首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung contains both Mg2+-dependent and Mg2+-independent phosphatidate phosphohydrolase activities. Addition of Triton X-100 (0.5%) or chlorpromazine (1 mM) leads to a marked increase in the total phosphatidate phosphohydrolase activity in rat lung microsomes (microsomal fractions), but a decrease in the Mg2+-dependent activity. These observations suggest that the Mg2+-independent activity is stimulated, whereas the Mg2+-dependent activity is inhibited. However, the possibility exists that Triton X-100 could stimulate the Mg2+-dependent enzymic activity in an Mg2+-independent manner. In addition, the positively charged amphiphilic drug could be replacing the enzyme's requirement for Mg2+. These two possibilities were examined by using subcellular fractions in which the Mg2+-dependent phosphatidate phosphohydrolase had been abolished by heat treatment at 55 degrees C for 15 min. Heat treatment does not affect the microsomal Mg2+-independent phosphohydrolase to any great extent. Since the 6-8-fold stimulations due to Triton X-100 and chlorpromazine are retained after heat treatment of this fraction, the Mg2+-independent activity must be involved. Addition of Triton X-100 and chlorpromazine to cytosol virtually abolishes the Mg2+-dependent phosphatidate phosphohydrolase activity and decreases the Mg2+-independent activity by half. Heat treatment also abolishes the Mg2+-dependent activity and decreases the Mg2+-independent activity by over half. The Mg2+-independent phosphatidate phosphohydrolase activity remaining after heat treatment was not affected by Triton X-100 or chlorpromazine. These studies demonstrate that Triton X-100 and chlorpromazine specifically stimulate the heat-stable Mg2+-independent phosphatidate phosphohydrolase activity in rat lung microsomes. In contrast, the heat-labile Mg2+-independent phosphatidate phosphohydrolase activities in cytosol are inhibited by these reagents. Triton X-100 and chlorpromazine inhibit the Mg2+-dependent phosphatidate phosphohydrolase activities in both rat lung microsomes and cytosol. These results are consistent with the view that a single Mg2+-dependent phosphatidate phosphohydrolase present in both microsomes and cytosol is specifically involved in glycerolipid metabolism.  相似文献   

2.
Rat lung microsomes washed with increasing concentrations of NaCl show a displacement of protein from microsomes to the wash supernatant. Among the proteins removed from the microsomal surface was the Mg2+-dependent phosphatidate phosphohydrolase, while the Mg2+-independent activity remained associated with the microsomes. The Mg2+-dependent activity could be quantitatively assayed in the wash supernatant. Microsomes washed with increasing concentrations of NaCl showed a progressive impairment in the synthesis of labelled neutral lipid and phosphatidylcholine from [14C]glycerol 3-phosphate with a concomitant increase in the labelling of phosphatidic acid. The impairment was sigmoidal and correlated highly with the decrease in Mg2+-dependent phosphatidate phosphohydrolase activity. When Mg2+-dependent phosphatidate phosphohydrolase from wash supernatant was incubated with microsomes previously washed with high salt concentrations, the labelling of neutral lipid and phosphatidylcholine was returned to control levels. Labelling of neutral lipids and phosphatidylcholine could be restored upon addition of a cytosolic Mg2+-dependent phosphatidate phosphohydrolase isolated by gel filtration. Mg2+-independent phosphatidate phosphohydrolase isolated from cytosol was incapable of restoring the labelling of neutral lipids and phosphatidylcholine. These findings confirm that the Mg2+-dependent phosphatidate phosphohydrolase of rat lung is involved in pulmonary glycerolipid biosynthesis. The role of the Mg2+-independent phosphatidate phosphohydrolase activity remains unknown.  相似文献   

3.
In rats fed a fish oil-enriched diet, plasma triacylglycerols were lowered 51%. At the same time there was a mean 45% reduction in Mg2+-dependent phosphatidate phosphohydrolase activity in liver microsomes and a mean 20% decrease in microsomal triacylglycerol (neutral) and diacylglycerol hydrolase activities, but not of diacylglycerol acyltransferase. These observations support the hypothesis that decreases in the activities of phosphatidate phosphohydrolase and of both lipases are involved in the expression of the inhibitory effects of fish oil feeding on hepatic lipoprotein triacylglycerol secretion. Conversely, the feeding of a sucrose-enriched diet resulted in a mean 39% rise in plasma triacylglycerols, a 19% increase in triacylglycerol hydrolase and a mean 45% increase in Mg2+-dependent microsomal phosphohydrolase activity. The effects of the two nutritional interventions on phosphatidate phosphohydrolase activity confirm a key function for this enzyme in triacylglycerol formation.  相似文献   

4.
An assay of pulmonary phosphatidate phosphohydrolase activity has been developed that employs a chemically defined liposome substrate of equimolar phosphatidate and phosphatidylcholine. Enzyme assays employing this substrate resolved two distinct activities based upon their requirements for Mg2+. Assays were performed in the presence and absence of 2 mM MgCl2 and the Mg2+-dependent phosphatidate phosphohydrolase activity calculated by difference. The Mg2+-independent phosphatase activity resembled that found using aqueous dispersions of phosphatidate (PAaq). Approximately 90% of the Mg2+-dependent phosphatidate phosphohydrolase activity was recovered in the cytosol and the remainder was associated with the microsomal fraction. The Mg2+-dependent phosphatidate phosphohydrolase activity has kinetic parameters of Km = 55 microM, Vmax = 1.6 nmol/min/mg protein for the microsomal fraction, and Km = 215 microM, Vmax = 6.8 nmol/min/mg protein for the cytosolic fraction. These parameters resembled those found using the microsomal membrane-bound (PAmb) substrate. In addition, the pH optima and sensitivity to detergents and thermal inactivation are equal to those for the PAmb-dependent phosphatidate phosphohydrolase activity. In the course of these studies the microsomal and cytosolic activities were qualitatively equal, indicative of a single enzyme in two subcellular locations. In conclusion, the assay of Mg2+-dependent phosphatidate phosphohydrolase activity measured using equimolar phosphatidate and phosphatidylcholine liposomes is equivalent to that activity previously described using microsomal membrane-bound substrate. However, the chemically-defined system provides a more simplified starting point for further studies on this important enzyme.  相似文献   

5.
The effect of polyamines (spermine, spermidine and putrescine) on the Mg2+-dependent phosphatidate phosphohydrolase was investigated. Phosphatidate phosphohydrolase activity was measured in the presence of aqueous dispersed phosphatidate as substrate, and the release of inorganic phosphate was taken as a measure of phosphatidate phosphohydrolase activity. In the presence of various polyamines there was activation of the Mg2+-dependent phosphatidate phosphohydrolase activity. Under this condition, the Km of enzyme towards phosphatidase decreased from 1.6 x 10(-4) to 9.8 x 10(-5) M and the Mg2+ requirement decreased from 5 to 0.5 mM. These polyvalent cations did not replace Mg2+, but potentiate the phosphohydrolase activity in the presence of Mg2+. The activation of Mg2+-dependent phosphatidate phosphohydrolase activity by polyamines was observed in the presence of 3-sn-phosphatidylcholine, suggesting that these modulators of phosphatidate phosphohydrolase activity may be acting through different mechanisms. These studies demonstrate that polyamines may be important regulators of Mg2+-dependent phosphatidate phosphohydrolase activity in adipose tissue.  相似文献   

6.
The properties of Mg2+-dependent and Mg2+-independent phosphatidate phosphohydrolase activities were investigated in different subcellular fractions in rat adipose tissue. Phosphatidate phosphohydrolase activity was measured in the presence of aqueous dispersed phosphatidate as substrate, and the release of inorganic phosphate was taken as a measure of phosphatidate phosphohydrolase activity. The Mg2+-dependent phosphatidate phosphohydrolase was inhibited in the presence of N-methyl- or N-ethylmaleimide, whereas the Mg2+-independent activity was unaffected by these agents. The Mg2+-dependent phosphatidate phosphohydrolase was more sensitive to proteolysis and to high temperature (55 °C) compared to the Mg2+-independent enzyme. The Mg2+-dependent phosphatidate phosphohydrolase activity was reduced significantly during aging without any appreciable effects on the Mg2+-independent phosphatidate phosphohydrolase activity. These studies demonstrate that, in addition to Mg2+-dependency, these two forms of phosphatidate phosphohydrolases differ in several respects irrespective of their location in the adipose cell.  相似文献   

7.
1. Glycerol phosphate acyltransferase (GPAT) activities were measured in subcellular fractions obtained from rat epididymal adipocytes. These contained both N-ethylmaleimide-sensitive and N-ethylmaleimide-insensitive forms of the enzyme. 2. As shown by parallel measurements of marker enzymes, N-ethylmaleimide-insensitive GPAT is most probably a mitochondrial activity, whereas N-ethylmaleimide-sensitive GPAT is the microsomal enzyme. 3. Subcellular distributions are also reported for dihydroxyacetone phosphate acyltransferase (DHAPAT) (assayed with and without N-ethylmaleimide), monoacylglycerol phosphate acyltransferase (MGPAT) and Mg2+-dependent and Mg2+-independent forms of phosphatidate phosphohydrolase (PPH).  相似文献   

8.
1. A rapid extraction and purification scheme was designed for the recovery of [3H]diacylglycerol formed during the assay of phosphatidate phosphohydrolase. 2. The importance of removing polyvalent cations, particularly Ca2+, from the phosphatidate and other reagents used in the assay of the phosphohydrolase activity was demonstrated. This was achieved mainly by treating the phosphatidate with a chelating resin and by adding 1 mM-EGTA and 1 mM-EDTA to the assays. 3. The activity of the phosphohydrolase in dialysed samples of the soluble and microsomal fractions of rat liver was very low. 4. Addition of optimum concentrations of MgCl2 resulted in a 110-167-fold stimulation in activity. 5. CaCl2 was also able to stimulate phosphohydrolase activity, but to a much smaller extent than MgCl2. 6. Chlorpromazine, an amphiphilic cation, inhibited the reaction when it was measured in these experiments by using a mixed emulsion of phosphatidylcholine and phosphatidate at pH 7.4. 7. Microsomal fractions that were preincubated with albumin contained very low activities of the Mg2+-dependent phosphohydrolase. When these were then incubated with the soluble fraction in the presence of oleate, the soluble phosphohydrolase attached to the microsomal membranes, and it retained its high dependency on Mg2+.  相似文献   

9.
Glycerolipid synthesis was studied in isolated hepatocytes by using 177 microM [14C]oleate and 1 mM [3H]glycerol. Chlorpromazine (25-400 microM) inhibited the synthesis of phosphatidylcholine and triacylglycerol. This was accompanied by an average increase of 12-fold in the accumulation of the labelled precursors in phosphatidate at 200 microM chlorpromazine and a decrease in the conversion of phosphatidate to diacylglycerol of 76%. These results indicate that part of the inhibition of the synthesis of phosphatidylcholine and triacylglycerol occurs at the level of phosphatidate phosphohydrolase. The relative rate of triacylglycerol synthesis at different concentrations of chlorpromazine was approximately proportional to the rate of conversion of phosphatidate to diacylglycerol. Phosphatidylcholine synthesis increased at higher rates of conversion of phosphatidate to diacylglycerol, but it was relatively independent of the latter rate when this was inhibited by more than about 30% with chlorpromazine. The addition of oleate to the hepatocytes caused a translocation of phosphatidate phosphohydrolase from the cytosol to the membrane-associated compartment. Chlorpromazine had the opposite effect and displaced the phosphohydrolase from the membranes in the presence or absence of oleate. There was a highly significant correlation between the activity of phosphatidate phosphohydrolase that was associated with the membranes of the hepatocytes and the calculated conversion of [3H]phosphatidate to diacylglycerol. Chlorpromazine also antagonized the association of the phosphohydrolase with microsomal membranes when cell-free preparations were incubated with combinations of oleate and spermine. Furthermore, it inhibited the transfer of the soluble phosphohydrolase to microsomal membranes that were labelled with [14C]phosphatidate and thereby decreased diacylglycerol production. It is concluded that part of the action of chlorpromazine in inhibiting the synthesis of triacylglycerol and phosphatidylcholine occurs because it prevents the interaction of the soluble phosphatidate phosphohydrolase with the membranes on which glycerolipid synthesis occurs. This in turn prevents the conversion of phosphatidate to diacylglycerol.  相似文献   

10.
The incubation of hepatocytes with 1-4mM-oleate increased the total activity of phosphatidate phosphohydrolase that was measured in the presence of Mg2+ to about 2-fold. This was accompanied by an increase in the proportion of the enzyme that was isolated with the particulate fractions. Conversely, the addition of up to 4mM-oleate decreased the recovery of phosphatidate phosphohydrolase in the cytosolic fraction from about 70% to 3% when hepatocytes were lysed with digitonin. Most of the increase in the membrane-associated phosphohydrolase activity was isolated after cell fractionation in the microsomal fraction that was enriched with the endoplasmic-reticulum marker arylesterase. It is proposed that the translocation of phosphatidate phosphohydrolase facilitates the increased synthesis of triacylglycerols in the liver when it is presented with an increased supply of fatty acids.  相似文献   

11.
Phosphatidate phosphatase (phosphatidate phosphohydrolase, EC 3.1.3.4) was present at very high specific activity in the soluble fraction of isolated rat adipocytes. Using phosphatidate in aqueous dispersion 90% of its hydrolysis depended on the presence of Mg2+. Mg2+ appeared to almost saturate the enzyme at 20-40 mM with no indication of an optimum. The substrate concentration was optimum at 1.2 mM and the pH at 6.8. Initial rates were linear for only 4-5 min at optimum conditions. Increasing inhibition occurred at high phosphatidate concentrations. At optimum conditions acid or alkaline phosphatase activity was not measurable. The Mg2+-dependent activity was enhanced by 3-sn-phophatidylcholine and inhibited by albumin, 3-sn-phosphatidyletanolamine, 3-sn-phosphatidylinositol, diacylglycerol, oleoyl-CoA, and oleate. Oleoyl-CoA was the most potent "effector". Fasting for 24, 48 and 72 h decreased the activity both relative to protein and to DNA. The activity thus decreased to about one-third of that of the fed rat during 72 h of fasting. The effects of Mg2+, various lipids, and fasting may indicate that some form of control of glyceride synthesis can be exerted through the soluble phosphatidate phosphatase.  相似文献   

12.
Obesity in obese-hyperglycaemic mouse is associated with an increase in number and size of adipocytes. Adipocytes from the obese mouse showed increased incorporation of [14C]acetate and[14C]glucose into triacylglycerol. This increased capacity of triacylglycerol formation was correlated with increased activities of various triacylglycerol-forming enzymes measured in the microsomal fraction of adipose tissue from obese mice. Microsomal fractions from lean and obese mice contained sn-glycerol 3-phosphate acyltransferase, phosphatidate phosphohydrolase and diacylglycerol acyltransferase. Phosphatidate phosphohydrolase was also detected in the soluble fraction. In the presence of Mg2+, the phosphatidate phsophohydrolase from the soluble and the microsomal fractions was active towards membrane-bound phosphatidate. Among the three enzymes studied here, the increase in Mg2+-dependent phosphatidate phosphohydrolase was most prominent in adipose tissue of obese mice.  相似文献   

13.
Adipose cytosol treated with spermine showed an aggregation of a cytosolic component which was isolated by centrifugation at 16,000 X g for 20 min. The resultant pellet contained 10% of protein, 40% of lipid and over 75-97% of Mg2+-dependent phosphatidate phosphohydrolase and CTP:phosphocholine cytidylyltransferase activities present in the original cytosol. The specific activities of these enzymes increased 4-fold by the spermine treatment. Characterization of lipids in this component indicated the presence of mainly phospholipids. These studies suggest that the interaction between spermine, the cytosolic component and microsomal membranes may be involved in the translocation of Mg2+-dependent phosphatidate phosphohydrolase.  相似文献   

14.
Addition of Staphylococcus aureus alpha-toxin to adult bovine chromaffin cells maintained in primary culture causes permeabilization of cell membrane as shown by the release of intracellular 86Rb+. The alpha-toxin does not provoke a spontaneous release of either catecholamines or chromogranin A, a protein marker of the secretory granule, showing the integrity of the secretory vesicle membrane. However the addition of micromolar free Ca2+ concentration induced the co-release of noradrenaline and chromogranin A. In alpha-toxin-treated cells, the released chromogranin A could not be sedimented and lactate dehydrogenase was still associated within cells, which provides direct evidence that secretory product is liberated by exocytosis. By contrast, permeabilization of cells with digitonin caused a Ca2+-dependent but also a Ca2+-independent release of secretory product, a dramatic loss of lactate dehydrogenase, as well as release of secretory product in a sedimentable form. Ca2+-dependent exocytosis from alpha-toxin-permeabilized cells required Mg2+-ATP and did not occur in the presence of other nucleotides. Thus alpha-toxin is a convenient tool to permeabilize chromaffin cells, and has the advantage of keeping intracellular structures, specifically the exocytotic machinery, intact.  相似文献   

15.
1. Phosphatidate phosphohydrolase from the particle-free supernatant of rat liver was assayed by using emulsions of phosphatidate as substrate. 2. The inhibition of the phosphohydrolase by chlorpromazine was of a competitive type with respect to phosphatidate. The potency of various amphiphilic cationic drugs as inhibitors of this reaction was related to their partition coefficients into a phosphatidate emulsion. 3. The effect of chlorpromazine on the phosphohydrolase activity was complementary rather than antagonistic towards Mg2+. Chlorpromazine stimulated the phosphohydrolase activity in the absence of added Mg2+ and was able to replace the requirement for Mg2+. However, at optimum concentrations of Mg2+, chlorpromazine inhibited the reaction, as did Ca2+. The phosphohydrolase activity was also stimulated by Co2+ and to a lesser extent by Mn2+, Fe2+, Fe3+, Ca2+, spermine and spermidine when Mg2+ was not added to the assays. 4. It is concluded that the inhibition of phosphatidate phosphohydrolase by amphiphilic cations can largely be explained by the interaction of these compounds with phosphatidate, which changes the physical properties of the lipid, making it less available for conversion into diacylglycerol. 5. The implications of these results to the effects of amphiphilic cations in redirecting glycerolipid synthesis at the level of phosphatidate are discussed.  相似文献   

16.
M Dunlop  R G Larkins 《FEBS letters》1985,193(2):231-235
The cellular location at which exogenous phosphatidic acid is hydrolysed in cultured neonatal rat islets was examined. Phosphatidate phosphohydrolase activity could be demonstrated in both whole cell sonicates and isolated plasma membranes. In the whole cell fraction phosphatidic acid hydrolysis to diacylglycerol was stimulated 43% by the presence of Mg2+. The activity present in isolated membranes was totally dependent on the presence of Mg2+ and was increased in plasma membranes from glucose-stimulated islets. Following exposure of islets to low glucose concentrations, raising the Ca2+ concentration from 150 nM to 40 microM in the presence of Mg2+ did not affect the formation of diacylglycerol in whole cell fractions or plasma membranes. These results indicate the presence within the islet of membrane-bound phosphatidate phosphohydrolase activity and demonstrate its activation by glucose.  相似文献   

17.
The relative significance of alterations in precursor supply and enzyme activities for the rate of triacylglycerol synthesis was studied in isolated hepatocytes and perfused livers. Precursor availability was varied in vitro by changing the fatty acid concentration in the incubation medium or adding ethanol to the perfusion medium in order to increase the cellular glycerol 3-phosphate concentration. The rate of glycerolipid synthesis in hepatocytes, measured in terms of the label incorporated into the various lipid classes from tritiated glycerol, was strongly dependent on the fatty acid concentration up to 2 mm of oleate (fatty acid/albumin molar ratio 71). Ethanol in vitro increased the incorporation of labeled oleate into phosphatidic acid and diacylglycerol in the isolated perfused liver, but its effect on the incorporation into triacylglycerol was small. Ethanol in vitro increased the label incorporation into both diacylglycerol and triacylglycerol in the livers from cortisol-treated rats. Although cortisol treatment increased the soluble phosphatidate phosphohydrolase activity 4.4-fold in the hepatocytes, it had no effect on the rate of triacylglycerol synthesis, whereas fasting increased this rate about 3-fold, although only a moderate concomitant increase in soluble phosphatidate phosphohydrolase activity was observed. Neither cortisol treatment nor fasting affected the microsomal glycerol-3-phoshate acyltransferase activity. The results demonstrate that substrate availability can override enzyme modulations in the regulation of triacylglycerol synthesis and that phosphatidate phosphohydrolase is not the main regulator of triacylglycerol synthesis.  相似文献   

18.
The translocation of phosphatidate phosphohydrolase between the cytosol and the microsomal membranes was investigated by using a cell-free system from rat liver. Linoleate, alpha-linolenate, arachidonate and eicosapentenoate promoted the translocation to membranes with a similar potency to that of oleate. The phosphohydrolase that associated with the membranes in the presence of [14C]oleate or 1mM-spermine coincided on Percoll gradients with the peak of rotenone-insensitive NADH-cytochrome c reductase, and in the former case with a peak of 14C. Microsomal membranes were enriched with the phosphohydrolase activity by incubation with [14C]oleate or spermine and then incubated with albumin. The phosphohydrolase activity was displaced from the membranes by albumin, and this paralleled the removal of [14C]oleate from the membranes when this acid was present. Chlorpromazine also displaced phosphatidate phosphohydrolase from the membranes, but it did not displace [14C]oleate. The effects of spermine in promoting the association of the phosphohydrolase with the membranes was inhibited by ATP, GTP, CTP, AMP and phosphate. ATP at the same concentration did not antagonize the translocating effect of oleate. From these results and previous work, it was concluded that the binding of long-chain fatty acids and their CoA esters to the endoplasmic reticulum acts as a signal for more phosphatidate phosphohydrolase to associate with these membranes and thereby to enhance the synthesis of glycerolipids, especially triacylglycerol. The translocation of the phosphohydrolase probably depends on the increased negative charge on the membranes, which could also be donated by the accumulation of phosphatidate. Chlorpromazine could oppose the translocation by donating a positive charge to the membranes.  相似文献   

19.
PC12 cells, a cloned rat pheochromocytoma cell line, were treated with digitonin to render the plasma membrane permeable to ions and proteins. At a cell density of 2-6 X 10(5) cells/cm2, incubation with 7.5 microM digitonin permitted a Ca2+-dependent release of 25-40% of the catecholamine within 18 min in the presence of 10 microM Ca2+. Half-maximal secretion occurred at 0.5-1 microM Ca2+. PC12 cultures at lower cell densities were more sensitive to digitonin and gave more variable results. Secretion in the presence of digitonin and Ca2+ began after a 2-min lag and continued for up to 30 min. When cells were treated for 3 min in digitonin and then stimulated with Ca2+ in the absence of digitonin, secretion occurred in the same manner but without the initial lag. Optimal secretion from PC12 cells was also dependent upon the presence of Mg2+ and ATP. Permeabilized PC12 cells exhibited a slow time-dependent loss of secretory responsiveness which was correlated with the release of a cytosolic marker, lactate dehydrogenase (134 kDa). This suggests that digitonin permeabilization allows soluble constituents necessary for secretion to leave the cell in addition to allowing Ca2+ and ATP access into the cell interior. Ca2+-dependent secretion was completely inhibited by exposure of digitonin-permeabilized cells to 100 micrograms/ml trypsin (27 kDa), whereas secretion was only slightly inhibited by trypsin exposure prior to digitonin treatment. Thus, an intracellular, trypsin-sensitive protein is probably involved in secretion. The data also indicate that the same population of digitonin-treated cells which responded to Ca2+ was permeable to a 27-kDa protein. 1,2-Dioctanoylglycerol and phorbol esters which activate protein kinase C enhanced the Ca2+-dependent and Ca2+-independent secretion in digitonin-permeabilized PC12 cells. Thus, protein kinase C appears to be involved in the regulation of catecholamine secretion from permeabilized PC12 cells.  相似文献   

20.
Incubation of hepatocyte monolayers with oleate or palmitate (1.0 mM) for 2-48 h, increased (20 to 80%) the incorporation of [1,3-14C]glycerol and palmitate into triacyglycerol but not phosphatidylcholine. The effect of fatty acids on liver cell triacylglycerol formation correlated well (r = 0.990) with a simultaneous rise (2-4-fold) in phosphatidate phosphatase (EC 3.1.3.4) activity. Phosphatidate phosphatase activity and triacylglycerol biosynthesis are also increased (2-fold) after hepatocyte monolayers are incubated for 24 h with cyclic GMP in the absence of fatty acids. Fatty acid-dependent increases in liver cell triacylglycerol formation and phosphatidate phosphatase activity are not blocked by cycloheximide. Phosphatidylcholine biosynthesis was also elevated in homogenates of liver cells exposed (24-48 h) to 1.0 mM oleate when exogenous CDPcholine was added to the incubation mixture. Apparently, the phosphatidate phosphatase-dependent rise in diacylglycerols that occurs after fatty acid exposure is primarily shunted into triacylglycerols because liver cell CDPcholine content is not correspondingly increased, and high levels of diacylglycerol acyltransferase (EC 2.3.1.20) and fatty acyl-CoA derivatives are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号