首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
CheY, a response regulator protein in bacterial chemotaxis, mediates swimming behaviour through interaction with the flagellar switch protein, FliM. In its active, phosphorylated state, CheY binds to the motor switch complex and induces a change from counterclockwise (CCW) to clockwise (CW) flagellar rotation. The conformation of a conserved aromatic residue, tyrosine 106, has been proposed to play an important role in this signalling process. Here, we show that an isoleucine to valine substitution in CheY at position 95 — in close proximity to residue 106 — results in an extremely CW, hyperactive phenotype that is dependent on phosphorylation. Further biochemical characterization of this mutant protein revealed phosphorylation and dephosphorylation rates that were indistinguishable from those of wild-type CheY. CheY95IV, however, exhibited an increased binding affinity to FliM. Taken together, these results show for the first time a correlation between enhanced switch binding and constitutive signalling in bacterial chemotaxis. Considering present structural information, we also propose possible models for the role of residue 95 in the mechanism of CheY signal transduction.  相似文献   

3.
4.
Cells of Rhizobium meliloti swim by the unidirectional, clockwise rotation of their right-handed helical flagella and respond to tactic stimuli by modulating the flagellar rotary speed. We have shown that wild-type cells respond to the addition of proline, a strong chemoattractant, by a sustained increase in free-swimming speed (chemokinesis). We have examined the role of two response regulators, CheY1 and CheY2, and of CheA autokinase in the chemotaxis and chemokinesis of R. meliloti by comparing wild-type and mutant strains that carry deletions in the corresponding genes. Swarm tests, capillary assays, and computerized motion analysis revealed that (i) CheY2 alone mediates 60 to 70% of wild-type taxis, whereas CheY1 alone mediates no taxis, but is needed for the full tactic response; (ii) CheY2 is the main response regulator directing chemokinesis and smooth swimming in response to attractant, whereas CheY1 contributes little to chemokinesis, but interferes with smooth swimming; (iii) in a CheY2-overproducing strain, flagellar rotary speed increases upon addition and decreases upon removal of attractant; (iv) both CheY2 and CheY1 require phosphorylation by CheA for activity. We conclude that addition of attractant causes inhibition of CheA kinase and removal causes activation, and that consequent production of CheY1-P and CheY2-P acts to slow the flagellar motor. The action of the chief regulator, CheY2-P, on flagellar rotation is modulated by CheY1, probably by competition for phosphate from CheA.  相似文献   

5.
We have identified a cluster of six genes involved in trehalose transport and utilization (thu) in Sinorhizobium meliloti. Four of these genes, thuE, -F, -G, and -K, were found to encode components of a binding protein-dependent trehalose/maltose/sucrose ABC transporter. Their deduced gene products comprise a trehalose/maltose-binding protein (ThuE), two integral membrane proteins (ThuF and ThuG), and an ATP-binding protein (ThuK). In addition, a putative regulatory protein (ThuR) was found divergently transcribed from the thuEFGK operon. When the thuE locus was inactivated by gene replacement, the resulting S. meliloti strain was impaired in its ability to grow on trehalose, and a significant retardation in growth was seen on maltose as well. The wild type and the thuE mutant were indistinguishable for growth on glucose and sucrose. This suggested a possible overlap in function of the thuEFGK operon with the aglEFGAK operon, which was identified as a binding protein-dependent ATP-binding transport system for sucrose, maltose, and trehalose. The K(m)s for trehalose transport were 8 +/- 1 nM and 55 +/- 5 nM in the uninduced and induced cultures, respectively. Transport and growth experiments using mutants impaired in either or both of these transport systems show that these systems form the major transport systems for trehalose, maltose, and sucrose. By using a thuE'-lacZ fusion, we show that thuE is induced only by trehalose and not by cellobiose, glucose, maltopentaose, maltose, mannitol, or sucrose, suggesting that the thuEFGK system is primarily targeted toward trehalose. The aglEFGAK operon, on the other hand, is induced primarily by sucrose and to a lesser extent by trehalose. Tests for root colonization, nodulation, and nitrogen fixation suggest that uptake of disaccharides can be critical for colonization of alfalfa roots but is not important for nodulation and nitrogen fixation per se.  相似文献   

6.
7.
Sinorhizobium meliloti dctA encodes a transport protein needed for a successful nitrogen-fixing symbiosis between the bacteria and alfalfa. Using the toxicity of the DctA substrate fluoroorotic acid as a selective agent in an iterated selection procedure, four independent S. meliloti dctA mutants were isolated that retained some ability to transport dicarboxylates. Two mutations were located in a region called motif B located in a predicted transmembrane helix of the protein that has been shown in other members of the glutamate transporter family to be involved in cation binding. A G114D mutation was located in the third transmembrane helix, which had not previously been directly implicated in transport. Multiple sequence alignment of more than 60 members of the glutamate transporter family revealed a glycine at this position in nearly all members of the family. The fourth mutant was able to transport succinate at almost wild-type levels but was impaired in malate and fumarate transport. It contains two mutations: one in a periplasmic domain and the other predicted to be in the cytoplasm. Separation of the mutations showed that each contributed to the altered substrate preference. dctA deletion mutants that contain the mutant dctA alleles on a plasmid can proceed further in symbiotic development than null mutants of dctA, but none of the plasmids could support symbiotic nitrogen fixation, although they can transport dicarboxylates, some at relatively high levels.  相似文献   

8.
9.
Using whole genome arrays, we systematically investigated nitrogen regulation in the plant symbiotic bacterium Sinorhizobium meliloti. The use of glutamate instead of ammonium as a nitrogen source induced nitrogen catabolic genes independently of the carbon source, including two glutamine synthetase genes, various aminoacid transporters and the glnKamtB operon. These responses depended on both the ntrC and glnB nitrogen regulators. Glutamate repressible genes included glutamate synthase and a H+-translocating pyrophosphate synthase. The smc01041-ntrBC operon was negatively autoregulated in a glnB-dependent fashion, indicating an involvement of phosphorylated NtrC. In addition to the nitrogen response, glutamate remodelled expression of carbon metabolism by inhibiting expression of the Entner-Doudoroff and pentose phosphate pathways, and by stimulating gluconeogenetic genes independently of ntrC.  相似文献   

10.
The innate resistance of plants and animals to microbial infection is mediated in part by small cationic peptides with antimicrobial activity. We assessed the susceptibility of the alfalfa symbiont Sinorhizobium meliloti to the model antimicrobial peptide protamine. Twenty-one Tn5-induced mutants showing increased sensitivity to protamine were isolated, and nine were further characterized in detail. These nine mutants carried distinct transposon insertions that affected a total of seven different genes. Three of these genes are involved in exopolysaccharide and beta-(1,2)-glucan biosynthesis (exoT, exoU and ndvB), three other genes are implicated in nitrogen metabolism, such as a putative dyhidropyrimidinase, hutU and ureF, and the last gene exhibited similarity to the ATP binding cassette family of membrane transporters. Symbiotic defects ranging from severe to moderate were displayed by some of the protamine-hypersensitive mutants suggesting that S. meliloti possess active mechanisms to counteract hypothetical cationic peptides that may be produced by its host plant.  相似文献   

11.
The TolC mutant Tr63 of Sinorhizobium meliloti was generated by random Tn5 mutagenesis in the effective strain SKhM1-188. The mutant did not produce fluorescent halos in UV light on the LB medium containing calcofluor white, which suggests that modification occurred in the production of exopolysaccharide EPS1. Mutant Tr63 also manifested nonmucoidness both on minimal and low-phosphate MOPS media, and this was most likely connected with the absence of the second exopolysaccharide of S. meliloti (EPS2). The mutant was defective in symbiosis with alfalfa and formed on roots of host plants Medicago sativa and M. truncatula white round Fix- nodules or nodules of irregular shape. These nodules possessed the structure usually described for nodules of EPS1 mutants. According to the data of sequencing a DNA fragment of the mutant adjacent to the transposon, Tr63 contained a Tn5 insertion in gene SMc02082 located on the S. meliloti chromosome. This gene encodes the protein sharing homology with the TolC protein, a component of a type I secretion system responsible for the export of protein toxins and proteases in Gram-negative bacteria. The presence of proteins ExsH (endoglycanase of EPS1) and protein ExpE1 (essential for excretion of EPS2), which are known to be exported by the type I secretion system, was tested in cultural supernatants of mutant Tr63 and the parental strain by polyclonal antiserum analysis. It was ascertained that secretory proteins ExsH and ExpE1 are absent in the culture medium of mutant Tr63. The TolC protein of S. meliloti is assumed to be involved in the excretion of proteins ExsH and ExpE1.  相似文献   

12.
In denitrification, nir and nor genes are respectively required for the sequential dissimilatory reduction of nitrite and nitric oxide to form nitrous oxide. Their location on the pSymA megaplasmid of Sinorhizobium meliloti was confirmed by Southern hybridization of its clones with specific structural gene probes for nirK and norCB. A 20-kb region of pSymA containing the nor-nir genes was delineated by nucleotide sequence analysis. These genes were linked to the nap genes encoding periplasmic proteins involved in nitrate reduction. The nor-nir-nap segment is situated within 30 kb downstream from the nos genes encoding nitrous oxide reduction, with a fix cluster intervening between nir and nos. Most of these predicted nor-nir and accessory gene products are highly homologous with those of related proteobacterial denitrifiers. Functional tests of Tn5 mutants confirmed the requirement of the nirV product and 1 unidentified protein for nitrite reduction as well as the norB-D products and another unidentified protein for nitric oxide reduction. Overall comparative analysis of the derived amino acid sequences of the S. meliloti gene products suggested a close relationship between this symbiotic N2 fixer and the free-living non-N2-fixing denitrifier Pseudomonas G-179, despite differences in their genetic organization. This relationship may be due to lateral gene transfer of denitrification genes from a common donor followed by rearrangement and recombination of these genes.  相似文献   

13.
Rhizobia are soil bacteria that are able to establish symbiotic associations with leguminous hosts. In iron-limited environments these bacteria can use iron present in heme or heme compounds (hemoglobin, leghemoglobin). Here we report the presence in Sinorhizobium meliloti of an iron-regulated outer membrane protein that is able to bind hemin but not hemoglobin. Protein assignment was done by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Tryptic peptides correlated with the mass measurements obtained accounted for 54% of the translated sequence of a putative heme receptor gene present in the chromosome of S. meliloti 1021. The results which we obtained suggest that this protein (designated ShmR for Sinorhizobium heme receptor) is involved in high-affinity heme-mediated iron transport.  相似文献   

14.
We carried out studies with Escherichia coli to determine the site at which the methylation-independent pathways for taxis to oxygen and to sugars of the phosphoenolpyruvate:sugar phosphotransferase transport system converge with the methylation-dependent chemotaxis pathways. Using genetic reconstitution of the pathways in a null strain, we determined that all pathways examined required the products of the genes cheA, cheW, and cheY. Thus, we conclude that both the methylation-independent and methylation-dependent pathways converge at CheA, the histidine kinase product of cheA.  相似文献   

15.
Sinorhizobium meliloti is a gram-negative soil bacterium, capable of establishing a nitrogen-fixing symbiosis with its legume host, alfalfa (Medicago sativa). Quorum sensing plays a crucial role in this symbiosis, where it influences the nodulation process and the synthesis of the symbiotically important exopolysaccharide II (EPS II). S. meliloti has three quorum-sensing systems (Sin, Tra, and Mel) that use N-acyl homoserine lactones as their quorum-sensing signal molecule. Increasing evidence indicates that certain eukaryotic hosts involved in symbiotic or pathogenic relationships with gram-negative bacteria produce quorum-sensing-interfering (QSI) compounds that can cross-communicate with the bacterial quorum-sensing system. Our studies of alfalfa seed exudates suggested the presence of multiple signal molecules capable of interfering with quorum-sensing-regulated gene expression in different bacterial strains. In this work, we choose one of these QSI molecules (SWI) for further characterization. SWI inhibited violacein production, a phenotype that is regulated by quorum sensing in Chromobacterium violaceum. In addition, this signal molecule also inhibits the expression of the S. meliloti exp genes, responsible for the production of EPS II, a quorum-sensing-regulated phenotype. We identified this molecule as l-canavanine, an arginine analog, produced in large quantities by alfalfa and other legumes.  相似文献   

16.
17.
Abstract A greenhouse study with soil–plant microcosms was conducted in order to compare the effect of crop species, soil origin, and a bacterial inoculant on the establishment of microbial communities colonizing plant roots. Two crop species, alfalfa (Medicago sativa) and rye (Secale cereale), were grown separately in two soils collected from agricultural fields at different locations and with differing histories of leguminous crop rotation. A subset of microcosms was inoculated at 106 cfu g-1 soil with the luciferase marker gene-tagged Sinorhizobium meliloti strain L33, a symbiotic partner of M. sativa. Microbial consortia were collected from the rhizospheres of alfalfa after 10 weeks of incubation and from rye after 11 weeks. S. meliloti L33 populations were one to two orders of magnitude higher in the rhizospheres of alfalfa than of rye. In soil with previous alfalfa cultivation, 80% of the alfalfa nodules were colonized by indigenous bacteria, while in the other soil alfalfa was colonized almost exclusively (>90%) with S. meliloti L33. Three community-level targeting approaches were used to characterize the variation of the extracted microbial rhizosphere consortia: (1) Community level physiological profiles (CLPP), (2) fatty acid methyl ester analysis (FAME), and (3) diversity of PCR amplified 16S rRNA target sequences from directly extracted ribosomes, determined by temperature gradient gel electrophoresis (TGGE). All approaches identified the crop species as the major determinant of microbial community characteristics. Consistently, the influence of soil was of minor importance, while a modification of the alfalfa-associated microbial community structure after inoculation with S. meliloti L33 was only consistently observed by using TGGE. Received: 20 October 1999; Accepted: 15 January 2000; Online Publication: 18 July 2000  相似文献   

18.
19.
Group II introns are both self-splicing RNAs and mobile retroelements found in bacterial and archaeal genomes and in organelles of eukaryotes. They are thought to be the ancestors of eukaryote spliceosomal introns and non-long terminal repeat retrotransposons. We show here that RmInt1, a bacterial group II intron first described in the nitrogen-fixing symbiont of alfalfa (Medicago sativa) Sinorhizobium meliloti, is also present in other Sinorhizobium and Rhizobium species. The intron-homing sites in these species are IS elements of the ISRm2011-2 group as in S. meliloti, but ectopic insertion is also observed. We present evidence that these related bacteria have acquired RmInt1 by vertical inheritance from a common ancestor and by independent horizontal transfer events. We also show that RmInt1 is mobile in related taxa of bacteria that interact with plants and tends to evolve toward an inactive form by fragmentation, with loss of the 3' terminus including the intron-encoded protein. Our results provide an overview of the evolution and dispersion of a bacterial group II intron.  相似文献   

20.
We used proteome analysis to identify proteins induced during nodule initiation and in response to auxin in Medicago truncatula. From previous experiments, which found a positive correlation between auxin levels and nodule numbers in the M. truncatula supernodulation mutant sunn (supernumerary nodules), we hypothesized (1) that auxin mediates protein changes during nodulation and (2) that auxin responses might differ between the wild type and the supernodulating sunn mutant during nodule initiation. Increased expression of the auxin response gene GH3:beta-glucuronidase was found during nodule initiation in M. truncatula, similar to treatment of roots with auxin. We then used difference gel electrophoresis and tandem mass spectrometry to compare proteomes of wild-type and sunn mutant roots after 24 h of treatment with Sinorhizobium meliloti, auxin, or a control. We identified 131 of 270 proteins responding to treatment with S. meliloti and/or auxin, and 39 of 89 proteins differentially displayed between the wild type and sunn. The majority of proteins changed similarly in response to auxin and S. meliloti after 24 h in both genotypes, supporting hypothesis 1. Proteins differentially accumulated between untreated wild-type and sunn roots also showed changes in auxin response, consistent with altered auxin levels in sunn. However, differences between the genotypes after S. meliloti inoculation were largely not due to differential auxin responses. The role of the identified candidate proteins in nodule initiation and the requirement for their induction by auxin could be tested in future functional studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号