首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have demonstrated intriguing psychophysiological correspondences when lucid dreamers carried out specific tasks during lucid dreams (e.g., eye movements and EMG activities). But only a few studies have investigated cardiovascular changes during dreamed physical activities. This study tests the hypothesis that physical activity (performing squats) carried out in a lucid dream increases cardiovascular parameters in the sleeping body. Therefore, 5 proficient lucid dreamers experienced with the eye-signaling method during lucidity spent 2 to 4 nonconsecutive nights in a sleep laboratory. Instructed to carry out specific tasks (counting and performing squats) while lucid dreaming, the participants reported becoming lucid and signaling in 11 REM periods recorded. Fourteen complete lucid dream tasks were verified by eye signaling. The results showed a statistically significant increase of heart rate between the preexercise and exercise periods and the postexercise period. The results for respiration rate were less clear. Even though respiration rate during the exercise period was higher than during the pre- and postexercise period, statistical significance was only found for the second comparison. Overall, the results support the hypothesis that lucidly dreamed motor action causes increases at the level of peripheral effectors. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

2.
The distribution of prokaryotic metabolism between maintenance and growth activities has a profound impact on the transformation of carbon substrates to either biomass or CO2. Knowledge of key factors influencing prokaryotic maintenance respiration is, however, highly limited. This mesocosm study validated the significance of prokaryotic maintenance respiration by mimicking temperature and nutrients within levels representative of winter and summer conditions. A global range of growth efficiencies (0.05–0.57) and specific growth rates (0.06–2.7 d−1) were obtained. The field pattern of cell-specific respiration versus specific growth rate and the global relationship between growth efficiency and growth rate were reproduced. Maintenance respiration accounted for 75% and 15% of prokaryotic respiration corresponding to winter and summer conditions, respectively. Temperature and nutrients showed independent positive effects for all prokaryotic variables except abundance and cell-specific respiration. All treatments resulted in different taxonomic diversity, with specific populations of amplicon sequence variants associated with either maintenance or growth conditions. These results validate a significant relationship between specific growth and respiration rate under productive conditions and show that elevated prokaryotic maintenance respiration can occur under cold and oligotrophic conditions. The experimental design provides a tool for further study of prokaryotic energy metabolism under realistic conditions at the mesocosm scale.  相似文献   

3.
In this review we analyze the concepts and the experimental data on the mechanisms of the regulation of energy metabolism in muscle cells. Muscular energetics is based on the force-length relationship, which in the whole heart is expressed as a Frank-Starling law, by which the alterations of left ventricle diastolic volume change linearly both the cardiac work and oxygen consumption. The second basic characteristics of the heart is the metabolic stability--almost constant levels of high energy phosphates, ATP and phosphocreatine, which are practically independent of the workload and the rate of oxygen consumption, in contrast to the fast-twitch skeletal muscle with no metabolic stability and rapid fatigue. Analysis of the literature shows that an increase in the rate of oxygen consumption by order of magnitude, due to Frank-Starling law, is observed without any significant changes in the intracellular calcium transients. Therefore, parallel activation of contraction and mitochondrial respiration by calcium ions may play only a minor role in regulation of respiration in the cells. The effective regulation of the respiration under the effect of Frank-Starling law and metabolic stability of the heart are explained by the mechanisms of functional coupling within supramolecular complexes in mitochondria, and at the subcellular level within the intracellular energetic units. Such a complex structural and functional organisation of heart energy metabolism can be described quantitatively by mathematical models.  相似文献   

4.
Data by the authors, as well as from other laboratories, show that the intertrial responses correlated with accuracy of avoidance or feeding behaviour. Moreover our previously data demonstrated the definite changes of neuronal activity, heart rate and respiration during intertrial responses. In this study we investigated the time-course of intertrial response appearance, the pattern of neurophysiological parameters during intertrial periods, and the types of intertrial responses. Experiment 1 showed that different environmental stimuli influenced the level of intertrial responses and successfulness of the avoidance learning. In experiment 2, in which learning and extinction procedures were presented in rabbit passive-avoidance conditioning, two types of intertrial responses were observed; the first type repeated the pain reinforcement, the second one imitated the conditioned reaction of neuronal activity, heart rate, respiration, and moving. These investigations suggest that the processes of intertrial eliciting of avoidance effector programs may be one of the mechanisms of fixation in memory and play an important role in acquisition of more effective results.  相似文献   

5.
The expansion of heart rate variability analysis has been facilitated by the remarkable development of computer sciences and digital signal processing during the last thirty years. The beat-to-beat fluctuation of the heart rate originates from the momentary summing of sympathetic and parasympathetic influences on the sinus node. According to the extensive associations of the autonomic nervous system, several factors affect heart rate and its variability such as posture, respiration frequency, age, gender, physical or mental load, pain, numerous disease conditions, and different drugs. Heart rate variability can be quantitatively measured by time domain and frequency domain methods that are detailed in the paper. Non-linear methods have not spread in the clinical practice yet. Various cardiovascular and other pathologies as well as different forms of mental and physical load are associated with altered heart rate variability offering the possibility of predicting disease outcome and assessing stress.  相似文献   

6.
I Pajunen 《Cryobiology》1992,29(3):414-421
Heart rate in hibernating garden dormice, Eliomys quercinus, was studied by means of permanently implanted electrodes; ambient temperatures (TA's) were maintained at 0, 4, 6.5, and 9 degrees C during the 6-month test period in each winter study. The animals were kept under constant conditions in darkness and without food or water. Heart rate remained at a low level during deep hibernation at all TA's studied. There were no differences in midwinter values between the TA's of 6.5 and 9 degrees C: the means were 9-12 beats/min during apnea. Heart rate thus differs from other hibernation parameters studied simultaneously, which were strongly TA dependent. However, the optimal TA of 4 degrees C could be distinguished and heart rate was significantly lower, 8-10 beats/min. At 0 degree C the values were slightly higher: 12-13 beats/min. The TA of 0 degree C was exceptional for all parameters studied. At the beginning of the hibernation season was a transition period with elevated heart rate values. Respiratory-related heart-rate changes appeared during periodic respiration, heart rate being significantly higher during respiratory periods at all TA's. At 0, 6.5, and 9 degrees C tachycardia occurred also during apnea, very close to the respiratory period. There are responses that are comparable to hypoxic environmental conditions during hibernation, diving, and pregnancy and under high-altitude conditions. Parallel adaptations appear in heart rate and respiration, i.e., bradycardia and periodic respiration. In conclusion, heart-rate values were low during deep hibernation, and compared with other parameters measured at different TA's heart rate is maintained inside narrow limits during deep hibernation.  相似文献   

7.
Root system architecture partially results from meristem activities, which themselves depend on endogenous and environmental factors, such as O2 depletion. In this study, meristem respiration and growth was measured in the root systems of three Prunus persica (L.) Batsch seedlings. The spatial distribution of meristem respiration within the root system was described, and the relationship between the respiration rates and meristem radii was analysed, using a model of radial O2 diffusion and consumption within the root. Histological observations were also used to help interpret the results. Respiration rates were linearly correlated to the root growth rates (rho 2 = 0.9). Respiration reached values greater than 3.5 x 10(-13) mol O2 s-1 for active meristems. The taproot meristem consumed more O2 than the rest of the entire root system meristems. Similarly, the first order lateral meristems used more O2 than the second order ones. A near hyperbolic relationship between respiration rates and meristem radii was observed. This can be explained by a model of radial O2 diffusion and consumption within the root. Therefore, only one maximum potential respiration rate and one O2 diffusion coefficient was estimated for all the meristems.  相似文献   

8.
We present in this paper the results of a study of the interdependence between signal characteristic of the central nervous system (electroencephalography) and the autonomic nervous system (heart rate and respiration) in human neonates during sleep. By using methods from nonlinear dynamical systems theory, we show that there exist significant differences in this interdependence with the sleep stage and the electrodes considered. This paves the way for the application of this methodology in clinical practice to study pathologies where this interdependence is altered, such as the sudden infant death syndrome.  相似文献   

9.
Antioxidant capacity of desferrioxamine in biological systems   总被引:1,自引:0,他引:1  
The antioxidant capacity of desferrioxamine (DF) was investigated in three biological systems. The addition of DF to rat brain homogenates undergoing autoxidation elicited a concentration dependent inhibition of both oxygen uptake and chemiluminescence, with a median inhibitory concentration (IC50) of 0.52 microM. In this system, Fe3+-induced light emission was completely abolished at a DF/Fe3+ molar ratio of 0.6. In rat erythrocyte suspensions supplemented with t-butyl hydroperoxide, DF lengthened the induction period and decreased the rate of oxygen consumption, with an IC50 of 300 microM. Infusion of increasing concentrations of DF to the perfused rat liver elicited a progressive decrease in the rate of oxygen consumption, with no alterations in the mitochondrial respiration. This DF-sensitive respiration has a maximal value of 200 nmol/g of liver/min, with a half-maximal rate at 120 microM DF. These results indicate that DF behaves as an efficient antioxidant either under basal conditions or in chemically-induced oxidative stress, through Fe3+ chelating and/or free-radical scavenging effects.  相似文献   

10.
The phosphate metabolites, adenosine diphosphate (ADP), inorganic phosphate (Pi), and adenosine triphosphate (ATP), are potentially important regulators of mitochondrial respiration in vivo. However, previous studies on the heart in vivo and in vitro have not consistently demonstrated an appropriate correlation between the concentration of these phosphate metabolites and moderate changes in work and respiration. Recently, mitochondrial NAD(P)H levels have been proposed as a potential regulator of cardiac respiration during alterations in work output. In order to understand better the mechanism of respiratory control under these conditions, we investigated the relationship between the phosphate metabolites, the NAD(P)H levels, and oxygen consumption (Q02) in the isovolumic perfused rat heart during alterations in work output with pacing. ATP, creatine phosphate (CrP), Pi and intracellular pH were measured using 31P NMR. Mitochondrial NAD(P)H levels were monitored using spectrofluorometric techniques. Utilizing glucose as the sole substrate, an increase in paced heart rate led to an increase in Q02 from 1.73 +/- 0.09 to 2.29 +/- 0.12 mmol Q2/h per g dry wt. No significant changes in the levels of Pi, PCr, ATP, or the calculated ADP levels were detected. Under identical conditions, an increase in heart rate was associated with a 23 + 3% increase in NAD(P)H fluorescence. Thus, under the conditions of these studies, an increase in Q02 was not associated with an increase in ADP or Pi. In contrast, increases in Q02 were associated with an increase in NAD(P)H. These data are consistent with the notion that increases in the mitochondrial NADH redox state regulate steady-state levels of respiration when myocardial work is increased.  相似文献   

11.
三源区分土壤呼吸组分研究   总被引:1,自引:1,他引:0  
宋文琛  同小娟  李俊  张劲松 《生态学报》2017,37(22):7387-7396
三源区分土壤呼吸组分是指将土壤呼吸区分为纯根呼吸、根际微生物呼吸和土壤有机质呼吸3个部分。土壤有机质呼吸、纯根呼吸和根际微生物呼吸是3种不同的生物学过程,这3种呼吸对环境变化具有不同的响应机制。区分土壤呼吸中由根系引起的自养和异养呼吸组分的研究对定量评价陆地生态系统碳平衡具有重要的意义。论述了三源区分土壤呼吸组分的意义、方法和应用,分析了不同条件下土壤呼吸组分区分的研究结果。实验室纯根和根际微生物呼吸占根源呼吸比重约为45%和55%;野外条件下约为60%和40%。最后对本研究未来的发展方向进行了展望。  相似文献   

12.
黄皮果实采后呼吸特性及品质变化   总被引:12,自引:0,他引:12  
以大鸡心、小鸡心和圆种黄皮三个品种为试材,探讨常温(28±2℃)贮藏条件下,三种黄皮果实呼吸速率、乙烯产生速率和品质的变化。结果表明,采后黄皮好果率、可溶性固形物和Vc含量显著降低;失重率、可溶性果胶和原果胶含量显著上升;可滴定酸含量在前2d内显著下降,2d后则有不同程度回升;黄皮果实贮藏4d后呼吸速率显著上升,但无呼吸峰出现,属非呼吸跃变型果实。贮藏后期大鸡心黄皮呼吸速率明显高于小鸡心和圆种黄皮。乙烯产生速率采后前4d内显著上升,但4d后大鸡心和小鸡心黄皮乙烯产生速率迅速降低,圆种黄皮则持续上升。  相似文献   

13.
Experiments with simultaneous recording of the heart rate, peripheral blood pressure, and respiration showed differences between the cardiovascular system parameters of men and women at rest and during various functional tests (cold, mental and physical exercise, spirometric mask testing). The results of several series of experiments using the same sample showed that women were characterized by a relationship between the state of the cardiovascular system and the psychoemotional status and well-being, as well as by a greater involvement of the central mechanisms in the regulation of the cardiovascular system when functional tests are performed. A high level of tonic activity and high reactivity of the sympathetic link of regulation of the cardiovascular system is typical of men.  相似文献   

14.
Peng Y  Wu S  Geng S  Liepsch D  Liao D  Qiao A  Zeng Y 《Biorheology》2005,42(4):271-281
An ejection dynamics mathematical model of human left ventricle (LV) based on physiological data of human heart is proposed in this study. The mathematical equations were expressed in terms of vorticity-stream function equations in a prolate spheroidal coordinate system. These equations combined with specified boundary conditions were numerically solved by using an alternating-direction-implicit (ADI) algorithm with second order accuracy. The unsteady aspects of the ejection process were subsequently introduced into the numerical simulation. The numerical results have shown that the present ellipsoidal model could be available to simulate the ejection process of the human LV. Such a model combined with cardiac muscle mechanics could be studied further to determine altered left ventricular function in cardiac diseases.  相似文献   

15.
Aims Vast grasslands on the Tibetan Plateau are almost all under livestock grazing. It is unclear, however, what is the role that the grazing will play in carbon cycle of the grassland under future climate warming. We found in our previous study that experimental warming can shift the optimum temperature of saturated photosynthetic rate into higher temperature in alpine plants. In this study, we proposed and tested the hypothesis that livestock grazing would alter the warming effect on photosynthetic and respiration through changing physical environments of grassland plants.Methods Experimental warming was carried by using an infrared heating system to increase the air temperature by 1.2 and 1.7°C during the day and night, respectively. The warming and ambient temperature treatments were crossed over to the two grazing treatments, grazing and un-grazed treatments, respectively. To assess the effects of grazing and warming, we examined photosynthesis, dark respiration, maximum rates of the photosynthetic electron transport (J max), RuBP carboxylation (V cmax) and temperature sensitivity of respiration Q 10 in Gentiana straminea, an alpine species widely distributed on the Tibetan grassland. Leaf morphological and chemical properties were also examined to understand the physiological responses.Important findings 1) Light-saturated photosynthetic rate (A max) of G. straminea showed similar temperature optimum at around 16°C in plants from all experimental conditions. Experimental warming increased A max at all measuring temperatures from 10 to 25°C, but the positive effect of the warming occurred only in plants grown under the un-grazed conditions. Under the same measuring temperature, A max was significantly higher in plants from the grazed than the un-grazed condition. 2) There was significant crossing effect of warming and grazing on the temperature sensitivity (Q 10) of leaf dark respiration. Under the un-grazed condition, plants from the warming treatment showed lower respiration rate but similar Q 10 in comparison with plants from the ambient temperature treatment. However, under the grazed condition Q 10 was significantly lower in plants from the warming than the ambient treatment. 3) The results indicate that livestock grazing can alter the warming effects on leaf photosynthesis and temperature sensitivity of leaf dark respiration through changing physical environment of the grassland plants. The study suggests for the first time that grazing effects should be taken into account in predicting global warming effects on photosynthesis and respiration of plants in those grasslands with livestock grazing.  相似文献   

16.
The regulative role of adenine nucleotide translocators (ANTs) in oxidative phosphorylation has been estimated by the titration of respiration of isolated rabbit heart mitochondria with carboxyatractyloside in the presence of a non-rate limiting creatine phosphokinase ADP-regenerating system. It has been established that the respiration rate is not controlled by ANTs in the two extreme states, state 3 and state 4. On the other hand, at an intermediate respiration rate (30-70% of the state 3 respiration, which roughly corresponds to that under physiological conditions) the ANT control coefficient had a value of 0.62-0.75. Thus, ANTs seem to play a key role in the regulation of oxidative phosphorylation.  相似文献   

17.
The average branchial blood pressure in sand sharks was 32 mm. of mercury. The highest recorded in a resting animal was 43 mm. The average dorsal or systemic pressure was 23.3 mm.; highest 30 mm. The ratio of branchial to systemic pressure is about 3 to 2. The pressure in both systems keeps up well under trauma; but under experimental conditions, with or without manipulation of viscera, slowly falls after several hours. It rises with muscular effort, and a long rise usually follows stoppage of struggling. It rises when sodium carbonate is injected. The adrenalin curve resembles that in a mammal. Spontaneous rises and falls not attributable to the heart occur. Light in some animals increases blood pressure. It is suspected that these fishes have a vasomotor apparatus. The heart rate except after trauma is practically always the same as the respiration rate, and there is some reason for believing that the heart rate is determined by the respiration rate. When not in step with respiration, the heart is slower and often in a simple ratio with respiration. The heart is inhibited by all sorts of stimuli applied practically anywhere (except to the liver?). This effect is abolished by atropin. Respiration is faster in small animals and averages 24 per minute. Respiration slowly decreases in strength with little change in rate. Usually respiration ceases long before the heart stops.  相似文献   

18.
冬小麦旺盛生长期间CO2浓度升高对根际呼吸的影响   总被引:6,自引:0,他引:6  
寇太记  朱建国  谢祖彬  刘钢  曾青 《生态学报》2007,27(4):1420-1427
依托FACE(free air carbon dioxide enrichment)技术平台,利用阻断根法,采用H6400红外气体分析仪(IRGA)-田间原位测定的方法,研究了大气CO2浓度升高和不同氮肥水平对水稻/小麦轮作制中冬小麦旺盛生长期间根际呼吸的影响。结果表明,在整个测定期间,大气CO2浓度升高增强了根际呼吸速率,提高了根际呼吸排放量。在高N和低N处理中,高CO2浓度下的根际呼吸总排放量分别比Ambient极显著增加117.0%和90.8%。根际呼吸速率在孕穗初期达到最大值;使根际呼吸在土壤呼吸中的比重由24.5%(LN)~26.7(HN)提高到39.8%(LN)~47.1%(HN)。CO2浓度升高与氮肥用量对根际呼吸产生交互效应。表明大气CO2浓度升高将加快土壤向大气的CO2排放,结果将有助于评价未来高CO2浓度背景下农田生态系统土壤碳的固定潜力。  相似文献   

19.
Experiments were designed to study changes of blood levels of norepinephrine (NE) and epinephrine (E) and their possible role in metabolic adaptation to short-lasting physical exercise in calves. After a resting period for 5 min (I), animals walked on a treadmill for 10 min at a speed of 60 m/min, first horizontally for 5 min (II), then at a slope of 6 degrees for another 5 min (III), followed by a recovery period for 5 min (IV). Levels of NE and E increased within minutes during walking and then decreased. Changes were closely related to respiration rate, ventilation volume, O2-uptake, heart rate and blood lactate levels. Blood triiodothyronine and protein slightly increased only during period III, whereas glucose, non-esterified fatty acids and the respiration quotient increased throughout the experiment. Blood insulin levels were decreased during walking and rapidly increased afterwards. Blood glucagon did not change significantly. Work load affected all parameters except glucagon and triiodothyronine. There were individually significant differences for all parameters, except for NE and the respiration quotient. The data demonstrate rapid reactions of the cardiorespiratory system and of blood insulin and lactate levels on submaximal work load, normally in close association with plasma E and NE.  相似文献   

20.
The Mapire river mouth forms a complex floodplain system, where the river behaves as a river during the dry season, but changes to a transient lake which partially covers the inundation forest during the rainy season. Thus, we expected changes in water chemistry and a gradual increase of primary production during high waters. The system was sampled monthly for one year; two floodplain lakes were also studied for comparative purposes. Variations in the concentration of macro- and micronutrients occurred in a pulse-like manner and seemed to relate to mechanisms at work in the transient lake. Dissolved oxygen showed a stratification with low values at the bottom, but never reached anoxia. Net and gross primary production and respiration did not show any clear spatial pattern, reflecting a mosaic of different biochemical states within the transient lake. Heterotrophy tended to prevail in the transient lake, while autotrophy dominated floodplain lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号