首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quantitative contribution of fatty acids and CO(2) to methanogenesis was studied by using stirred, 3-liter bench-top digestors fed on a semicontinuous basis with cattle waste. The fermentations were carried out at 40 and 60 degrees C under identical loading conditions (6 g of volatile solids per liter of reactor volume per day, 10-day retention time). In the thermophilic digestor, acetate turnover increased from a prefeeding level of 16 muM/min to a peak (49 muM/min) 1 h after feeding and then gradually decreased. Acetate turnover in the mesophilic digestor increased from 15 to 40 muM/min. Propionate turnover ranged from 2 to 5.2 and 1.5 to 4.5 muM/min in the thermophilic and mesophilic digestors, respectively. Butyrate turnover (0.7 to 1.2 muM/min) was similar in both digestors. The proportion of CH(4) produced via the methyl group of acetate varied with time after feeding and ranged from 72 to 75% in the mesophilic digestor and 75 to 86% in the thermophilic digestor. The contribution from CO(2) reduction was 24 to 29% and 19 to 27%, respectively. Propionate and butyrate turnover accounted for 20% of the total CH(4) produced. Acetate synthesis from CO(2) was greatest shortly after feeding and was higher in the thermophilic digestor (0.5 to 2.4 muM/min) than the mesophilic digestor (0.3 to 0.5 muM/min). Counts of fatty acid-degrading bacteria were related to their turnover activity.  相似文献   

2.
Methanogenesis was studied using stirred, bench-top fermentors of 3-1 working volume fed on a semi-continuous basis with waste obtained from cattle fed a high grain, finishing diet. Digestion was carried out at 40 and 60°C. CH4 production was 11.8, 18.3, 61.9 and 84.5% higher in the thermophilic than the mesophilic digestor at the 3, 6, 9 and 12 g volatile solids (VS) l–1 reactor volume loading rates, respectively. When compared on an energetic basis CH4 production was 7.4, 18.3, 72.9 and 107.3 kJ day higher in the thermophilic than the mesophilic digestor. CH4 production decreased more rapidly with each increase in VS loading rate and decrease in retention time (RT) in the mesophilic than the thermophilic digestor. When expressed as l g–1 VS fed or as kJ kJ–1 fed, the amount of CH4 was 49% less at the highest compared to the lowest loading rate in the mesophilic digestor. In the thermophilic digestor the decrease was only 16%. Propionate accumulated in the mesophilic digestor at the two highest loading rates, reaching concentrations of about 50 mM, but were only about 13 mM in the thermophilic digestor. Isobutyrate, isovalerate plus 2-methylbutyrate, and valerate also accumulated at the higher loading rates.  相似文献   

3.
Mixed-Culture Fermentor for Simulating Methanogenic Digestors   总被引:7,自引:6,他引:1       下载免费PDF全文
Propionate degradation in an anaerobic digestor degrading animal waste (10-day retention time, 5.75 g liter−1 day−1 volatile solids loading rate, 40°C) was 0.304 mM h−1, measured with [2-14C]propionate; this value indicated that CH4 produced from propionate accounted for 14.8% of the CH4 produced in the digestor (34.5%, including acetate produced from propionate). The mean propionate concentration was 0.67 mM, giving a propionate turnover rate of 0.46 h−1. A continuous-, mixed-culture fermentor was developed to mimic the digestor. When degradation rates of methanogenic precursors (H2, CO2, and acetate) equalled those measured in the digestor, propionate degradation was inhibited. When the H2 turnover rate was lowered by decreasing addition of H2-generating substrates or by allowing a portion of the H2 degradation to occur in an isolated compartment, propionate degradation in the fermentor resumed. The possibility is discussed that in digestors, much of the H2 is produced and degraded within microenvironments associated with particles. Thus, the gross turnover rate of H2 measured in digestors is an average, and specific microenvironments within the digestor may have different rates of turnover.  相似文献   

4.
Microbial formate production and consumption during syntrophic conversion of ethanol or lactate to methane was examined in purified flocs and digestor contents obtained from a whey-processing digestor. Formate production by digestor contents or purified digestor flocs was dependent on CO2 and either ethanol or lactate but not H2 gas as an electron donor. During syntrophic methanogenesis, flocs were the primary site for formate production via ethanol-dependent CO2 reduction, with a formate production rate and methanogenic turnover constant of 660 μM/h and 0.044/min, respectively. Floc preparations accumulated fourfold-higher levels of formate (40 μM) than digestor contents, and the free flora was the primary site for formate cleavage to CO2 and H2 (90 μM formate per h). Inhibition of methanogenesis by CHCl3 resulted in formate accumulation and suppression of syntrophic ethanol oxidation. H2 gas was an insignificant intermediary metabolite of syntrophic ethanol conversion by flocs, and its exogenous addition neither stimulated methanogenesis nor inhibited the initial rate of ethanol oxidation. These results demonstrated that >90% of the syntrophic ethanol conversion to methane by mixed cultures containing primarily Desulfovibrio vulgaris and Methanobacterium formicicum was mediated via interspecies formate transfer and that <10% was mediated via interspecies H2 transfer. The results are discussed in relation to biochemical thermodynamics. A model is presented which describes the dynamics of a bicarbonate-formate electron shuttle mechanism for control of carbon and electron flow during syntrophic methanogenesis and provides a novel mechanism for energy conservation by syntrophic acetogens.  相似文献   

5.
Kinetics of butyrate, acetate, and hydrogen metabolism were determined with butyrate-limited, chemostat-grown tricultures of a thermophilic butyrate-utilizing bacterium together with Methanobacterium thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic rod. Kinetic parameters were determined from progress curves fitted to the integrated form of the Michaelis-Menten equation. The apparent half-saturation constants, Km, for butyrate, acetate, and dissolved hydrogen were 76 μM, 0.4 mM, and 8.5 μM, respectively. Butyrate and hydrogen were metabolized to a concentration of less than 1 μM, whereas acetate uptake usually ceased at a concentration of 25 to 75 μM, indicating a threshold level for acetate uptake. No significant differences in Km values for butyrate degradation were found between chemostat- and batch-grown tricultures, although the maximum growth rate was somewhat higher in the batch cultures in which the medium was supplemented with yeast extract. Acetate utilization was found to be the rate-limiting reaction for complete degradation of butyrate to methane and carbon dioxide in continuous culture. Increasing the dilution rate resulted in a gradual accumulation of acetate. The results explain the low concentrations of butyrate and hydrogen normally found during anaerobic digestion and the observation that acetate is the first volatile fatty acid to accumulate upon a decrease in retention time or increase in organic loading of a digestor.  相似文献   

6.
Terminal Reactions in the Anaerobic Digestion of Animal Waste   总被引:17,自引:13,他引:4       下载免费PDF全文
An anaerobic mesophilic digestor was operated using beef cattle waste (diluted to 5.75% volatile solids) as substrate; retention time was 10 days with daily batch feed. Volatile solids destruction was 36%. Daily gas production rate was 1.8 liters of gas (standard temperature and pressure) per liter of digestor contents (0.99 liters of CH4 per liter of digestor contents). Acetate turnover was measured, and it was calculated that 68% of the CH4 was derived from the methyl group of acetate. When the methanogenic substrates acetic acid or H2/CO2 were added to the digestor on a continuous basis, the microflora were able to adapt and convert them to terminal products while continuing to degrade animal waste to the same extent as without additions. The methanogenic substrates were added at a rate at least 1.5 times the microbial production rate which was measured in the absence of added substrates. Added acetate was converted directly to CH4 by acetoclastic methanogens; H2 addition greatly stimulated acetate production in the digestor. A method is described for the measurement of acetate turnover in batch-fed digestors.  相似文献   

7.
The rate of [15N]ammonia (15NH3) uptake or incorporation into bacterial cells was studied, using stirred, 3-liter benchtop digestors fed on a semicontinuous basis with cattle waste. The fermentations were carried out at 40 and 60 degrees C and at four different loading rates (3, 6, 9, and 12 g of volatile solids per liter of reactor volume per day). The rate of NH3-N incorporation for the period 1 to 5 h after feeding at the four different loading rates was 0.49, 0.83, 1.05, and 1.08 mg/liter per h in the mesophilic digestor and 0.68, 1.07, 1.17, and 1.21 mg/liter per h in the thermophilic digestor. Values were lower 7 to 21 h after feeding in both digestors and were related to the rate of fermentation or CH4 production. In the mesophilic digestors, the rate of bacterial cell production ranged from 3.97 to 8.72 mg of dry cells per liter per h, 1 to 5 h after feeding at the different loading rates. Corresponding values for the thermophilic digestors ranged from 5.46 to 9.77 mg of dry cells per liter per h. Cell yield values ranged from 2.3 to 3.1 mg of dry cells per mol of CH4 produced in the mesophilic and thermophilic digestors at the two lower loading rates. The values were higher (2.8 to 3.4) in the mesophilic digestors at the two higher loading rates because of the accumulation of propionate and a consequent reduction in CH4 production. Low cell yields such as those measured in this study are characteristic of low-specific-growth rates under energy-limited conditions.  相似文献   

8.
The rate of [15N]ammonia (15NH3) uptake or incorporation into bacterial cells was studied, using stirred, 3-liter benchtop digestors fed on a semicontinuous basis with cattle waste. The fermentations were carried out at 40 and 60 degrees C and at four different loading rates (3, 6, 9, and 12 g of volatile solids per liter of reactor volume per day). The rate of NH3-N incorporation for the period 1 to 5 h after feeding at the four different loading rates was 0.49, 0.83, 1.05, and 1.08 mg/liter per h in the mesophilic digestor and 0.68, 1.07, 1.17, and 1.21 mg/liter per h in the thermophilic digestor. Values were lower 7 to 21 h after feeding in both digestors and were related to the rate of fermentation or CH4 production. In the mesophilic digestors, the rate of bacterial cell production ranged from 3.97 to 8.72 mg of dry cells per liter per h, 1 to 5 h after feeding at the different loading rates. Corresponding values for the thermophilic digestors ranged from 5.46 to 9.77 mg of dry cells per liter per h. Cell yield values ranged from 2.3 to 3.1 mg of dry cells per mol of CH4 produced in the mesophilic and thermophilic digestors at the two lower loading rates. The values were higher (2.8 to 3.4) in the mesophilic digestors at the two higher loading rates because of the accumulation of propionate and a consequent reduction in CH4 production. Low cell yields such as those measured in this study are characteristic of low-specific-growth rates under energy-limited conditions.  相似文献   

9.
The effects of 2-bromoethanesulfonate, an inhibitor of methanogenesis, on metabolism in sludge from a thermophilic (58°C) anaerobic digestor were studied. It was found from short-term experiments that 1 μmol of 2-bromoethanesulfonate per ml completely inhibited methanogenesis from 14CH3COO, whereas 50 μmol/ml was required for complete inhibition of 14CO2 reduction. When 1 μmol of 2-bromoethanesulfonate per ml was added to actively metabolizing sludge which was then incubated for 24 h. it caused a 60% reduction in methanogenesis and a corresponding increase in acetate accumulation; at 50 μmol/ml it caused complete inhibition of methanogenesis and accumulation of acetate. H2, and ethanol.  相似文献   

10.
Summary Bacterial sulphate reduction and the interaction between sulphate reduction and methane production was studied in an unadapted and sulphate-adapted thermophilic anaerobic sludge digestor. Addition of sulphate to a concentration of 5 mm (100 times the background level) did not influence gas production or volatile fatty acid concentration compared to the control digestor. When sulphate reduction was not limited by the sulphate concentration, the sulphate-adapted digestor had a sulphate reduction rate of 910 mol l–1 day compared with 17 mol l–1 day in the control digestor. The results indicate that the potential for sulphate reduction is low in a thermophilic sewage sludge digestor receiving a low sulphate concentration. Counts of sulphate-reducing bacteria and methanogens showed that sulphate-reducing bacteria were found only in significant numbers in the sulphate-adapted digestor and only with H2/CO2 as substrate. Only low numbers of acetate-utilizing sulphate-reducing bacteria were found in both digestors. When using radio-labelled acetate, the relative percentage of 2-labelled acetate converted to CO2 was two to four times higher in the sulphate-adapted digestor compared to the control digestor. These results suggest that oxidation of acetate seems to play a larger role in the sulphate-adapted digestor.Offprint requests to: B. K. Ahring  相似文献   

11.
The carbon and electron flow pathways and the bacterial populations responsible for the transformation of H2-CO2, formate, methanol, methylamine, acetate, ethanol, and lactate were examined in eutrophic sediments collected during summer stratification and fall turnover. The rate of methane formation averaged 1,130 μmol of CH4 per liter of sediment per day during late-summer stratification versus 433 μmol of CH4 per liter of sediment per day during the early portion of fall turnover, whereas the rate of sulfate reduction was 280 μmol of sulfate per liter of sediment per day versus 1,840 μmol of sulfate per liter of sediment per day during the same time periods, respectively. The sulfate-reducing population remained constant while the methanogenic population decreased by one to two orders of magnitude during turnover. The acetate concentration increased from 32 to 81 μmol per liter of sediment while the acetate transformation rate constant decreased from 3.22 to 0.70 per h, respectively, during stratification versus turnover. Acetate accounted for nearly 100% of total sedimentary methanogenesis during turnover versus 70% during stratification. The fraction of 14CO2 produced from all 14C-labeled substrates examined was 10 to 40% higher during fall turnover than during stratification. The addition of sulfate, thiosulfate, or sulfur to stratified sediments mimicked fall turnover in that more CO2 and CH4 were produced. The addition of Desulfovibrio vulgaris to sulfate-amended sediments greatly enhanced the amount of CO2 produced from either [14C]methanol or [2-14C]acetate, suggesting that H2 consumption by sulfate reducers can alter methanol or acetate transformation by sedimentary methanogens. These data imply that turnover dynamically altered carbon transformation in eutrophic sediments such that sulfate reduction dominated over methanogenesis principally as a consequence of altering hydrogen metabolism.  相似文献   

12.
Nutritional Requirements of Methanosarcina sp. Strain TM-1   总被引:2,自引:1,他引:1       下载免费PDF全文
Methanosarcina sp. strain TM-1, an acetotrophic, thermophilic methanogen isolated from an anaerobic sludge digestor, was originally reported to require an anaerobic sludge supernatant for growth. It was found that the sludge supernatant could be replaced with yeast extract (1 g/liter), 6 mM bicarbonate-30% CO2, and trace metals, with a doubling time on methanol of 14 h. For growth on either methanol or acetate, yeast extract could be replaced with CaCl2 · 2H2O (13.6 μM minimum) and the vitamin p-aminobenzoic acid (PABA, ca. 3 nM minimum), with a doubling time on methanol of 8 to 9 h. Filter-sterilized folic acid at 0.3 μM could not replace PABA. The antimetabolite sulfanilamide (20 mM) inhibited growth of and methanogenesis by Methanosarcina sp. strain TM-1, and this inhibition was reversed by the addition of 0.3 μM PABA. When a defined medium buffered with 20 mM N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid was used, it was shown that Methanosarcina sp. strain TM-1 required 6 mM bicarbonate-30% CO2 for optimal growth and methanogenesis from methanol. Cells growing on acetate were less dependent on bicarbonate-CO2. When we used a defined medium in which the only organic compounds present were methanol or acetate, nitrilotriacetic acid (0.2 mM), and PABA, it was possible to limit batch cultures of Methanosarcina sp. strain TM-1 for nitrogen at NH4+ concentrations at or below 2.0 mM, in marked contrast with Methanosarcina barkeri 227, which fixes dinitrogen when grown under NH4+ limitation.  相似文献   

13.
Degradation of glucose has been implicated in acetate production in rice field soil, but the abundance of glucose, the temporal change of glucose turnover, and the relationship between glucose and acetate catabolism are not well understood. We therefore measured the pool sizes of glucose and acetate in rice field soil and investigated the turnover of [U-14C]glucose and [2-14C]acetate. Acetate accumulated up to about 2 mM during days 5 to 10 after flooding of the soil. Subsequently, methanogenesis started and the acetate concentration decreased to about 100 to 200 μM. Glucose always made up >50% of the total monosaccharides detected. Glucose concentrations decreased during the first 10 days from 90 μM initially to about 3 μM after 40 days of incubation. With the exception at day 0 when glucose consumption was slow, the glucose turnover time was in the range of minutes, while the acetate turnover time was in the range of hours. Anaerobic degradation of [U-14C]glucose released [14C]acetate and 14CO2 as the main products, with [14C]acetate being released faster than 14CO2. The products of [2-14C]acetate metabolism, on the other hand, were 14CO2 during the reduction phase of soil incubation (days 0 to 15) and 14CH4 during the methanogenic phase (after day 15). Except during the accumulation period of acetate (days 5 to 10), approximately 50 to 80% of the acetate consumed was produced from glucose catabolism. However, during the accumulation period of acetate, the rate of acetate production from glucose greatly exceeded that of acetate consumption. Under steady-state conditions, up to 67% of the CH4 was produced from acetate, of which up to 56% was produced from glucose degradation.  相似文献   

14.
The fates and the rates of metabolism of acetate, trimethylamine, methylamine, and methanol were examined to determine the significance of these compounds as in situ methane precursors in surface sediments of an intertidal zone in Maine. Concentrations of these potential methane precursors were generally <3 μM, with the exception of sediments containing fragments of the seaweed Ascophyllum nodosum, in which acetate was 96 μM. [2-14C]acetate turnover in all samples was rapid (turnover time <2 h), with 14CO2 as the primary product. [14C]trimethylamine and methylamine turnover times were slower (>8 h) and were characterized by formation of both 14CH4 and 14CO2. Ratios of 14CH4/14CO2 from [14C]trimethylamine and methylamine in uninhibited sediments indicated that a significant fraction of these substrates were catabolized via a non-methanogenic process. Data from inhibition experiments involving sodium molybdate and 2-bromoethanesulfonic acid supported this interpretation. [14C]methanol was oxidized relatively slowly compared with the other substrates and was catabolized mainly to 14CO2. Results from experiments with molybdate and 2-bromoethanesulfonic acid suggested that methanol was oxidized primarily through sulfate reduction. In Lowes Cove sediments, trimethylamine accounted for 35.1 to 61.1% of total methane production.  相似文献   

15.
A thermophilic, autotrophic methanogen (strain CB12, DSM 3664) was isolated from a mesophilic biogas digestor. This bacterium used H2-CO2 or formate as a substrate and grew as short rods, sometimes in pairs and in crooked filaments. Motility was not observed. Its optimum temperature (56°C) was lower than that of other thermophilic members of the genus Methanobacterium. The maximum observed specific growth rate was 0.564 h−1 (74-min doubling time).  相似文献   

16.
The kinetics of acetate utilization were examined for washed concentrated cell suspensions of two thermophilic acetotrophic methanogens isolated from a 58°C anaerobic digestor. Progress curves for acetate utilization by cells of Methanosarcina sp. strain CALS-1 showed that the utilization rate was concentration independent (zero order) above concentrations near 3 mM and that acetate utilization ceased when a threshold concentration near 1 mM was reached. Acetate utilization by cells of Methanothrix sp. strain CALS-1 was concentration independent down to 0.1 to 0.2 mM, and threshold values of 12 to 21 μM were observed. Typical utilization rates in the concentration-independent stage were 210 and 130 nmol min−1 mg of protein−1 for the methanosarcina and the methanothrix, respectively. These results are in agreement with a general model in which high acetate concentrations favor Methanosarcina spp., while low concentrations favor Methanothrix spp. However, acetate utilization by these two strains did not follow simple Michaelis-Menton kinetics.  相似文献   

17.
Microbial Methanogenesis and Acetate Metabolism in a Meromictic Lake   总被引:10,自引:8,他引:2       下载免费PDF全文
Methanogenesis and the anaerobic metabolism of acetate were examined in the sediment and water column of Knaack Lake, a small biogenic meromictic lake located in central Wisconsin. The lake was sharply stratified during the summer and was anaerobic below a depth of 3 m. Large concentrations (4,000 μmol/liter) of dissolved methane were detected in the bottom waters. A methane concentration maximum occurred at 4 m above the sediment. The production of 14CH4 from 14C-labeled HCOOH, HCO3, and CH3OH and [2-14C]acetate demonstrated microbial methanogenesis in the water column of the lake. The maximum rate of methanogenesis calculated from reduction of H14CO3 by endogenous electron donors in the surface sediment (depth, 22 m) was 7.6 nmol/h per 10 ml and in the water column (depth, 21 m) was 0.6 nmol/h per 10 ml. The methyl group of acetate was simultaneously metabolized to CH4 and CO2 in the anaerobic portions of the lake. Acetate oxidation was greatest in surface waters and decreased with water depth. Acetate was metabolized primarily to methane in the sediments and water immediately above the sediment. Sulfide inhibition studies and temperature activity profiles demonstrated that acetate metabolism was performed by several microbial populations. Sulfide additions (less than 5 μg/ml) to water from 21.5 m stimulated methanogenesis from acetate, but inhibited CO2 production. Sulfate addition (1 mM) had no significant effect on acetate metabolism in water from 21.5 m, whereas nitrate additions (10 to 14,000 μg/liter) completely inhibited methanogenesis and stimulated CO2 formation.  相似文献   

18.
Needles from phosphorus deficient seedlings of Pinus radiata D. Don grown for 8 weeks at either 330 or 660 microliters CO2 per liter displayed chlorophyll a fluorescence induction kinetics characteristic of structural changes within the thylakoid chloroplast membrane, i.e. constant yield fluorescence (FO) was increased and induced fluorescence ([FP-FI]/FO) was reduced. The effect was greatest in the undroughted plants grown at 660 μl CO2 L−1. By week 22 at 330 μl CO2 L−1 acclimation to P deficiency had occurred as shown by the similarity in the fluorescence characteristics and maximum rates of photosynthesis of the needles from the two P treatments. However, acclimation did not occur in the plants grown at 660 μl CO2 L−1. The light saturated rate of photosynthesis of needles with adequate P was higher at 660 μl CO2 L−1 than at 330 μl CO2 L−1, whereas photosynthesis of P deficient plants showed no increase when grown at the higher CO2 concentration. The average growth increase due to CO2 enrichment was 14% in P deficient plants and 32% when P was adequate. In drought stressed plants grown at 330 μl CO2 L−1, there was a reduction in the maximal rate of quenching of fluorescence (RQ) after the major peak. Constant yield fluorescence was unaffected but induced fluorescence was lower. These results indicate that electron flow subsequent to photosystem II was affected by drought stress. At 660 μl CO2 L−1 this response was eliminated showing that CO2 enrichment improved the ability of the seedlings to acclimate to drought stress. The average growth increase with CO2 enrichment was 37% in drought stressed plants and 19% in unstressed plants.  相似文献   

19.
One-carbon metabolic transformations associated with cell carbon synthesis and methanogenesis were analyzed by long- and short-term 14CH3OH or 14CO2 incorporation studies during growth and by cell suspensions. 14CH3OH and 14CO2 were equivalently incorporated into the major cellular components (i.e., lipids, proteins, and nucleic acids) during growth on H2-CO2-methanol. 14CH3OH was selectively incorporated into the C-3 of alanine with decreased amounts fixed in the C-1 and C-2 positions, whereas 14CO2 was selectively incorporated into the C1 moiety with decreasing amounts assimilated into the C-2 and C-3 atoms. Notably, 14CH4 and [3-14C]alanine synthesized from 14CH3OH during growth shared a common specific activity distinct from that of CO2 or methanol. Cell suspensions synthesized acetate and alanine from 14CO2. The addition of iodopropane inhibited acetate synthesis but did not decrease the amount of 14CH3OH or 14CO2 fixed into one-carbon carriers (i.e., methyl coenzyme M or carboxydihydromethanopterin). Carboxydihydromethanopterin was only labeled from 14CH3OH in the absence of hydrogen. Cell extracts catalyzed the synthesis of acetate from 14CO (~1 nmol/min per mg of protein) and an isotopic exchange between CO2 or CO and the C-1 of pyruvate. Acetate synthesis from 14CO was stimulated by methyl B12 but not by methyl tetrahydrofolate or methyl coenzyme M. Methyl coenzyme M and coenzyme M were inhibitory to acetate synthesis. Cell extracts contained high levels of phosphotransacetylase (>6 μmol/min per mg of protein) and acetate kinase (>0.14 μmol/min per mg of protein). It was not possible to distinguish between acetate and acetyl coenzyme A as the immediate product of two-carbon synthesis with the methods employed.  相似文献   

20.
Kinetics of Sulfate and Acetate Uptake by Desulfobacter postgatei   总被引:8,自引:4,他引:4       下载免费PDF全文
The kinetics of sulfate and acetate uptake was studied in the sulfate-reducing bacterium Desulfobacter postgatei (DSM 2034). Kinetic parameters (Km and Vmax) were estimated from substrate consumption curves by resting cell suspensions with [35S]sulfate and [14C]acetate. Both sulfate and acetate consumption followed Michaelis-Menten saturation kinetics. The half-saturation constant (Km) for acetate uptake was 70 μM with cells from either long-term sulfate- or long-term acetate-limited chemostat cultures. The average Km value for sulfate uptake by D. postgatei was about 200 μM. Km values for sulfate uptake did not differ significantly when determined with cells derived either from batch cultures or sulfate- or acetate-limited chemostat cultures. Acetate consumption was observed at acetate concentrations of ≤1 μM, whereas sulfate uptake usually ceased at 5 to 20 μM. The results show that D. postgatei is not freely permeable to sulfate ions and further indicate that sulfate uptake is an energy-requiring process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号