首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In termite hindguts, fermentative production of acetate--a major carbon and energy source for the insect--depends on efficient removal of inwardly diffusing oxygen by microbes residing on and near the hindgut wall. However, little is known about the identity of these organisms or about the substrate(s) used to support their respiratory activity. A cultivation-based approach was used to isolate O(2)-consuming organisms from hindguts of Reticulitermes flavipes. A consistently greater (albeit not statistically significant) number of colonies developed under hypoxia (2% [vol/vol] O(2)) than under air, and the increase coincided with the appearance of morphologically distinct colonies of a novel, rod-shaped, obligately microaerophilic beta-proteobacterium that was <95% similar (based on the 16S rRNA gene sequence) to its closest known relative (Eikenella corrodens). Nearly identical organisms (and/or their 16S rRNA genes) were obtained from geographically separated and genetically distinct populations of Reticulitermes. PCR-based procedures implied that the novel isolates were autochthonous to the hindgut of R. flavipes and comprised ca. 2 to 7% of the hindgut prokaryote community. Representative strain TAM-DN1 utilized acetate and a limited range of other organic and amino acids as energy sources and possessed catalase and superoxide dismutase. On solid medium, the optimal O(2) concentration for growth was about 2%, and no growth occurred with O(2) concentrations above 4% or under anoxia. However, cells in liquid medium could grow with higher O(2) concentrations (up to 16%), but only after proportionately extended lag phases. The genetic and physiological distinctiveness of TAM-DN1 and related strains supports their recognition as a new genus and species, for which the name Stenoxybacter acetivorans gen. nov., sp. nov. is proposed.  相似文献   

2.
Lactic acid bacteria have been identified as typical and numerically significant members of the gut microbiota of Reticulitermes flavipes and other wood-feeding lower termites. We found that also in the guts of the higher termites Nasutitermes arborum (wood-feeding), Thoracotermes macrothorax, and Anoplotermes pacificus (both soil-feeding), lactic acid bacteria represent the largest group of culturable carbohydrate-utilizing bacteria (3.6-5.2x10(4) bacteria per gut; 43%-54% of all colonies). All isolates were coccoid and phenotypically difficult to distinguish, but their enterobacterial repetitive intergenic consensus sequence (ERIC) fingerprint patterns showed a significant genetic diversity. Six different genotypes each were identified among the isolates from R. flavipes and T. macrothorax, and representative strains were selected for further characterization. By 16S rRNA gene sequence analysis, strain RfL6 from R. flavipes was classified as a close relative of Enterococcus faecalis, whereas strain RfLs4 from R. flavipes and strain TmLO5 from T. macrothorax were closely related to Lactococcus lactis. All strains consumed oxygen during growth on glucose and cellobiose; oxygen consumption of these and other isolates from both termite species was due to NADH and pyruvate oxidase activities, but did not result in H2O2 formation. In order to assess the significance of the isolates in the hindgut, denaturing gradient gel electrophoresis was used to compare the fingerprints of 16S rRNA genes in the bacterial community of R. flavipes with those of representative isolates. The major DNA band from the hindgut bacterial community was further separated by bisbenzimide-polyethylene glycol electrophoresis, and the two resulting bands were sequenced. Whereas one sequence belonged to a spirochete, the second sequence was closely related to the sequences of the Lactococcus strains RfLs4 and TmLO5. Apparently, those isolates represent strains of a new Lactococcus species which forms a significant fraction of the complex hindgut community of the lower termite R. flavipes and possibly also of other termites.  相似文献   

3.
In termite hindguts, fermentative production of acetate—a major carbon and energy source for the insect—depends on efficient removal of inwardly diffusing oxygen by microbes residing on and near the hindgut wall. However, little is known about the identity of these organisms or about the substrate(s) used to support their respiratory activity. A cultivation-based approach was used to isolate O2-consuming organisms from hindguts of Reticulitermes flavipes. A consistently greater (albeit not statistically significant) number of colonies developed under hypoxia (2% [vol/vol] O2) than under air, and the increase coincided with the appearance of morphologically distinct colonies of a novel, rod-shaped, obligately microaerophilic β-proteobacterium that was <95% similar (based on the 16S rRNA gene sequence) to its closest known relative (Eikenella corrodens). Nearly identical organisms (and/or their 16S rRNA genes) were obtained from geographically separated and genetically distinct populations of Reticulitermes. PCR-based procedures implied that the novel isolates were autochthonous to the hindgut of R. flavipes and comprised ca. 2 to 7% of the hindgut prokaryote community. Representative strain TAM-DN1 utilized acetate and a limited range of other organic and amino acids as energy sources and possessed catalase and superoxide dismutase. On solid medium, the optimal O2 concentration for growth was about 2%, and no growth occurred with O2 concentrations above 4% or under anoxia. However, cells in liquid medium could grow with higher O2 concentrations (up to 16%), but only after proportionately extended lag phases. The genetic and physiological distinctiveness of TAM-DN1 and related strains supports their recognition as a new genus and species, for which the name Stenoxybacter acetivorans gen. nov., sp. nov. is proposed.  相似文献   

4.
Morphological and chemotaxonomic characterization of actinomycete strain S582 isolated from the gut of a termite (Speculitermes sp.) in Pathum Thani Province, Thailand, clearly demonstrated that this strain is a member of the genus Saccharopolyspora. 16S rDNA sequence analysis for the strain supported the assignment of the strain to the genus Saccharopolyspora. The similarity value of sequences between this strain and the closely related species Saccharopolyspora endophytica was 99.5%. The DNA G+C content was 70.2 mol%. DNA-DNA hybridization results (53.3%) and some physiological and biochemical properties indicated that strain S582(T) was distinguished from the phylogenetically closest relatives. Based on these genotypic and phenotypic data, strain S582(T) should be a new species in the genus Saccharopolyspora and the name Saccharopolyspora pathumthaniensis sp. nov. is proposed for the strain. The type strain is S582(T) (=NBRC 104112(T) =BCC 28624(T)).  相似文献   

5.
Long after their original discovery, termite gut spirochetes were recently isolated in pure culture for the first time. They revealed metabolic capabilities hitherto unknown in the Spirochaetes division of the Bacteria, i.e., H(2) plus CO(2) acetogenesis (J. R. Leadbetter, T. M. Schmidt, J. R. Graber, and J. A. Breznak, Science 283:686-689, 1999) and dinitrogen fixation (T. G. Lilburn, K. S. Kim, N. E. Ostrom, K. R. Byzek, J. R. Leadbetter, and J. A. Breznak, Science 292:2495-2498, 2001). However, application of specific epithets to the strains isolated (Treponema strains ZAS-1, ZAS-2, and ZAS-9) was postponed pending a more complete characterization of their phenotypic properties. Here we describe the major properties of strain ZAS-9, which is readily distinguished from strains ZAS-1 and ZAS-2 by its shorter mean cell wavelength or body pitch (1.1 versus 2.3 micro m), by its nonhomoacetogenic fermentation of carbohydrates to acetate, ethanol, H(2), and CO(2), and by 7 to 8% dissimilarity between its 16S rRNA sequence and those of ZAS-1 and ZAS-2. Strain ZAS-9 is proposed as the type strain of the new species, Treponema azotonutricium. Strains ZAS-1 and ZAS-2, which are H(2)-consuming, CO(2)-reducing homoacetogens, are proposed here to be two strains of the new species Treponema primitia. Apart from the salient differences mentioned above, the genomes of all three strains were similar in size (3,461 to 3,901 kb), in G+C content (50.0 to 51.0 mol%), and in possession of 2 copies of the gene encoding 16S rRNA (rrs). For comparison, the genome of the free-living spirochete Spirochaeta aurantia strain J1 was analyzed by the same methods and found to have a size of 3,719 kb, to contain 65.6 mol% G+C, and also to possess 2 copies of the rrs gene.  相似文献   

6.
The bacterial phylum Verrucomicrobia has a widespread distribution, and is known to be one of the most common and diverse phyla in soil habitats. However, members of this phylum have typically been recalcitrant to cultivation methods, hampering the study of this presumably important bacterial group. In this study, we examine the phylogenetic diversity of the Verrucomicrobia in a former agricultural field and gain access to genomic information via a metagenomic approach. We examined Verrucomicrobia -like 16S rRNA gene sequences recovered from general bacterial and phylum-specific libraries, revealing a dominance of subdivisions 1 and 2. A PCR-based screening method was developed to identify inserts containing verrucomicrobial 16S rRNA genes within a large-insert metagenomic library, and on screening of 28 800 clones, four fosmids were identified as containing verrucomicrobial genomic DNA. Full-length sequencing of fosmid inserts and gene annotation identified a total of 98 ORFs, representing a range of functions. No conservation of gene order was observed adjacent to the ribosomal operons. Fosmid inserts were further analyzed for tetranucleotide frequencies to identify remnants of past horizontal gene transfer events. The metagenomic approach utilized proved to be suitable for the recovery of verrucomicrobial genomic DNA, thereby providing a window into the genomes of members of this important, yet poorly characterized, bacterial phylum.  相似文献   

7.
Four yeast strains were isolated from soil in a mixed deciduous forest in Amphoe Wang Nam Khiao, Nakhon Ratchasima province, Thailand. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, and the sequence analyses of the D1/D2 domain of the large-subunit (LSU) rRNA gene, small-subunit rRNA gene and internal transcribed spacer (ITS) region, the three strains (S-29, S-63 and S-80) were found to represent a single species of the genus Wickerhamomyces , which were named Wickerhamomyces edaphicus sp. nov. The type strain is S-29T (BCC 21231T=NBRC 101969T=CBS 10408T). Strain S-75 represented a novel species of the genus Pichia on the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, and the sequence analyses of the D1/D2 domain of the LSU rRNA gene, for which the name Pichia jaroonii sp. nov. is proposed. The type strain is S-75T (BCC 23061T, NRBC 102180T=CBS 10930T).  相似文献   

8.
Two Gram-positive strains isolated from cysts of the brine shrimp Artemia franciscana were subjected to a polyphasic taxonomic analysis. Based on 16S rRNA gene sequence comparison and composition of isoprenoid quinones, peptidoglycan and fatty acids, these organisms are members of the genus Exiguobacterium. Both strains showed 95.9% 16S rRNA gene sequence similarity to one another. The 16S rRNA gene sequences of strain 8N(T) and 9AN(T) were 97.5% and 98.9% similar to those of Exiguobacterium aurantiacum DSM 6208(T) and Exiguobacterium undae DSM 14481(T), respectively. Based on differences in chemotaxonomic and physiological characteristics, results of DNA-DNA hybridization and automated riboprinting, two novel species of the genus Exiguobacterium are proposed, Exiguobacterium mexicanum sp. nov. (type strain 8N(T)=DSM 16483(T)=CIP 108859(T)) and Exiguobacterium artemiae sp. nov. (type strain 9AN(T)=DSM 16484(T)=CIP 108858(T)).  相似文献   

9.
Six strains of denitrifying bacteria isolated from various oxic and anoxic habitats on different monocyclic aromatic substrates were characterized by sequencing 16S rRNA genes, determining physiological and morphological traits, and DNA-DNA hybridization. According to these criteria, strains S100, SP and LG356 were identified as members of Thauera aromatica. Strains B5-1 and B5-2 were tentatively affiliated to the species Azoarcus tolulyticus. Strains B4P and S2 were only distantly related to each other and to other described Thauera species. These two strains are proposed as the type strains of two new species, Thauera phenylacetica sp. nov. and Thauera aminoaromaticasp. nov., respectively. By 16S rRNA gene analysis, strain U120 was highly related to the type strains of Azoarcus evansii and Azoarcus anaerobius, whereas corresponding DNA-DNA reassociation values indicated only a low degree of genomic relatedness. Based upon a low DNA similarity value and the presence of distinguishing physiological properties, strain U120 is proposed as the type strain of a new species, Azoarcus buckelii sp. nov. Almost all of the new isolates were obtained with different substrates. The highly varied substrate spectra of the isolates indicates that an even higher diversity of denitrifying bacteria degrading aromatic compounds would be discovered in the different habitats by using a larger spectrum of aromatic substrates for enrichment and isolation.  相似文献   

10.
Only one isolate each of the class "Spartobacteria" (subdivision 2 of the phylum Verrucomicrobia) and of subdivision 3 of Verrucomicrobia have previously been reported to grow in laboratory culture. Using media that had been used successfully in other studies to isolate members of diverse groups of soil bacteria, we generated a collection of over 1,200 isolates from soil from a pasture. An oligonucleotide probe that targets the 16S rRNA genes of verrucomicrobia was used to screen this collection, and 14 new verrucomicrobia were identified. Nine of these belonged to the class "Spartobacteria" and were related to "Chthoniobacter flavus." Five further isolates were members of subdivision 3 and were related to the only known isolate of this subdivision. The differences in the 16S rRNA gene sequences of the new isolates and previously described isolates, of up to 10%, indicated that the new isolates represent new species and genera. All but two of the verrucomicrobial isolates were from colonies that first became visible one or more months after inoculation of plates with soil, but subcultures grew more rapidly. Analysis of PCR-amplified 16S rRNA genes in the pasture soil showed that members of the class "Spartobacteria" were more numerous than members of subdivision 3. Isolates of subdivision 3 were only found on plates receiving an inoculum that yielded a mean of 29 colonies per plate, while members of the class "Spartobacteria" were only found on plates receiving a more dilute inoculum that resulted in a mean of five colonies per plate. This suggested that colony development by members of the class "Spartobacteria" was inhibited by other culturable bacteria.  相似文献   

11.
Nine anamorphic, ascomycetous yeast strains belonging to the Pichia anomala clade were recovered from forest soil in 2006 in Taiwan. The nine yeast strains represent four novel yeast species based on the sequences of their D1/D2 domain of the large subunit (LSU) rRNA gene and their physiological characteristics. The scientific names of Candida dajiaensis sp. nov., Candida yuanshanicus sp. nov., Candida jianshihensis sp. nov., and Candida sanyiensis sp. nov. are proposed for these novel yeast species. The type strains are C. dajiaensis SM11S03(T) (=CBS 10590(T)=BCRC 23099(T)), C. yuanshanicus SY3S02(T) (=CBS 10589(T)=BCRC 23100(T)), C. jianshihensis SM8S04(T) (=CBS 10591(T)=BCRC 23096(T)), and C. sanyiensis SA1S06(T) (=CBS 10592(T)=BCRC 23094(T)). Sequence analysis of the D1/D2 of the LSU rRNA gene revealed that the three species, C. dajiaensis, C. yuanshanicus and Pichia onychis, shared a separate branch in the phylogenetic tree, C. jianshihensis is phylogenetically related to Candida ulmi and Pichia alni, and the phylogenetically closest relative of C. sanyiensis is Pichia populi.  相似文献   

12.
Three new non-ascosporic, ascomycetous yeast genera are proposed based on their isolation from currently described species and genera. Phylogenetic placement of the genera was determined from analysis of nuclear gene sequences for D1/D2 large subunit rRNA, small subunit rRNA, translation elongation factor-1α and RNA polymerase II, subunits B1 and B2. The new taxa are: Deakozyma gen. nov., type species Deakozyma indianensis sp. nov. (type strain NRRL YB-1937, CBS 12903); Danielozyma gen. nov., type species Danielozyma ontarioensis comb. nov. (type strain NRRL YB-1246, CBS 8502); D. litseae comb. nov. (type strain NRRL YB-3246, CBS 8799); Middelhovenomyces gen. nov., type species Middelhovenomyces tepae comb. nov. (type strain NRRL Y-17670, CBS 5115) and M. petrohuensis comb. nov. (type strain NRRL Y-17663, CBS 8173).  相似文献   

13.
In a taxonomic study on the ascomycetous yeasts isolated from plant materials collected in tropical forests in Yunnan and Hainan Provinces, southern China, four strains isolated from tree sap (YJ2E(T)) and flowers (YF9E(T), YWZH3C(T) and YYF2A(T)) were revealed to represent four undescribed yeast species. Molecular phylogenetic analysis based on the large subunit (26S) rRNA gene D1/D2 domain sequences showed that strain YJ2E(T) was located in a clade together with Candida haemulonii and C. pseudohaemulonii. Strain YF9E(T) was most closely related to C. azyma and strain YWZH3C(T) to C. sorbophila and C. spandovensis. Strain YYF2A(T) was clustered in a clade containing small-spored Metschnikowia species and related anamorphic Candida species. The new strains differed from their closely related described species by more than 10% mismatches in the D1/D2 domain. No sexual states were observed for the four strains on various sporulation media. The new species are therefore assigned to the genus Candida and described as Candida alocasiicola sp. nov. (type strain, YF9E(T) = AS 2.3484(T) = CBS 10702(T)), Candida hainanensis sp. nov. (type strain, YYF2A(T) = AS 2.3478(T) = CBS 10696(T)), Candida heveicola sp. nov. (type strain, YJ2E(T) = AS 2.3483(T) = CBS 10701(T)) and Candida musiphila sp. nov. (type strain, YWZH3C(T) = AS 2.3479(T) = CBS 10697(T)).  相似文献   

14.
Nine strains of a new Torulaspora species were isolated from natural samples collected in Japan and Thailand including one strain obtained from a leaf of Rhizophora stylosa (NBRC 11061T), one strain from soil (NBRC 11062), six strains from mosses (ST-14, ST-266, ST-510, ST-511, ST-513 and ST-581) and one strain from sediment in mangrove forest (RV-51). On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, and the sequence analyses of the D1/D2 domain of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) (ITS1-5.8S rRNA gene-ITS2) region, the nine strains were found to represent a single novel species of the genus Torulaspora, which were named Torulaspora maleeae sp. nov. The type strain is NBRC 11061T (BCC 25515T=CBS 10694T). In the phylogenetic trees based on the sequences of the D1/D2 domain of the LSU rRNA gene, T. maleeae showed a close relationship with the five recognized species of the genus Torulaspora, Torulaspora delbrueckii, Torulaspora franciscae, Torulaspora globosa, Torulaspora microellipsoides and Torulaspora pretoriensis. Torulaspora maleeae differed from the five recognized species of the genus Torulaspora by six to 12 nucleotide substitutions (1.1-2.1%) in the D1/D2 domain of the LSU rRNA gene and by 6.4-11.7% nucleotide substitutions in the ITS (ITS1-5.8S rRNA gene-ITS2) region.  相似文献   

15.
The phylum Verrucomicrobia is increasingly recognized as an environmentally significant group of bacteria, particularly in soil habitats. At least six subdivisions of the Verrucomicrobia are resolved by comparative analysis of 16S rRNA genes, mostly obtained directly from environmental samples. To date, only two of these subdivisions (1 and 4) have characterized pure-culture representatives. We have isolated and characterized the first known pure-culture representative of subdivision 2. Strain Ellin428 is an aerobic heterotrophic bacterium that is able to grow with many of the saccharide components of plant biomass but does not grow with amino acids or organic acids other than pyruvate. Cells are yellow, rod-shaped, nonmotile, and gram-stain negative, and they contain peptidoglycan with direct cross-linkages of the A1 gamma meso-Dpm type. The isolate grows well at 25 degrees C on a variety of standard biological media, including some used in the routine cultivation of bacteria from soil. The pH range for growth is 4.0 to 7.0. Low levels of menaquinones MK-10 and MK-11 were detected. The major cellular fatty acids are C(14:0), a-C(15:0), C(16:1 omega 7c), and/or 2OH i-C(15:0), and C(16:0). The G+C content of the genomic DNA is 61 mol%. We propose a new genus and species, Chthoniobacter flavus gen. nov., sp. nov., with isolate Ellin428 as the type strain, and a new class for the subdivision to which it belongs, Spartobacteria classis nov. Environmental sequences indicate that the class Spartobacteria is largely represented by globally distributed, abundant, and active soil bacteria.  相似文献   

16.
Termites harbour symbiotic spirochetes in their hindguts, which have long been considered treponemes, although they represent separate lines of descent from known species of Treponema. ‘Termite gut treponemes’ have a mutualistic relationship with the host termites with their physiological properties including CO2-reductive acetogenesis, from which the resulting acetate fulfils most of the respiratory requirement of the host. Song and co-workers showed that a spirochetal isolate (strain RmG30) from a Madeira cockroach represents the earliest branching lineage of extremely diverse termite (Treponema) cluster I and was a simple homolactic fermenter, suggesting that CO2-reductive acetogenesis exhibited by some members of termite cluster I originated via horizontal gene transfer. Phylogenomic and 16S rRNA sequence-based phylogenetic analyses indicated a deeply-branched sister clade containing termite cluster I was distinguishable as a family-level lineage. In this context, a new family, ‘Termitinemataceae’ has been proposed for this clade. Strain RmG30 has been designated as the type strain of Breznakiella homolactica gen. nov. sp. nov. named after John A. Breznak, an American microbiologist distinguished in termite gut microbiology. The study has posed important questions for the future, including the actual roles of the termite spirochetes in each termite lineage and the evolutionary process of their physiological properties.  相似文献   

17.
Three new species of Candida and a new species of Trigonopsis are described based on their recognition from phylogenetic analysis of gene sequences from large subunit ribosomal RNA, ITS1/ITS2 rRNA, mitochondrial small subunit rRNA and cytochrome oxidase II. Candida infanticola sp. nov. (type strain NRRL Y-17858, CBS 7922) was isolated from the ear of an infant in Germany and is closely related to Candida sorbophila. Candida polysorbophila sp. nov. (type strain NRRL Y-27161, CBS 7317) is a member of the Zygoascus clade and was isolated in South Africa as a contaminant from an emulsion of white oil and polysorbate. Candida transvaalensis sp. nov. (type strain NRRL Y-27140, CBS 6663) was obtained from forest litter, the Transvaal, South Africa, and forms an isolated clade with Candida santjacobensis. Trigonopsis californica sp. nov. (type strain NRRL Y-27307, CBS 10351) represents a contaminant from wine in California, and forms a well-supported clade with Trigonopsis cantarellii, Trigonopsis variabilis and Trigonopsis vinaria.  相似文献   

18.
Nine strains of three novel anamorphic yeast species were obtained from samples collected in Thailand including six strains (RV96, RV152, R14, RS9, RS58 and EA1) obtained from estuarine waters collected from two mangrove forests, one strain (ST84) from insect frass and two strains (SR16 and UB13) from forest soils. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, and the sequence analysis of the D1/D2 domain of the large subunit rRNA gene, the nine strains were found to represent three novel Candida species in the Saturnispora clade. Five strains (RV96, RV152, R14, RS9 and RS58) were assigned as a single novel species, which was named Candida sanitii sp. nov. The type strain is RV152T (BCC 25967T=NBRC 103864T=CBS 10864T). Strain EA1 was named as Candida suwanaritii sp. nov. The type strain is EA1T (BCC 29900T=NBRC 104877T=CBS 11021T). Three strains (ST84, SR16 and UB13) represented another novel species, for which Candida sekii sp. nov. is proposed. The type strain is ST84T (BCC 8320T=NBRC 105671T=CBS 10931T).  相似文献   

19.
A novel spirochete strain, SPN1, was isolated from the hindgut contents of the termite Neotermes castaneus. The highest similarities (about 90%) of the strain SPN1 16S rRNA gene sequence are with spirochetes belonging to the genus Spirochaeta, and thus, the isolate could not be assigned to the so-called termite clusters of the treponemes or to a known species of the genus Spirochaeta. Therefore, it represents a novel species, which was named Spirochaeta coccoides. In contrast to all other known validly described spirochete species, strain SPN1 shows a coccoid morphology and is immotile. The isolated strain is obligately anaerobic and ferments different mono-, di-, and oligosaccharides by forming formate, acetate, and ethanol as the main fermentation end products. Furthermore, strain SPN1 is able to grow anaerobically with yeast extract as the sole carbon and energy source. The fastest growth was obtained at 30 degrees C, the temperature at which the termites were also grown. The cells possess different enzymatic activities that are involved in the degradation of lignocellulose in the termite hindgut, such as beta-D-glucosidase, alpha-L-arabinosidase, and beta-D-xylosidase. Therefore, they may play an important role in the digestion of breakdown products from cellulose and hemicellulose in the termite gut.  相似文献   

20.
Novel dissimilatory perchlorate-reducing bacteria (DPRB) were isolated from enrichments conducted under conditions different from those of all previously described DPRB. Strain LT-1T was enriched using medium buffered at pH 6.6 with 2-(N-morpholino)ethanesulfonic acid (MES) and had only 95% 16S rRNA gene identity with its closest relative, Azonexus caeni. Strain MPT was enriched in the cathodic chamber of a perchlorate-reducing bioelectrical reactor (BER) and together with an additional strain, CR (99% 16S rRNA gene identity), had 97% 16S rRNA gene identity with Propionivibrio limicola. The use of perchlorate and other electron acceptors distinguished strains MPT and CR from P. limicola physiologically. Strain LT-1T had differences in electron donor utilization and optimum growth temperatures from A. caeni. Strains LT-1T and MPT are the first DPRB to be described in the Betaproteobacteria outside of the Dechloromonas and Azospira genera. On the basis of phylogenetic and physiological features, strain LT-1T represents a novel genus in the Rhodocyclaceae; strain MPT represents a novel species within the genus Propionivibrio. The names Dechlorobacter hydrogenophilus gen. nov., sp. nov and Propionivibrio militaris sp. nov. are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号