首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mounting evidence indicates that S-nitrosylation of critical cysteine residues in a protein represents a common feature of protein function regulation and cell signaling. However, the progress in studying the exact role of S-nitrosylation has been hampered by a lack of rapid and accurate methods for the detection of these S-nitrosylated proteins and the exact modification sites. In this article, we report a fluorescence-based method in which the S-nitrosylated cysteines are converted into 7-amino-4-methylcoumarin-3-acetic acid (AMCA) fluorophore-labeled cysteines—termed the AMCA switch method. The labeled proteins are then analyzed by nonreducing SDS-PAGE, and the S-nitrosylated proteins can be readily detected as brilliant blue bands after the activation of ultraviolet light. Furthermore, the sites of modification can be determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-gel tryptic digestion of the fluorescent band, and the recognizable AMCA tag in the MS spectra ensures the accurate site identification of the nitrosocysteines. Therefore, our method offers some apparent advantages by direct visualization of on-gel image of S-nitrosylated proteins, shorter experiment time by skipping the anti-biotin immunoblotting step, and elimination of the potential interference of endogenous biotinylated proteins. Based on this method, we detected the S-nitrosylation and the modified site in bovine serum albumin and gankyrin after in vitro S-nitrosylation. Overall, our results indicate that the AMCA switch method is a fast and accurate method to identify the S-nitrosylated protein and the modification sites.  相似文献   

2.
S-nitrosylation, or the replacement of the hydrogen atom in the thiol group of cysteine residues by a -NO moiety, is a physiologically important posttranslational modification. In our previous work we have shown that S-nitrosylation is involved in the disruption of the endothelial nitric oxide synthase (eNOS) dimer and that this involves the disruption of the zinc (Zn) tetrathiolate cluster due to the S-nitrosylation of Cysteine 98. However, human eNOS contains 28 other cysteine residues whose potential to undergo S-nitrosylation has not been determined. Thus, the goal of this study was to identify the cysteine residues within eNOS that are susceptible to S-nitrosylation in vitro. To accomplish this, we utilized a modified biotin switch assay. Our modification included the tryptic digestion of the S-nitrosylated eNOS protein to allow the isolation of S-nitrosylated peptides for further identification by mass spectrometry. Our data indicate that multiple cysteine residues are capable of undergoing S-nitrosylation in the presence of an excess of a nitrosylating agent. All these cysteine residues identified were found to be located on the surface of the protein according to the available X-ray structure of the oxygenase domain of eNOS. Among those identified were Cys 93 and 98, the residues involved in the formation of the eNOS dimer through a Zn tetrathiolate cluster. In addition, cysteine residues within the reductase domain were identified as undergoing S-nitrosylation. We identified cysteines 660, 801, and 1113 as capable of undergoing S-nitrosylation. These cysteines are located within regions known to bind flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and nicotinamide adenine dinucleotide (NADPH) although from our studies their functional significance is unclear. Finally we identified cysteines 852, 975/990, and 1047/1049 as being susceptible to S-nitrosylation. These cysteines are located in regions of eNOS that have not been implicated in any known biochemical functions and the significance of their S-nitrosylation is not clear from this study. Thus, our data indicate that the eNOS protein can be S-nitrosylated at multiple sites other than within the Zn tetrathiolate cluster, suggesting that S-nitrosylation may regulate eNOS function in ways other than simply by inducing dimer collapse.  相似文献   

3.

Background

Endothelial nitric oxide synthase (eNOS) is primarily localized on the Golgi apparatus and plasma membrane caveolae in endothelial cells. Previously, we demonstrated that protein S-nitrosylation occurs preferentially where eNOS is localized. Thus, in endothelial cells, Golgi proteins are likely to be targets for S-nitrosylation. The aim of this study was to identify S-nitrosylated Golgi proteins and attribute their S-nitrosylation to eNOS-derived nitric oxide in endothelial cells.

Methods

Golgi membranes were isolated from rat livers. S-nitrosylated Golgi proteins were determined by a modified biotin-switch assay coupled with mass spectrometry that allows the identification of the S-nitrosylated cysteine residue. The biotin switch assay followed by Western blot or immunoprecipitation using an S-nitrosocysteine antibody was also employed to validate S-nitrosylated proteins in endothelial cell lysates.

Results

Seventy-eight potential S-nitrosylated proteins and their target cysteine residues for S-nitrosylation were identified; 9 of them were Golgi-resident or Golgi/endoplasmic reticulum (ER)-associated proteins. Among these 9 proteins, S-nitrosylation of EMMPRIN and Golgi phosphoprotein 3 (GOLPH3) was verified in endothelial cells. Furthermore, S-nitrosylation of these proteins was found at the basal levels and increased in response to eNOS stimulation by the calcium ionophore A23187. Immunofluorescence microscopy and immunoprecipitation showed that EMMPRIN and GOLPH3 are co-localized with eNOS at the Golgi apparatus in endothelial cells. S-nitrosylation of EMMPRIN was notably increased in the aorta of cirrhotic rats.

Conclusion

Our data suggest that the selective S-nitrosylation of EMMPRIN and GOLPH3 at the Golgi apparatus in endothelial cells results from the physical proximity to eNOS-derived nitric oxide.  相似文献   

4.
Nitric oxide (NO) enhances human sperm motility and capacitation associated with increased protein phosphorylation. NO activates soluble guanylyl cyclase, but can also modify protein function covalently via S-nitrosylation of cysteine. Remarkably, this mechanism remains unexplored in sperm although they depend on post-translational protein modification to achieve changes in function required for fertilisation. Our objective was to identify targets for S-nitrosylation in human sperm. Spermatozoa were incubated with NO donors and S-nitrosylated proteins were identified using the biotin switch assay and a proteomic approach using MS/MS. 240 S-nitrosylated proteins were detected in sperm incubated with S-nitroso-glutathione. Minimal levels were observed in glutathione or untreated samples. Proteins identified consistently based on multiple peptides included established targets for S-nitrosylation in other cells e.g. tubulin, GST and HSPs but also novel targets including A-kinase anchoring protein (AKAP) types 3 and 4, voltage-dependent anion-selective channel protein 3 and semenogelin 1 and 2. In situ localisation revealed S-nitrosylated targets on the postacrosomal region of the head and throughout the flagellum. Potential targets for S-nitrosylation in human sperm include physiologically significant proteins not previously reported in other cells. Their identification will provide novel insight into the mechanism of action of NO in spermatozoa.  相似文献   

5.
Nitric oxide (NO) has a fundamental role in the plant hypersensitive disease resistance response (HR), and S-nitrosylation is emerging as an important mechanism for the transduction of its bioactivity. A key step toward elucidating the mechanisms by which NO functions during the HR is the identification of the proteins that are subjected to this PTM. By using a proteomic approach involving 2-DE and MS we characterized, for the first time, changes in S-nitrosylated proteins in Arabidopsis thaliana undergoing HR. The 16 S-nitrosylated proteins identified are mostly enzymes serving intermediary metabolism, signaling and antioxidant defense. The study of the effects of S-nitrosylation on the activity of the identified proteins and its role during the execution of the disease resistance response will help to understand S-nitrosylation function and significance in plants.  相似文献   

6.
The formation of S-nitrosylated proteins is a nitric oxide-dependent post-translational modification important in signal transduction, yet the in situ detection of S-nitrosylated proteins remains problematic. In this study, we adapted a recently developed biotin derivatization approach to visualize S-nitrosylated proteins in intact cells. This strategy circumvents the use of antibodies directed against S-nitrosocysteine, which may have problematic specificity, due to epitope instability. Endogenous protein S-nitrosylation could be observed in intact cells and in mouse lung sections using fluorophore-conjugated streptavidin and confocal microscopy, and was enhanced by S-nitrosothiols and reduced following treatment with the nitric oxide synthase inhibitor, L-N-monomethyl arginine. Intriguingly, protein S-nitrosylation was detected mainly in the nuclear compartment of cells under baseline conditions and was enhanced when nuclear export was blocked with leptomycin B. We also determined that the small GTPase Ran, a key regulator of nucleocytoplasmic transport, is a target for S-nitrosylation. These findings demonstrate that biotin derivatization is a useful approach to detect S-nitrosylated proteins in situ in cellular compartments or tissues, and will be useful in the assessment of altered S-nitrosylation in pathological conditions.  相似文献   

7.
Increasing evidences support the assumption that nitric oxide (NO) acts as a physiological mediator in plants. Understanding its pleiotropic effects requires a deep analysis of the molecular mechanisms underlying its mode of action. In the recent years, efforts have been made in the identification of plant proteins modified by NO at the post-translational level, notably by S-nitrosylation. This reversible process involves the formation of a covalent bond between NO and reactive cysteine residues. This research has now born fruits and numerous proteins regulated by S-nitrosylation have been identified and characterized. This review describes the basic principle of S-nitrosylation as well as the Biotin Switch Technique and its recent adaptations allowing the identification of S-nitrosylated proteins in physiological contexts. The impact of S-nitrosylation on the structure/function of selected proteins is further discussed.  相似文献   

8.
Liu M  Talmadge JE  Ding SJ 《Amino acids》2012,42(5):1541-1551
Protein S-nitrosylation is the covalent redox-related modification of cysteine sulfhydryl groups with nitric oxide, creating a regulatory impact similar to phosphorylation. Recent studies have reported a growing number of proteins to be S-nitrosylated in vivo resulting in altered functions. These studies support S-nitrosylation as a critical regulatory mechanism, fine-tuning protein activities within diverse cellular processes and biochemical pathways. In addition, S-nitrosylation appears to have key roles in the etiology of a broad range of human diseases. In this review, we discuss recent advances in proteomic approaches for the enrichment, identification, and quantitation of cysteine S-nitrosylated proteins and peptides. These advances have provided analytical tools with the power to interpret the impact of S-nitrosylation at the system level, providing a new platform for drug discovery and the identification of diagnostic markers for human diseases.  相似文献   

9.
The endothelial isoform of nitric-oxide synthase (eNOS) is regulated by a complex pattern of post-translational modifications. In these studies, we show that eNOS is dynamically regulated by S-nitrosylation, the covalent adduction of nitric oxide (NO)-derived nitrosyl groups to the cysteine thiols of proteins. We report that eNOS is tonically S-nitrosylated in resting bovine aortic endothelial cells and that the enzyme undergoes rapid transient denitrosylation after addition of the eNOS agonist, vascular endothelial growth factor. eNOS is thereafter progressively renitrosylated to basal levels. The receptor-mediated decrease in eNOS S-nitrosylation is inversely related to enzyme phosphorylation at Ser(1179), a site associated with eNOS activation. We also document that targeting of eNOS to the cell membrane is required for eNOS S-nitrosylation. Acylation-deficient mutant eNOS, which is targeted to the cytosol, does not undergo S-nitrosylation. Using purified eNOS, we show that eNOS S-nitrosylation by exogenous NO donors inhibits enzyme activity and that eNOS inhibition is reversed by denitrosylation. We determine that the cysteines of the zinc-tetrathiolate that comprise the eNOS dimer interface are the targets of S-nitrosylation. Mutation of the zinc-tetrathiolate cysteines eliminates eNOS S-nitrosylation but does not eliminate NO synthase activity, arguing strongly that disruption of the zinc-tetrathiolate does not necessarily lead to eNOS monomerization in vivo. Taken together, these studies suggest that eNOS S-nitrosylation may represent an important mechanism for regulation of NO signaling pathways in the vascular wall.  相似文献   

10.
蛋白的亚硝基化是近期发现的一种类似于磷酸化、可逆的、不依赖于环磷酸鸟苷(cGMP)的一氧化氮修饰和调节蛋白功能的新途径。一经发现,有关亚硝基化的研究呈指数级递增。亚硝基化参与从生长发育到抗病、抗逆等多个生理和病理过程。已有大量综述对亚硝基化调控蛋白功能从而影响某一生理生化及病理过程进行了总结。但迄今为止,对检测蛋白亚硝基化的手段和鉴定亚硝基化位点的方法进行总结的文献综述仍屈指可数。据此,我们对蛋白亚硝基化检测手段的发明、改进提高、亚硝基化位点的结构特点以及亚硝基化位点预测软件的开发等进行综述,旨在为该领域内科研工作者提供方便。  相似文献   

11.
Nitric oxide (NO) is an omnipresent regulator of cell function in a variety of physiologic and pathophysiologic states. In part, NO exerts its actions by S-nitrosylation of target thiols, primarily in cysteine residues. Delineating the functional correlates of S-nitrosylation can begin with identification of the entire population of S-nitrososylated proteins. Recently, the biotin switch technique was developed to allow a proteomic approach to identification of the "universe" of S-nitrsoylated proteins. In this study using endotoxin-stimulated RAW264.7 murine macrophages, we have utilized the biotin-switch technique and protein sequencing to identify S-nitrosylated proteins in this setting. In contrast to other studies utilizing exogenous sources of NO, our approach utilizes endogenous NO synthesis as the basis for S-nitrosylation. Our results indicate multiple unique proteins not previously identified as S-nitrosylation targets: enolase, pyruvate kinase, elongation factor-1 and -2, plastin-2, FRAG-6, CEM-16, and SMC-6. While the ubiquitous nature of NO argues for some degrees of commonality, S-nitrosylation of unique proteins specific to endotoxin stimulated macrophages suggests regulatory mechanisms for which NO is necessary, but not sufficient.  相似文献   

12.
Protein S-nitrosylation, the covalent binding of nitric oxide (NO) to protein cysteine residues, is one of the main mechanisms of NO signaling in plant and animal cells. Using a combination of the biotin switch assay and label-free LC-MS/MS analysis, we revealed the S-nitroso-proteome of the woody model plant Populus x canescens. Under normal conditions, constitutively S-nitrosylated proteins in poplar leaves and calli comprise all aspects of primary and secondary metabolism. Acute ozone fumigation was applied to elicit ROS-mediated changes of the S-nitroso-proteome. This treatment changed the total nitrite and nitrosothiol contents of poplar leaves and affected the homeostasis of 32 S-nitrosylated proteins. Multivariate data analysis revealed that ozone exposure negatively affected the S-nitrosylation status of leaf proteins: 23 proteins were de-nitrosylated and 9 proteins had increased S-nitrosylation content compared to the control. Phenylalanine ammonia-lyase 2 (log2[ozone/control] = −3.6) and caffeic acid O-methyltransferase (−3.4), key enzymes catalyzing important steps in the phenylpropanoid and subsequent lignin biosynthetic pathways, respectively, were de-nitrosylated upon ozone stress. Measuring the in vivo and in vitro phenylalanine ammonia-lyase activity indicated that the increase of the phenylalanine ammonia-lyase activity in response to acute ozone is partly regulated by de-nitrosylation, which might favor a higher metabolic flux through the phenylpropanoid pathway within minutes after ozone exposure.  相似文献   

13.
Copper are generally bound to proteins, e.g. the prion and the amyloid beta proteins. We have previously shown that copper ions are required to nitrosylate thiol groups in the core protein of glypican-1, a heparan sulfate-substituted proteoglycan. When S-nitrosylated glypican-1 is then exposed to an appropriate reducing agent, such as ascorbate, nitric oxide is released and autocatalyzes deaminative cleavage of the glypican-1 heparan sulfate side chains at sites where the glucosamines are N-unsubstituted. These processes take place in a stepwise manner, whereas glypican-1 recycles via a caveolin-1-associated pathway where copper ions could be provided by the prion protein. Here we show, by using both biochemical and microscopic techniques, that (a) the glypican-1 core protein binds copper(II) ions, reduces them to copper(I) when the thiols are nitrosylated and reoxidizes copper(I) to copper(II) when ascorbate releases nitric oxide; (b) maximally S-nitrosylated glypican-1 can cleave its own heparan sulfate chains at all available sites in a nitroxyl ion-dependent reaction; (c) free zinc(II) ions, which are redox inert, also support autocleavage of glypican-1 heparan sulfate, probably via transnitrosation, whereas they inhibit copper(II)-supported degradation; and (d) copper(II)-loaded but not zinc(II)-loaded prion protein or amyloid beta peptide support heparan sulfate degradation. As glypican-1 in prion null cells is poorly S-nitrosylated and as ectopic expression of cellular prion protein restores S-nitrosylation of glypican-1 in these cells, we propose that one function of the cellular prion protein is to deliver copper(II) for the S-nitrosylation of recycling glypican-1.  相似文献   

14.
The biological effects of nitric oxide (NO) are in significant part mediated through S-nitrosylation of cysteine thiol. Work on model thiol substrates has raised the idea that molecular oxygen (O(2)) is required for S-nitrosylation by NO; however, the relevance of this mechanism at the low physiological pO(2) of tissues is unclear. Here we have used a proteomic approach to study S-nitrosylation reactions in situ. We identify endogenously S-nitrosylated proteins in subcellular organelles, including dihydrolipoamide dehydrogenase and catalase, and show that these, as well as hydroxymethylglutaryl-CoA synthase and sarcosine dehydrogenase (SarDH), are S-nitrosylated by NO under strictly anaerobic conditions. S-Nitrosylation of SarDH by NO is best rationalized by a novel mechanism involving the covalently bound flavin of the enzyme. We also identify a set of mitochondrial proteins that can be S-nitrosylated through multiple reaction channels, including anaerobic/oxidative, NO/O(2), and GSNO-mediated transnitrosation. Finally, we demonstrate that steady state levels of S-nitrosylation are higher in mitochondrial extracts than the intact organelles, suggesting the importance of denitrosylation reactions. Collectively, our results provide new insight into the determinants of S-nitrosothiol levels in subcellular compartments.  相似文献   

15.
Our laboratory once reported that neuronal nitric oxide synthase (nNOS) S-nitrosylation was decreased in rat hippocampus during cerebral ischemia-reperfusion, but the underlying mechanism was unclear. In this study, we show that nNOS activity is dynamically regulated by S-nitrosylation. We found that overexpressed nNOS in HEK293 (human embryonic kidney) cells could be S-nitrosylated by exogenous NO donor GSNO and which is associated with the enzyme activity decrease. Cys331, one of the zinc-tetrathiolate cysteines, was identified as the key site of nNOS S-nitrosylation. In addition, we also found that nNOS is highly S-nitrosylated in resting rat hippocampal neurons and the enzyme undergos denitrosylation during the process of rat brain ischemia/reperfusion. Intrestingly, the process of nNOS denitrosylation is coupling with the decrease of nNOS phosphorylation at Ser847, a site associated with nNOS activation. Further more, we document that nNOS denitrosylation could be suppressed by pretreatment of neurons with MK801, an antagonist of NMDAR, GSNO, EGTA, BAPTA, W-7, an inhibitor of calmodulin as well as TrxR1 antisense oligonucleotide (AS-ODN) respectively. Taken together, our data demonstrate that the denitrosylation of nNOS induced by calcium ion influx is a NMDAR-dependent process during the early stage of ischemia/reperfusion, which is majorly mediated by thioredoxin-1 (Trx1) system. nNOS dephosphorylation may be induced by the enzyme denitrosylation, which suggest that S-nitrosylation/denitrosylation of nNOS may be an important mechanism in regulating the enzyme activity.  相似文献   

16.
Ornithine decarboxylase is the initial and rate-limiting enzyme in the polyamine biosynthetic pathway. Polyamines are found in all mammalian cells and are required for cell growth. We previously demonstrated that N-hydroxyarginine and nitric oxide inhibit tumor cell proliferation by inhibiting arginase and ornithine decarboxylase, respectively, and, therefore, polyamine synthesis. In addition, we showed that nitric oxide inhibits purified ornithine decarboxylase by S-nitrosylation. Herein we provide evidence for the chemical mechanism by which nitric oxide and S-nitrosothiols react with cysteine residues in ornithine decarboxylase to form an S-nitrosothiol(s) on the protein. The diazeniumdiolate nitric oxide donor agent 1-diethyl-2-hydroxy-2-nitroso-hydrazine acts through an oxygen-dependent mechanism leading to formation of the nitrosating agents N(2)O(3) and/or N(2)O(4). S-Nitrosoglutathione inhibits ornithine decarboxylase by an oxygen-independent mechanism likely by S-transnitrosation. In addition, we provide evidence for the S-nitrosylation of 4 cysteine residues per ornithine decarboxylase monomer including cysteine 360, which is critical for enzyme activity. Finally S-nitrosylated ornithine decarboxylase was isolated from intact cells treated with nitric oxide, suggesting that nitric oxide may regulate ornithine decarboxylase activity by S-nitrosylation in vivo.  相似文献   

17.
We present a robust and general method for the identification and relative quantification of phosphorylation sites in complex protein mixtures. It is based on a new chemical derivatization strategy using a dendrimer as a soluble polymer support and tandem mass spectrometry (MS/MS). In a single step, phosphorylated peptides are covalently conjugated to a dendrimer in a reaction catalyzed by carbodiimide and imidazole. Modified phosphopeptides are released from the dendrimer via acid hydrolysis and analyzed by MS/MS. When coupled with an initial antiphosphotyrosine protein immunoprecipitation step and stable-isotope labeling, in a single experiment, we identified all known tyrosine phosphorylation sites within the immunoreceptor tyrosine-based activation motifs (ITAM) of the T-cell receptor (TCR) CD3 chains, and previously unknown phosphorylation sites on total 97 tyrosine phosphoproteins and their interacting partners in human T cells. The dynamic changes in phosphorylation were quantified in these proteins.  相似文献   

18.
Protein S-nitrosylation has emerged as a principal mechanism by which nitric oxide exerts biological effects. Among methods for studying protein S-nitrosylation, the biotin switch technique (BST) has rapidly gained popularity because of the ease with which it can detect individual S-nitrosylated (SNO) proteins in biological samples. The identification of SNO sites by the BST relies on the ability of ascorbate to generate a thiol from an S-nitrosothiol, but not from alternatively S-oxidized thiols (e.g. disulfides, sulfenic acids). However, the specificity of this reaction has recently been challenged, prompting several claims that the BST may produce false-positive results and raising concerns about the application of the BST under oxidizing conditions. Here we perform a comparative analysis of the BST using differentially S-oxidized and S-nitrosylated forms of protein tyrosine phosphatase 1B, as well as intact and lysed human embryonic kidney 293 cells treated with S-oxidizing and S-nitrosylating agents, and verify that the assay is highly specific for SNO. Strikingly, exposure of samples to indirect sunlight from a laboratory window resulted in artifactual ascorbate-dependent signals that are likely promoted by the semidehydroascorbate radical; protection from sunlight eliminated the artifact. In contrast, exposure of SNO proteins to a strong ultraviolet light source (SNO photolysis) prior to the BST provided independent verification of assay specificity. By combining BST with photolysis, we have shown that anti-cancer drug-induced oxidative stress facilitates the S-nitrosylation of the major apoptotic effector glyceraldehyde-3-phosphate dehydrogenase. Collectively, these experiments demonstrate that SNO-dependent signaling pathways can be modulated by oxidative conditions and suggest a potential role for S-nitrosylation in antineoplastic drug action.  相似文献   

19.
Proteomic identification of S-nitrosylated proteins in Arabidopsis   总被引:11,自引:0,他引:11       下载免费PDF全文
Although nitric oxide (NO) has grown into a key signaling molecule in plants during the last few years, less is known about how NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation of cysteine (Cys) residues to be one of the dominant regulation mechanisms for many animal proteins. For plants, the principle of S-nitrosylation remained to be elucidated. We generated S-nitrosothiols by treating extracts from Arabidopsis (Arabidopsis thaliana) cell suspension cultures with the NO-donor S-nitrosoglutathione. Furthermore, Arabidopsis plants were treated with gaseous NO to analyze whether S-nitrosylation can occur in the specific redox environment of a plant cell in vivo. S-Nitrosylated proteins were detected by a biotin switch method, converting S-nitrosylated Cys to biotinylated Cys. Biotin-labeled proteins were purified and analyzed using nano liquid chromatography in combination with mass spectrometry. We identified 63 proteins from cell cultures and 52 proteins from leaves that represent candidates for S-nitrosylation, including stress-related, redox-related, signaling/regulating, cytoskeleton, and metabolic proteins. Strikingly, many of these proteins have been identified previously as targets of S-nitrosylation in animals. At the enzymatic level, a case study demonstrated NO-dependent reversible inhibition of plant glyceraldehyde-3-phosphate dehydrogenase, suggesting that this enzyme could be affected by S-nitrosylation. The results of this work are the starting point for further investigation to get insight into signaling pathways and other cellular processes regulated by protein S-nitrosylation in plants.  相似文献   

20.
Lee TY  Chen YJ  Lu TC  Huang HD  Chen YJ 《PloS one》2011,6(7):e21849
S-nitrosylation, the covalent attachment of a nitric oxide to (NO) the sulfur atom of cysteine, is a selective and reversible protein post-translational modification (PTM) that regulates protein activity, localization, and stability. Despite its implication in the regulation of protein functions and cell signaling, the substrate specificity of cysteine S-nitrosylation remains unknown. Based on a total of 586 experimentally identified S-nitrosylation sites from SNAP/L-cysteine-stimulated mouse endothelial cells, this work presents an informatics investigation on S-nitrosylation sites including structural factors such as the flanking amino acids composition, the accessible surface area (ASA) and physicochemical properties, i.e. positive charge and side chain interaction parameter. Due to the difficulty to obtain the conserved motifs by conventional motif analysis, maximal dependence decomposition (MDD) has been applied to obtain statistically significant conserved motifs. Support vector machine (SVM) is applied to generate predictive model for each MDD-clustered motif. According to five-fold cross-validation, the MDD-clustered SVMs could achieve an accuracy of 0.902, and provides a promising performance in an independent test set. The effectiveness of the model was demonstrated on the correct identification of previously reported S-nitrosylation sites of Bos taurus dimethylarginine dimethylaminohydrolase 1 (DDAH1) and human hemoglobin subunit beta (HBB). Finally, the MDD-clustered model was adopted to construct an effective web-based tool, named SNOSite (http://csb.cse.yzu.edu.tw/SNOSite/), for identifying S-nitrosylation sites on the uncharacterized protein sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号