首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold nanorods have strong absorption bands in the near-infrared region, in which light penetrates deeply into tissues. The absorbed light energy is converted into heat by gold nanorods, the so-called 'photothermal effect'. Hence, gold nanorods are expected to act not only as on-demand thermal converters for photothermal therapy but also as controllers of a drug-release system responding to irradiation by near-infrared light. To achieve a controlled-release system that can be triggered by light irradiation, double-stranded DNA (dsDNA) was modified on gold nanorods. When the dsDNA-modified gold nanorods were irradiated by near-infrared light, the single-stranded DNA (ssDNA) was released from gold nanorods due to the photothermal effect. The amount of released ssDNA was dependent upon the power and exposure time of light irradiation. Release of ssDNA was also observed in tumors grown on mice after light irradiation. Such a controlled-release system of oligonucleotide triggered by the photothermal effect could expand the applications of gold nanorods that have unique optical characteristics in medicinal fields.  相似文献   

2.
Gold nanorods exhibit strong absorbance of light in the near infrared region, which penetrates deeply into tissues. Since the absorbed light energy is converted into heat, gold nanorods are expected to act as a contrast agent for in vivo bioimaging and as a thermal converter for photothermal therapy. To construct a gold nanorod targeted delivery system for tumor a peptide substrate for urokinase-type plasminogen activator (uPA), expressed specifically on malignant tumors, was inserted between the PEG chain and the surface of the gold nanorods. In other words, we constructed PEG–peptide-modified gold nanorods. After mixing the gold nanorods with uPA, the PEG chain was released from the surface of the gold and subsequently nanorod aggregation took place. The formation of the aggregation was monitored as a decrease in light absorption at 900 nm. Tumor homogenate induced a significant decrease in this absorption. Larger amount of the PEG–peptide-modified gold nanorods bound to cells expressing uPA in vitro compared with control gold nanorods, which had scrambled sequence of the peptide. The PEG–peptide-modified gold nanorods showed higher accumulation in tumor than the control after they were injected intravenously into tumor-bearing mice, however, the density of the peptide on the surface of the gold nanorods was a key factor of their biodistributions. This targeted delivery system, which responds to uPA activity, is expected to be a powerful tool for tumor bioimaging and photothermal tumor therapy.  相似文献   

3.
金纳米棒具有独特的光学性质、表面易修饰性、较低的生物毒性和良好的生物相容性,因而在成像、光热治疗和药物载带等方面具有极高的潜在应用价值.本文综述了典型的金纳米棒表面修饰方法及其在生物成像、光热治疗和药物治疗中的应用,重点阐述了通过金纳米棒同时实现肿瘤诊断和治疗相结合的研究进展.  相似文献   

4.
Xia Y  Gu Y  Zhou X  Xu H  Zhao X  Yaseen M  Lu JR 《Biomacromolecules》2012,13(8):2299-2308
Two types of thermoresponsive microgels, poly(N-isopropylacrylamide) (PNIPAM) microgels and poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAMAC) microgels were synthesized and used as templates for the mineralization of amorphous calcium carbonate (ACC) by diffusion of CO(2) vapor under ambient conditions. Thermosensitive PNIPAM/CaCO(3) hybrid macroscopic hydrogels and micrometer-sized PNIPAMAC/CaCO(3) hybrid microgels were controllably obtained and different mineralization mechanistic processes were proposed. The impact of the loaded CaCO(3) on the size, morphology, stability, and thermosensitivity of the microgels was also analyzed. PNIPAM/CaCO(3) hybrid macrogels had a slight decrease in thermoresponsive phase transition temperature, while PNIPAMAC/CaCO(3) hybrid microgels showed a clear increase in phase transition temperature. The difference reflected different amount and location of ACC in the gel network, causing different interactions with polymer chains. The PNIPAMAC/CaCO(3) microgels formed stable monolayer films on bare silica wafers and glass coverslips upon drying. The microgel films could facilitate the attachment and growth of 3T3 fibroblast cells and their subsequent detachment upon temperature drop from 37 °C to the ambient condition around 20 °C, thus, offering a convenient procedure for cell harvesting.  相似文献   

5.
Gold nanorods (GNRs) have emerged as promising nanomaterials for biosensing, imaging, photothermal treatment, and therapeutic delivery for several diseases, including cancer. We have generated poly(amino ether)-functionalized gold nanorods (PAE-GNRs) using a layer-by-layer deposition approach; polymers from a poly(amino ether) library recently synthesized in our laboratory were employed to generate the PAE-GNR assemblies. PAE-GNR assemblies demonstrate long-term colloidal stability as well as the capacity to bind plasmid DNA by means of electrostatic interactions. Sub-toxic concentrations of PAE-GNRs were employed to deliver plasmid DNA to prostate cancer cells in vitro. PAE-GNRs generated using 1,4C-1,4Bis, a cationic polymer from our laboratory demonstrated significantly higher transgene expression and exhibited lower cytotoxicities when compared to similar assemblies generated using 25 kDa poly(ethylene imine) (PEI25k-GNRs), a current standard for polymer-mediated gene delivery. The roles of polyelectrolyte chemistry and zeta-potential in determining transgene expression efficacies of PAE-GNR assemblies were investigated. Our results indicate that stable and effective PAE-GNR assemblies are a promising engineered platform for transgene delivery. PAE-GNRs also have the potential to be used simultaneously for photothermal ablation, photothermally enhanced drug and gene delivery, and biological imaging, thus making them a powerful theranostic platform.  相似文献   

6.
BACKGROUND: Successful non-viral gene targeting requires vectors to meet two conflicting needs-strong binding to protect the genetic material during transit and weak binding at the target site to enable release. Responsive polymers could fulfil such requirements through the switching of states, e.g. the chain-extended coil to chain-collapsed globule phase transition that occurs at a lower critical solution temperature (LCST), in order to transport nucleic acid in one polymer state and release it in another. METHODS: The ability of new synthetic polycations based on poly(ethyleneimine) (PEI) with grafted neutral responsive poly(N-isopropylacrylamide) (PNIPAm) chains to condense DNA into particles with architectures varying according to graft polymer LCST was assessed using a combination of fluorescence spectroscopy, dynamic light scattering (DLS), zeta sizing, gel retardation and atomic force microscopy studies. Transfection assays were conducted under experimental conditions wherein the polymer components were able to cycle across their LCST. RESULTS: Two PEI-PNIPAm conjugate polymers with different LCSTs displayed coil-globule transitions when complexed to plasmid DNA, leading to variations in molecular architecture as shown by changes in emission maxima of an environment-sensitive fluorophore attached to the PNIPAm chains. Gel retardation assays demonstrated differences in electrophoretic mobilities of polymer-DNA complexes with temperatures below and above polymer LCSTs. Atomic force micrographs showed changes in the structures of polymer-DNA complexes for a polymer undergoing a phase transition around body temperature but not for the polymer with LCST outside this range. Transfection experiments in C2C12 and COS-7 cells demonstrated that the highest expression of transgene occurred in an assay that involved a 'cold-shock' below polymer LCST during transfection. CONCLUSIONS: Designed changes in thermoresponsive polycation vector configuration via temperature-induced phase transitions enhanced transgene expression. The results indicate that changes in molecular architecture induced by a carefully chosen stimulus during intracellular trafficking can be used to enhance gene delivery.  相似文献   

7.
If gold nanorods are used as photoabsorbers, then light in the near infrared tissue window can generate a strong photothermal effect. In this issue, C. Paviolo et al. show that near infrared light can be used to evoke a calcium response in neuronal cells treated with gold nanorods. This suggests new opportunities for peripheral nerve regeneration and infrared neural stimulation. (Picture: C. Paviolo et al., pp. 761–765 in this issue)  相似文献   

8.
In this study, we developed a poly(N-isopropylacrylamide)-based thermoresponsive polymeric material with a high content of hydroxyl groups. We newly designed the functional monomer, N-(2-hydroxyisopropyl)acrylamide (HIPAAm), considering maintaining the continuous and repeated structure of the isopropylamide group after copolymerization and the monomer reactivity ratios. The thermoresponsive polymer was derived by conventional radical copolymerization of HIPAAm with N-isopropylacrylamide (NIPAAm) in high yield. Estimation of monomer reactivity ratios, r(1) and r(2), supported the almost random sequence of the comonomers. The obtained copolymers showed a very sensitive phase transition and/or separation in response to temperature in aqueous media although they have many hydrophilic parts, and their thermoresponsive behavior was not affected by the pH. Furthermore, the cloud points of these copolymers closely depended on the HIPAAm content and could be easily controlled by adding salts. HIPAAm is expected to regulate the phase transition and/or separation temperature of the NIPAAm-based copolymers while maintaining their desirable sensitive thermoresponse. Differential scanning calorimetric analysis showed that dehydration of the polymer chains occurring in phase transition became incomplete with increasing HIPAAm content. Moreover, it was found that poly(NIPAAm-co-HIPAAm) having a high content of the HIPAAm unit showed liquid-liquid phase separation involving coacervation. The sizes of the coacervate droplets were relatively monodisperse and very minimal. Poly(NIPAAm-co-HIPAAm) is valuable for use in biomedical fields such as bioseparation.  相似文献   

9.
Well-defined amphiphilic diblock copolymers comprising thermoresponsive polymer segments of poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) (PID) and hydrophobic polymer segments, poly(benzyl methacrylate) (PBzMA), were synthesized by controlled living radical polymerization. Terminal derivatization of PID segments to either hydroxyl or phenyl groups was achieved through reactions of coupling agents with thiol groups exposed by cleavage of terminal dithiobenzoate groups. Diblock copolymers formed core-shell type polymeric micelles with thermoresponsive outer shells. Hydrodynamic micellar diameters ranged from 12 to 31 nm, controlled by varying PID chain lengths. Differences in PID terminal groups did not affect the critical micelle concentration or micellar diameters. However, these groups demonstrated a significant influence on the micellar thermoresponses. Hydroxylated PID/PBzMA micelles exhibited a phase transition of approximately 40 degrees C, independent of PID molecular weights. Even though molecular weights and compositions of PID chains were equivalent except for terminal groups, micelles having the outermost surface phenyl groups exhibited drastically lower phase transition temperature shifts, especially for micelles with low molecular weight PID chains.  相似文献   

10.
Abstract

Rod-shaped gold nanoparticles (‘nanorods’) have recently attracted widespread attention due to their unique optical properties and facile synthesis. In particular, they can support a longitudinal surface plasmon, which results in suspensions of them having a strong extinction peak in the upper visible or near-infrared parts of the spectrum. The position of this peak can be readily tuned by controlling the shape of the rods. In addition, the surface of the nanorods can be functionalized by a very wide variety of molecules. This has led to interest in their use as selective biomarkers in biodiagnostics or for selective targeting in photothermal thearapeutics. Here, we review the recent advances in the use of gold nanorods in these applications. Additionally, the information available regarding their biocompatibility is discussed.  相似文献   

11.
We fabricated composite nanoparticles consisting of a plasmonic core (gold nanorods or gold–silver nanocages) and a hematoporphyrin‐doped silica shell. The dual photodynamic and photothermal activities of such nanoparticles against Staphylococcus aureus 209 P were studied and compared with the activities of reference solutions (hematoporphyrin or silica‐coated plasmonic nanoparticles). Bacteria were incubated with nanocomposites or with the reference solutions for 15 min, which was followed by CW light irradiation with a few exposures of 5 to 30 min. To stimulate the photodynamic and photothermal activities of the nanocomposites, we used LEDs (405 and 625 nm) and a NIR laser (808 nm), respectively. We observed enhanced inactivation of S. aureus 209 P by nanocomposites in comparison with the reference solutions. By using fluorescence microscopy and spectroscopy, we explain the enhanced antimicrobial effect of hematoporphyrin‐doped nanocomposites by their selective accumulation in the vicinity of the bacteria. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The ability to quantitatively and non‐invasively detect nanoparticles has important implications on their development as an in‐vivo cancer diagnostic tool. The Diffusion Reflection (DR) method is a simple, non‐invasive imaging technique which has been proven useful for the investigation of tissue's optical parameters. In this study, Monte Carlo (MC) simulations, tissue‐like phantom experiments and in‐vivo measurements of the reflected light intensity from tumor bearing mice are presented. Following intravenous injection of antibody conjugated poly (ethylene glycol)‐coated (PEGylated) gold nanorods (GNR) to tumor‐bearing mice, accumulation of GNR in the tumor was clearly detected by the DR profile of the tumor. The ability of DR measurements to quantitate in‐vivo the concentration of the GNR in the tumor was demonstrated and validated with Flame Atomic Absorption spectroscopy results. With GNR as absorbing contrast agents, DR has important potential applications in the image guided therapy of superficial tumors such as head and neck cancer, breast cancer and melanoma. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Aqueous solutions of poly(DL-lactic acid-co-glycolic acid)-g-poly(ethylene glycol) copolymers exhibited sol-to-gel transition with increasing temperature. Further increase in temperature makes the system flow and form a sol phase again. Subcutaneous injection of a copolymer aqueous solution (0.5 mL) resulted in a formation of a hydrogel depot by temperature-sensitive sol-to-gel transition in a rat model. The reliable determination and control of sol-to-gel transition temperatures are the most important issues for this kind of sol-gel reversible hydrogel. The sol-to-gel transition temperature determined by the test tube inverting method, falling ball method, and dynamic mechanical analysis coincided within 1-2 degrees C. Fine tuning of the sol-to-gel transition temperature was achieved by varying the ionic strength of the polymer solutions and by mixing two polymer aqueous solutions with different sol-to-gel transition temperatures. The sol-to-gel transition temperature of polymer mixture aqueous solutions was well described by an empirical equation of miscible blends, indicating miscibility of the two polymer systems in water on the molecular level.  相似文献   

14.
Uncoated and poly(styrene sulphonate) (PSS)‐coated gold nanorods were taken up by NG108‐15 neuronal cells. Exposure to 780 nm laser light at the plasmon resonance wavelength of the gold nanorods was found to induce intracellular Ca2+ transients. The higher Ca2+ peaks were observed at lower laser doses, with the highest levels obtained at a radiant exposure of 0.33 J/cm2. In contrast, the cells without nanoparticles showed a consistently small response, independent of the laser dose. These initial results open up new opportunities for peripheral nerve regeneration treatments and for more efficient optical stimulation techniques. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Wan X  Liu T  Liu S 《Biomacromolecules》2011,12(4):1146-1154
We report on the facile synthesis of well-defined amphiphilic and thermoresponsive tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization (ROP) directly initiating from cyclic precursors, their self-assembling behavior in aqueous solution, and the application of micellar assemblies as controlled release drug nanocarriers. Starting from a trifunctional core molecule containing alkynyl, hydroxyl, and bromine moieties, alkynyl-(OH)-Br, macrocyclic poly(N-isopropylacrylamide) (c-PNIPAM) bearing a single hydroxyl functionality was prepared by atom transfer radical polymerization (ATRP), the subsequent end group transformation into azide functionality, and finally the intramacromolecular ring closure reaction via click chemistry. The target amphiphilic tadpole-shaped linear-cyclic diblock copolymer, (c-PNIPAM)-b-PCL, was then synthesized via the ROP of ε-caprolactone (CL) by directly initiating from the cyclic precursor. In aqueous solution at 20 °C, (c-PNIPAM)-b-PCL self-assembles into spherical micelles consisting of hydrophobic PCL cores and well-solvated coronas of cyclic PNIPAM segments. For comparison, linear diblock copolymer with comparable molecular weight and composition, (l-PNIPAM)-b-PCL, was also synthesized. It was found that the thermoresponsive coronas of micelles self-assembled from (c-PNIPAM)-b-PCL exhibit thermoinduced collapse and aggregation at a lower critical thermal phase transition temperature (T(c)) compared with those of (l-PNIPAM)-b-PCL. Temperature-dependent drug release profiles from the two types of micelles of (c-PNIPAM)-b-PCL and (l-PNIPAM)-b-PCL loaded with doxorubicin (Dox) were measured, and the underlying mechanism for the observed difference in releasing properties was proposed. Moreover, MTT assays revealed that micelles of (c-PNIPAM)-b-PCL are almost noncytotoxic up to a concentration of 1.0 g/L, whereas at the same polymer concentration, micelles loaded with Dox lead to ~60% cell death. Overall, chain topologies of thermoresponsive block copolymers, that is, (c-PNIPAM)-b-PCL versus (l-PNIPAM)-b-PCL, play considerable effects on the self-assembling and thermal phase transition properties and their functions as controlled release drug nanocarriers.  相似文献   

16.
We developed a new biomaterial for use in cell culture. The biomaterial enabled protein-free cell culture and the recovery of viable cells by lowering the temperature without the aid of supplements. Insulin was immobilized and a thermoresponsive polymer was grafted onto a substrate. We investigated the effect of insulin coupling on the lower critical solution temperature (LCST) of the thermoresponsive polymer, poly(N-isopropylacrylamide-co-acrylic acid), using polymers that were ungrafted, or coupled with insulin. The insulin conjugates were precipitated from an aqueous solution at high temperatures, but they were soluble at low temperatures. The LCST was not significantly affected by the insulin coupling. The thermoresponsive polymer was grafted to glow-discharged polystyrene film and covalently conjugated with insulin. The surface wettability of the conjugate film was high at low temperatures and low at high temperatures. The amounts of immobilized insulin required to stimulate cell growth were 1-10% of the amount of free insulin required to produce the same effect. The maximal mitogenic effect of immobilized insulin was greater than that of free insulin. About half of the viable cells was detached from the film only by lowering the temperature. The recovered cells proliferated normally on new culture dishes. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 339-344, 1997.  相似文献   

17.
对比试剂的使用能够显著提升光学相干层析(OCT)的成像效果。聚苯胺(PANI)是一种有机导电聚合物,在近红外(NIR)区有着很强的光吸收。本文采用PANI对常见的OCT成像对比试剂--金纳米棒(GNRs)进行修饰,合成了PANI/GNRs核壳粒子,并对其OCT成像对比能力进行了研究。PANI/GNRs展现出良好的NIR光吸收特性;同时,PANI对GNRs的包裹也显著提升了金纳米结构的稳定性、降低了GNRs原有的毒性。选用离体猪肝组织作为检测样本,发现纳米材料使用能够显著提升OCT的成像效果。与未修饰的GNRs及PANI粒子相比,PANI/GNRs的OCT成像对比效果明显更好。因此,PANI包裹的GNRs核壳纳米材料有望成为一种低毒性且效果良好的OCT对比试剂用于生物组织成像。  相似文献   

18.
Peptide-conjugated gold nanorods for nuclear targeting   总被引:2,自引:0,他引:2  
Resonant electron oscillations on the surface of noble metal nanoparticles (Au, Ag, Cu) create the surface plasmon resonance (SPR) that greatly enhances the absorption and Rayleigh (Mie) scattering of light by these particles. By adjusting the size and shape of the particles from spheres to rods, the SPR absorption and scattering can be tuned from the visible to the near-infrared region (NIR) where biologic tissues are relatively transparent. Further, gold nanorods greatly enhance surface Raman scattering of adsorbed molecules. These unique properties make gold nanorods especially attractive as optical sensors for biological and medical applications. In the present work, gold nanorods are covalently conjugated with a nuclear localization signal peptide through a thioalkyl-triazole linker and incubated with an immortalized benign epithelial cell line and an oral cancer cell line. Dark field light SPR scattering images demonstrate that nanorods are located in both the cytoplasm and nucleus of both cell lines. Single cell micro-Raman spectra reveal enhanced Raman bands of the peptide as well as molecules in the cytoplasm and the nucleus. Further, the Raman spectra reveal a difference between benign and cancer cell lines. This work represents an important step toward both imaging and Raman-based intracellular biosensing with covalently linked ligand-nanorod probes.  相似文献   

19.
Kinetics, biodistribution, and histological studies were performed to evaluate the particle‐size effects on the distribution of 15 nm and 50 nm PEG‐coated colloidal gold (CG) particles and 160 nm silica/gold nanoshells (NSs) in rats and rabbits. The above nanoparticles (NPs) were used as a model because of their importance for current biomedical applications such as photothermal therapy, optical coherence tomography, and resonance‐scattering imaging. The dynamics of NPs circulation in vivo was evaluated after intravenous administration of 15 nm CG NPs to rabbit, and the maximal concentrations of gold were observed 15–30 min after injection. Rats were injected in the tail vein with PEG‐coated NPs (about 0.3 mg Au/kg rats). 24 h after injection, the accumulation of gold in different organs and blood was determined by atomic absorption spectroscopy. In accordance with the published reports, we observed 15 nm particles in all organs with rather smooth distribution over liver, spleen and blood. By contrast, the larger NSs were accumulated mainly in the liver and spleen. For rabbits, the biodistribution was similar (72 h after intravenous injection). We report also preliminary data on the light microscopy and TEM histological examination that allows evaluation of the changes in biotissues after gold NPs treatment. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Spiropyran is a photoresponsive molecule, and nonionic spiropyran is reversibly changed by UV irradiation to a hydrophilic polar, zwitterionic merocyanine isomer, and back again by visible light irradiation. A copolymer of nitrobenzospiropyran and methyl methacrylate, poly(NSP-co-MMA) was used as a material with a photosensitive surface. UV irradiation of the photosensitive surface of poly(NSP-co-MMA)-coated glass plates decreased the water contact angles (11 +/- 1 degrees ) and increased diameter of a water drop relative to the unexposed surface. Light-induced detachment of platelets and mesenchymal stem (KUSA-A1) cells on poly(NSP-co-MMA)-coated glass plates was observed upon simple- and patterned-light irradiation, whereas no light-induced detachment of platelets and mesenchymal stem cells was observed on poly(methyl methacrylate)-coated glass plates. This is a result of the change from a closed nonpolar spiropyran to the polar zwitterionic merocyanine isomer induced by UV irradiation. Light-induced detachment of fibrinogen adsorbed on poly(NSP-co-MMA) coated glass plates was also observed in this investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号