【目的】通过基因工程手段增加糖酵解途径中编码限速酶6-磷酸果糖激酶基因Pfk在乳酸链球菌素(nisin)产生菌Lactococcus lactis N8中的表达,增快nisin的产生,从而提高单位时间内nisin的产量,缩短发酵周期。【方法】将pfk基因及编码以c AMP为依赖的蛋白激酶催化亚基基因pka C克隆到表达质粒p MG36e上,将共表达重组质粒转入L.lactis N8中,使Pfk-pka C基因过量表达,得到重组菌株L.lactis N8-p MG36epfk-pka C,并比较该重组菌株与野生菌的生长曲线、胞内6-磷酸果糖激酶活性、发酵上清液的抑菌活性及效价,并从转录水平分析两株菌nis A及pfk-pka C的转录差异,比较野生菌与重组菌在不同葡萄糖含量下培养产nisin的变化。【结果】Pfk基因与pka C基因的过表达对重组菌的生长速度没有明显的影响,却能提高重组菌产nisin的速度,在发酵10 h时nisin的产量比野生菌提高了20%,使得发酵周期缩短近2 h。野生菌及重组菌在不同葡萄糖含量下培养发酵上清液的nisin效价没有明显的变化。【结论】糖酵解途径中6-磷酸果糖激酶基因Pfk的过表达可以加快乳酸乳球菌N8产nisin的速率,缩短发酵周期。  相似文献   

3.
The biosynthetic genes of the nisin-producing strain Lactococcus lactis 6F3 are organized in an operon-like structure starting with the structural gene nisA followed by the genes nisB, nisT, and nisC, which are probably involved in chemical modification and secretion of the prepeptide (G. Engelke, Z. Gutowski-Eckel, M. Hammelmann, and K.-D. Entian, Appl. Environ. Microbiol. 58:3730-3743, 1992). Subcloning of an adjacent 5-kb downstream region revealed additional genes involved in nisin biosynthesis. The gene nisI, which encodes a lipoprotein, causes increased immunity after its transformation into nisin-sensitive L. lactis MG1614. It is followed by the gene nisP, coding for a subtilisin-like serine protease possibly involved in processing of the secreted leader peptide. Adjacent to the 3' end of nisP the genes nisR and nisK were identified, coding for a regulatory protein and a histidine kinase, showing marked similarities to members of the OmpR/EnvZ-like subgroup of two-component regulatory systems. The deduced amino acid sequences of nisR and nisK exhibit marked similarities to SpaR and SpaK, which were recently identified as the response regulator and the corresponding histidine kinase of subtilin biosynthesis. By using antibodies directed against the nisin prepeptide and the NisB protein, respectively, we could show that nisin biosynthesis is regulated by the expression of its structural and biosynthetic genes. Prenisin expression starts in the exponential growth phase and precedes that of the NisB protein by approximately 30 min. Both proteins are expressed to a maximum in the stationary growth phase.  相似文献   

4.
5.
The Lactococcus lactis subsp. lactis 712 lacG gene encoding phospho-beta-galactosidase was isolated from the lactose mini-plasmid pMG820 and cloned and expressed in Escherichia coli and L. lactis. The low phospho-beta-galactosidase activity in L. lactis transformed with high-copy-number plasmids containing the lacG gene contrasted with the high activity found in L. lactis containing the original, low-copy-number lactose plasmid pMG820, and indicated that the original lactose promoter was absent from the cloned DNA. In E. coli the phospho-beta-galactosidase could be overproduced using the strong inducible lambda PL promoter, which allowed a rapid purification of the active enzyme. The complete nucleotide sequence of the L. lactis lacG gene and its surrounding regions was determined. The deduced amino acid sequence was confirmed by comparison with the amino acid composition of the purified phospho-beta-galactosidase and its amino-terminal sequence. This also allowed the exact positioning of the lacG gene and identification of its characteristic Gram-positive translation initiation signals. The homologous expression data and the sequence organization of the L. lactis lacG gene indicate that the gene is organized into a large lactose operon which contains an intergenic promoter located in an inverted repeat immediately preceding the lacG gene. The organization and sequence of the L. lactis lacG gene were compared with those of the highly homologous lacG gene from Staphylococcus aureus. A remarkable bias for leucine codons was observed in the lacG genes of these two species. Heterogramic homology was observed between the deduced amino acid sequence of the L. lactis phospho-beta-galactosidase, that of the functionally analogous E. coli phospho-beta-glucosidase, and that of an Agrobacterium beta-glucosidase (cellobiase).  相似文献   

6.
Abstract The biosynthesis, immunity and regulation of nisin, a lanthionine-containing antimicrobial peptide produced by Lactococcus lactis , is encoded by two gene clusters, nisAIZBTCIPRK and nisFEG . The mutant strain LAC46 with a deletion in the translocator gene nisT could not secrete nisin but nisin activity was detected from cell lysates. The nisT mutation was complemented by a NisT-expression plasmid resulting in restored capacity to secrete nisin. These results demonstrate that NisT is the transport protein dedicated to translocate nisin and that dehydration and lanthionine formation in nisin maturation can occur independently of transport.  相似文献   

7.
8.
Nisin production by Lactococcus lactis subsp. lactis NIZO 22186 was studied in batch fermentation using a complex medium. Nisin production showed primary metabolite kinetics: nisin biosynthesis took place during the active growth phase and completely stopped when cells entered the stationary phase. A stringent correlation could be observed between the expression of the prenisin gene (nisA) and the synthesis of the post-translationally enzymically modified and processed mature nisin peptide. Moreover, it seemed likely that nisin had a growth control function. A physiological link is proposed between sucrose fermentation capacity and nisin production ability. Carbon source regulation appears to be a major control mechanism for nisin production.  相似文献   

9.
A recA-like gene was isolated from a gene library of Lactococcus lactis subsp. lactis by intergeneric complementation of an E. coli recA mutant. A plasmid was obtained which fully complemented the RecA response to DNA damaging agents and UV inducibility of prophage, but not P1 plating efficiency in an E. coli recA mutant. The cloned DNA fragment also partially complemented the rec mutation in Lc. lactis MMS36. Hybridization studies showed that there was no detectable sequence homology between the recA gene of E. coli and Lc. lactis subsp. lactis chromosomal DNA.  相似文献   

10.
The nucleocapsid (N) protein of the severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) is an important antigen for the early diagnosis of SARS and the development of vaccines. It was expressed in Escherichia coli as a fusion with human glutathione S-transferase (hGST) and was confirmed by Western blotting analysis. This recombinant N protein (hGST-N) was purified and used to measure the SARS-CoV N-specific antibody in the sera of eight SARS patients by enzyme-linked immunosorbent assay. Specific antibody response to this purified recombinant N protein was 100% positive in the SARS patients sera, while none of the control sera from 30 healthy people gave a positive reaction in the same assay. The SARS-CoV N protein was also expressed in Lactococcus lactis in the cytoplasm or secreted into the medium. The N-producing strain MG1363/pSECN and the purified hGST-N protein were respectively administered to mice, either orally or intranasally. Results indicated that orally delivered MG1363/pSECN induced significant N-specific IgG in the sera. In conclusion, our work provides a novel strategy to produce the SARS-CoV N protein for serodiagnosis and for L. lactis-based mucosal vaccines.  相似文献   

11.
Aims: The aim of the study is to evaluate the effectiveness of the preparation of nisin Z from Lactococcus lactis W8‐fermented milk in controlling the growth of spoilage bacteria in pasteurized milk. Methods and Results: Spoilage bacteria isolated from pasteurized milk at 8 and 15°C were identified as Enterococcus italicus, Enterococcus mundtii, Enterococcus faecalis, Bacillus thuringiensis, Bacillus cereus, Lactobacillus paracasei, Acinetobacter sp., Pseudomonas fluorescens and Enterobacter aerogenes. These bacteria were found to have the ability to survive pasteurization temperature. Except Enterobacter aerogenes, the spoilage bacteria were sensitive to the nisin Z preparation of the L. lactis W8. Addition of the nisin Z preparation to either the skim milk or fat milk inoculated with each of the spoilage bacteria reduced the initial counts (about 5 log CFU ml?1) to an undetectable level within 8–20 h. The nisin Z preparation extended the shelf life of milk to 2 months under refrigeration. Conclusions: The nisin Z preparation from L. lactis W8‐fermented milk was found to be effective as a backup preservative to counteract postpasteurization contamination in milk. Significance and Impact of the Study: A rapid inhibition of spoilage bacteria in pasteurized skim and fat milk with the nisin Z preparation of L. lactis W8 is more significant in comparison with the commercially available nisin (nisin A). The nisin Z preparation can be used instead of commercial nisin, which is not effective in fat milk.  相似文献   

12.
The citrate plasmid (Cit+ plasmid) from Lactococcus lactis subsp. lactis biovar diacetylactis was cloned into the EcoRI site of plasmid pUC18. This recombinant plasmid enabled Escherichia coli K-12 to transport and utilize citrate as a source of energy, indicating expression of the citrate permease from L. lactis biovar diacetylactis. The citrate permease was under the control of the lac promoter of pUC18. Genetic expression of the Cit+ plasmid in maxicells revealed that the plasmid encoded two polypeptides of 47 and 32 kilodaltons, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

13.
The plasmid-encoded citrate determinant of the Lactococcus lactis subsp. lactis var. diacetylactis NCDO176 was cloned and functionally expressed in a Cit- Escherichia coli K-12 strain. From deletion derivative analysis, a 3.4-kilobase region was identified which encodes the ability to transport citrate. Analysis of proteins encoded by the cloned fragment in a T7 expression system revealed a 32,000-dalton protein band, which correlated with the ability of cells to transport citrate. Energy-dependent [1,5-14C]citrate transport was found with membrane vesicles prepared from E. coli cells harboring the citrate permease-expressing plasmid. The gene encoding citrate transport activity, citP, was located on the cloned fragment by introducing a site-specific mutation that abolished citrate transport and resulted in a truncated form of the 32,000-dalton expression product. The nucleotide sequence for a 2.2-kilobase fragment that includes the citP gene contained an open reading frame of 1,325 base pairs coding for a very hydrophobic protein of 442 amino acids, which shows no sequence homology with known citrate carriers.  相似文献   

14.
The citrate plasmid (Cit+ plasmid) from Lactococcus lactis subsp. lactis biovar diacetylactis was cloned into the EcoRI site of plasmid pUC18. This recombinant plasmid enabled Escherichia coli K-12 to transport and utilize citrate as a source of energy, indicating expression of the citrate permease from L. lactis biovar diacetylactis. The citrate permease was under the control of the lac promoter of pUC18. Genetic expression of the Cit+ plasmid in maxicells revealed that the plasmid encoded two polypeptides of 47 and 32 kilodaltons, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

15.
Capsid protein (Cap) of porcine circovirus type 2 (PCV2) encoded by orf2 is a main structural protein with strong immunoreactivity. However, capsid protein is expressed poorly in prokaryotic organisms because of differences in codon usage. In this study, we introduce 24 synonymous mutations into orf2 by mutagenic primers and overlap extension polymerase chain reaction (OE-PCR) technique. Fourteen rare codons of orf2 were replaced with preferable codons used in Escherichia coli cells. Moreover, the nuclear localization signal (NLS) region rich in rare codon clusters at the 5′ end was deleted. The codon-optimized genes demonstrated higher levels of expression compared with wild-type genes. The influence of rare codons on the gene expression was eliminated by mutation. Western blot analysis confirmed the immunoreactivity of the proteins expressed by mutated genes. Further testing demonstrated that the mutated genes were also expressed successfully in Lactococcus lactis NZ9000. The immunologically active Cap proteins produced by recombinant strains have the potential applications for serological diagnostic assays and vaccine development against PCV2-associated diseases.  相似文献   

16.
目的:对鳗弧菌溶血毒素基因vah4进行克隆与原核表达,为进一步深入研究其免疫原性及VAH4的功能奠定基础。方法:PCR扩增vah4,将扩增的产物连接于测序载体pMD18—T上,经测序反应确定无误后,再将PCR产物与原核表达载体pET-32a构建表达VAH4的重组质粒(pET-32a-VAH4),经PCR鉴定后,再转入表达宿主大肠杆菌BL21菌株内,对转化菌株进行诱导表达,SDS-PAGE电泳检测。结果:含重组质粒的菌株有表达蛋白,其表达的蛋白质相对分子质量为40kDa,并经Western blot鉴定结果证实该条带即VAH4-His融合蛋白。结论:vah4基因成功克隆至pET-32a质粒内并成功表达,为进一步研究其免疫原性、VAH4的毒性作用效果及作用机制奠定基础。  相似文献   

17.
目的:研究鱼池中不同生物体表面柱状屈挠杆菌、大肠埃希菌和鳗弧菌的区系分布.方法:通过对本中心渔场的鱼池中的几种主要病原菌进行定期采样测定.结果:这三种细菌在各种鱼体表的数量主要在102~104CFU/cm2波动,各种鱼体表上的同一细菌数量总体相差不大(几倍之间),但有一定的选择性;另外同一种鱼其体表上的各种细菌有相似的分布规律.研究还表明柱状屈挠杆菌、大肠埃希菌和鳗弧菌在池塘水体和各种浮游生物上的数量波动区域:浮游细菌为105~106CFU/L,大型浮游生物为103~104CFU/L,小型浮游生物为104~105CFU/L,其分布顺序(根据其平均值)都是:水体中的浮游细菌数量总是远远高于小型浮游生物(通常高10~100倍),小型浮游生物也总高于大型浮游生物(通常高10倍左右);同一种生物其体表上的各种病原菌有相同的分布规律.结论:这三种细菌在水体和各种生物体上的高峰期通常在5月下旬至6月上旬、7月下旬至8月上旬,因此,我们认为在这两个时间段,要特别重视,抓好防治鱼病的工作.  相似文献   

18.
Secretion of the VP8* subunit of the VP4 capsid protein of rotavirus by Lactococcus lactis has been achieved. For this purpose, a secretion vector has been constructed with the lactococcal signal sequence AL9 and the VP8*-encoding gene fragment. The amount of VP8* secreted by L. lactis in the culture supernatant was quantified and visualised by Western blot. Furthermore, it was shown to retain its hemagglutination capability, indicating that the conformation of the secreted peptide may be retaining its biological activity.  相似文献   

19.
还连栋  孙汉珍 《遗传学报》1997,24(5):471-479
利用pGPB14为启动子-信号肽序列探测载体,在大肠杆菌中克隆乳酸乳球菌总DNA中具有启动子-信号肽功能的DNA片段。共得到42个具有红霉索、氨苄青霉素双重抗性的转化子。转化子的氨苄青霉素抗性水平在100~800μg/ml之间,β-内酰胺酶活力大多积累于周质空间,说明重组质粒中的外源插入片段确实具有发动转录和促进分泌的功能。Southern杂交结果表明,插入片段的确来源于乳酸乳球菌总DNA,其大小在80~400bp之间。DNA序列测定发现pSEQ8和pSEQ12中插入片段分属于pSEQ4和pSEQ17插入片段的一部分。在测序的4个DNA序列中都找到了启动子和起始密码子。其中2个含有典型的S.D.序列和非典型的信号肽序列,其他2个则没有发现典型的S.D.序列和信号肽序列。另外发现启动子上游序列对启动子转录起始的效率具有促进作用。  相似文献   

20.
The arcA gene that encodes arginine deiminase (ADI, EC 3.5.3.6)--a key enzyme of the ADI pathway--was cloned from Lactococcus lactis ssp. lactis ATCC 7962. The deduced amino acid sequence of the arcA gene showed high homology with the arcA gene from Lactobacillus plantarum (99%) and from Lactobacillus sakei (60%), respectively. The arcA gene from Lc. lactis spp. lactis ATCC 7962 was expressed in soluble fraction of recombinant Escherichia coli BL21. ADI produced from Lc. lactis spp. lactis ATCC 7962 (LADI) in E. coli BL21 (DE3) was purified using sequential Q-Sepharose anion exchange and Sephacryl S-200 gel filtration column chromatography. The final yield of LADI in the purification procedure was 63.5%, and the specific activity was 140.27 U/mg. The presence of purified LADI was confirmed by N-terminal sequencing and determination of the molecular mass. The LADI had a molecular mass of about 140 kDa, and comprised a homotrimer of 46 kDa in the native condition. LADI exhibited only 35% amino acid sequence homology with ADI from Mycoplasma arginini. However, LADI shared a similar three dimensional structure. The K(M) and V(max) values for arginine were 8.67+/-0.045 mM (mean+/-SD) and 344.83+/-1.79 micromol/min/mg, respectively, and the optimum temperature and pH for the production of LADI were 60 degrees C and 7.2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号